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With the remarkable technological development in cyber-physical systems, industry 4.0 has evolved by use
of a significant concept named digital twin (DT). However, it is still difficult to construct a relationship be-
tween twin simulation and a real scenario considering dynamic variations, especially when dealing with
small surface defect detection tasks with high performance and computation resource requirements. In this
article, we aim to construct cyber-manufacturing systems to achieve a DT solution for small surface defect
detection task. Focusing on DT-based solution, the proposed system consists of an Edge—-Cloud architecture
and a surface defect detection algorithm. Considering dynamic characteristics and real-time response require-
ment, Edge—Cloud architecture is built to achieve smart manufacturing by efficiently collecting, processing,
analyzing, and storing data produced by factory. A deep learning-based algorithm is then constructed to
detect surface defeats based on multi-modal data, i.e., imaging and depth data. Experiments show the pro-
posed algorithm could achieve high accuracy and recall in small defeat detection task, thus constructing DT
in cyber-manufacturing.
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1 INTRODUCTION

Considering that most manufacturing operations heavily depend on experienced persons, both
small and large equipment manufacturers have an increasing demand for the deployment of intel-
ligent manufacturing machines with affordable price and reliable technologies. Inspired by Cyber-
Physical systems, the Cyber-Manufacturing (CM) concept thus appears, which aims to link be-
tween significant elements, intertwine industrial big data and smart analytics, discovering and
comprehending invisible issues for decision making. As the core technologies of CM, Internet-of-
Things (IoT) and predictive analytics have advanced to obtain an emerging virtual representation
solution named digital twin (DT).

With advancement of artificial intelligence and big data analysis, DT enables us to collect data
from physical space through conventional devices and make rapid analysis and real-time deci-
sions on the collected data, which ensures the execution of automated systems. More impor-
tantly, DT couples collaboration between the physical and virtual worlds equipped with Cyber-
Manufacturing systems (CMS), enabling manufacturing operations to integrate resources on a
global scale and develop extensive cooperation [15, 19].

Essentially, finding a way to facilitate DT in smart manufacturing remains an open question,
calling for a systematic methodology to build a networked data-rich environment and to transform
raw data into meaningful and actionable operations. In this article, we focus on constructing a DT
solution for a small surface defeat detection task that scans a product surface by sensors, transmits
usable information, detects the categories and locations of surface defects in virtual space, and
determines further operations in physical world. There are two reasons the defeat detection task
is suitable to build DT. First, since surface defeat detection exists in high-risk workshops like tires
and chips, the high density of personnel may cause safety hazards, setting strict requirements
on the distribution of personnel in different areas. Once human workers have been recognized
as an essential factor, their natural undeterminate characteristics may harm the manufacturing
yield rate. Second, computer vision technology has been successfully applied for surface defect
detection in relative simple workshops [24], showing possibilities to further improve it for high
reusability, reliability, and predictability using the latest developments of Internet of Things
(IoT) and Artificial Intelligence (AI).

To construct DT for a defeat detection task in a distributed and collaborative environment, there
essentially exists two urgent needs as follows: (1) hardware and software architecture that effi-
ciently collects and analyzes large volumes of data generated from scanners and (2) algorithms
that effectively diagnose the identified defects and forecast maintenance activities to minimize
unexpected loss. Following such requirements, we further analyze the limitations considering its
inherently problematical properties.

From the perspective of hardware and software architecture, there exists a lack of affordable
sensing technologies that can be readily integrated into manufacturing systems. Choosing proper
sensors from few candidates to keep a balance between banquet and performance thus becomes
an important task to lay a solid foundation of data acquirement for DT. Due to the existence of
interference appearances such as patterns, stains, and reflections, it is difficult to capture small de-
formation of surface only with image data. We propose to capture abundant surface information to
achieve reliable detection results by both image and depth cameras, thus forming two-dimensional
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(2D) and 3D big data for further analyzing. DT with CPS requires to analyze multi-physics data
streams with high speed, high volume, and high variety, in real time, thus demanding information
and communication technology infrastructures and parallel algorithms to equip industry with
sufficient computational capacity and bandwidth. Moreover, high-precision 3D point cloud data
brings pressure on computing resources for deformation detection. Since it is too expensive to
build high-performance computing clusters for training of deep learning models, finding a way to
properly involve edge and cloud infrastructures to enable remote sensing and load balance for real-
time detection remains a challenge. With the idea to build an expandable paradigm for DT with
CPS, we design a simple but effect Edge—Cloud architecture to efficiently collect, process, analyze,
and store big manufacturing data.

From the perspective of the detection algorithm, a robust learning algorithm is necessary to
indicate what and where the defect is accurately and quickly, due to the different defeat classes,
surface backgrounds, and illuminations. However, single-mode data, i.e., either 2D or 3D data,
would lead to non-robust performance, proved by a large deviation between training and testing
performance. Therefore, an efficient multi-modal feature fusion mechanism should be addressed
to seamlessly integrate the collected multi-dimensional sensing data for dynamic evaluations. To
achieve predictable and reliable DT with the complexity of a dynamic environment, we design a
deep learning scheme to effectively distinguish between defeats and non-defeats. Moreover, weak
deformation defects might be similar with patterns of texture or background, which leads to non-
overlapping false detection results. Considering high cost for failure cases in detection, it is a wise
option to conduct post-processing from another effective analyzing view, i.e., a morphological
operator based on patterns extracted from pre-collected samples, which greatly improves precision
performance by suppressing non-overlapping detection results.

The main contributions of this article are as follows:

o A framework for intelligent small surface defect detection for DT is designed with CMS tech-
nologies, which monitors product conditions and generate predictive analytic with dynamic
and real-time characteristics.

o A simple but effect Edge—Cloud architecture is built that not only connects sensors and
computation devices for 2D and 3D big data collecting but also enables remote sensing and
load balance for real-time detection.

e A deep learning-based small surface defect detection algorithm is proposed in which fea-
tures of multi-modal data are extracted and fused as abundant information source for reliable
analyzing.

The rest of the article is organized as follows. Section 2 reviews the related work. Section 3
presents an overview of the intelligent small surface defect detection framework. Details of the
proposed deep learning algorithm, including a detection goal for smart manufacturing, structure
the design of an intelligent small surface defect detection algorithm. Section 5 presents the exper-
imental results and discussions. Finally, Section 6 concludes the article.

2 RELATED WORK

In this section, several related issues, including Digital Twin in Cyber-Manufacturing and surface
defect detection algorithm, are reviewed, respectively.

2.1 Digital Twin in Cyber-manufacturing

Enterprises of different sizes in various countries undertake the same manufacturing activities,
forming a complex and decentralized manufacturing network. Built on the basis of a network, CM
refers to the use of high-performance computing, optimization, simulation, sensing technology,
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and data analytics to create innovative products [30]. As one of the most promising technologies
for smart manufacturing, DT reflects the evolution of the whole lifecycle of physical entities by in-
tegrating multi-disciplinary, multi-physical quantity, multi-scale, and multi-probability simulation
processes and realizes the synchronous mapping of dynamic physical world in digital space. In-
spired by the robotic digital twin, value-driven and other similar methods can solve the problem of
data sensing in dual environments by minimizing the changes between the physical and the virtual
spaces, thus achieving effective simultaneous mapping of physical and digital space [17, 29]. Es-
sentially, the introduction of DT has greatly promoted the development of cyber-manufacturing.
For example, based on DT-based virtual simulations in CPS, complex and varying environment
factors can be effectively analyzed and thus regulated during manufacturing. Meanwhile, a CMS
interface can be used for data insertion and data visualization during DT in a data-driven way [37].
Moreover, CMS technologies can be adopted to promote the realization of DT space by collecting
large volumes of real-time data or building large-scale predictive models for significant advances.
As a successful example for DT with CPS, Zhou et al. [35, 38, 41] propose that equipment, prod-
uct, and operator are three basic environmental parameters, where he builds DT for small object
detection in smart manufacturing, analyzing and estimating the dynamic characteristics and real-
time changes from physical manufacturing space to virtual space. Since existing monitoring sys-
tems and prognostics approaches are not capable of supporting the construction of DT, Wu et al.
[33] propose a new computational framework for diagnosis and prognosis, which enables remote
real-time sensing, monitoring, and scalable high-performance computing, utilizing wireless sensor
networks, cloud computing, and machine learning as core inventions from CM. Focusing on intru-
sion detection, Wu et al. [34] propose a conceptual system to detect cyber-physical intrusions in
CMS, where physical data from the manufacturing process level and production system level are
integrated with cyber data from network-based and host-based IDSs; meanwhile, the correlations
between the cyber and physical data are analyzed by machine learning for intrusion detection.
Besides smart manufacturing, DT has been widely used in other domains, such as smart city,
medical analysis [8], and hydrology construction [4]. In 2010, NASA propose the goal of DT in
space technology is to halve the maintenance cost and 10 times extend service life of aircraft by
2035. The European Space Agency launch its DT Earth project with the intention of realizing dy-
namic and interactive natural twin systems. Meanwhile, Bauer et al. [2] published a study on DT
Earth construction by collaborative optimization between observational data and physical models.
China begins its DT city construction of the Xiongan New Area, in which a 25.4-square-kilometer
central business district has realized digital mapping of urban elements and dynamic supervision
of building projects. For the multi-source data collected in smart cities, Li et al. [20] introduce a
deep learning algorithm for big data analysis and propose a distributed parallel strategy of con-
volutional neural network (CNN). Through DTs and multi-hop transmission technology, they
build a DL-based smart city DTs multi-hop transmission IoTBDA system and further simulate the
performance of the system, enabling smart cities to shift to granular governance and secure data
processing. The CARES research team [39] developed the UK Digital Twin platform, which uti-
lizes knowledge graph and agent technology to analyze multi-disciplinary big data and combines
ontology characterized conceptual instances, the mirror world and parallel world thus being es-
tablished in the virtual space. For example, Samah et al. [1] propose MMSUM Digital Twins, i.e.,
a summarization framework that is capable of generating a multi-view multi-modal summary for
sporting events in real time to effectively summarize the development process of sports events and
focus on fans’ reactions and subjective opinions. Through sentiment analysis to track fans’ state
of mind, MMSUM can complete the evaluation of the generated multi-view summaries. Further-
more, digital twins can also be combined with other technologies to solve practical problems. To
reconcile the conflict between privacy preservation and data training in air-ground networks, Sun
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etal. [23, 31] consider dynamic digital twin and federated learning for air-ground networks where
a drone acts as the aggregator based on the networks captured by digital twin. In this model, the
digital twin provides a virtual representation for the air-ground network to reflect time-varying
states. Moreover, considering the varying digital twin deviations and network dynamics and net-
work dynamics, they design a dynamic incentive scheme to adaptively adjust the selection of the
optimal clients and their participation level.

2.2 Surface Defect Detection Algorithm

We classify the current surface defect detection algorithm into two categories based on the input
mode, i.e., images or 3D point cloud.

Surface Defect Detection Algorithm Based on Images. Traditional defect detection algo-
rithms mainly rely on manually designed features, like SIFT and ORB. However, they generally
suffer from poor robustness when facing complex pattern hidden images. Inspired by remark-
able distinguish capability, deep learning methods have become the mainstream for surface defect
detection.

Early, Faghih-Roohi et al. [10] used ReLU for the activation function and evaluated several net-
work sizes for the specific problem of classifying rail-surface defects. Later, Racki et al. [28] propose
a more efficient network to explicitly perform the segmentation of defects, where they design an
additional decision network on top of the features from the segmentation network to perform a
per-image classification of a defects presence, improving classification accuracy for surface de-
fect detection. Afterwards, Lin et al. [21] propose LEDNet for defect detection on LED chips with
30,000 low-resolution images, where their network follows general structure of AlexNet by replac-
ing fully connected layers with incorporates class-activation maps. Inspired by Gaussian heatmaps
to characterize keypoints in pose estimation applications, CornerNet [18] is proposed, which uses
top-left and bottom-right corners of objects to construct Gaussian heatmaps for object represen-
tation. On the basis of CornerNet, CenterNet [40] uses the center point and size of object instead,
where a modified version of CenterNet [16] successfully detects tile crack defects with high mean
average precision (mAP) performance.

In manufacturing process, weak feature representation of defects would cause defects to be
submerged by noise and background. To avoid this, He et al. [13] propose a system for steel plate
defect detection, which uses a baseline CNN and a multi-level feature fusion network to combine
multiple levels of features, greatly enhancing weak features to represent defect details. Despite
weak features, small training dataset remains difficulty, since too few training samples could easily
lead to be overfitting of deep learning structure. To mitigate the overfitting problem, Tabernik et
al. [32] present a segmentation-based deep-learning architecture that is designed for the detection
and segmentation of surface anomalies, where the architecture enables the model to be trained
using a small number of samples, thus being practical for real-scene applications. To solve the time-
consuming problem of deep learning models in automatic optical metal defect detection systems,
Lin et al. [22] used Spearman rank correlation, Pearson correlation, and Kendall correlation to
replace the evaluation methods in traditional detection models and achieved better performance.

Surface Defect Detection Algorithm Based on 3D Point Cloud. We classify current
methods into three categories, i.e., multi-view based, Voxelization based, and raw-data based. Multi-
view-based methods transform disordered, unstructured 3D point cloud data to structured, two-
dimensional data with bird’s-eye and front views through projection and interpolation, thus detect-
ing surface defeats by regarding transformed data as images [5, 25]. Later, MV3D [6] is proposed
with two stages, namely 3D Proposal Network and Region-based Fusion Network. Specifically, the
former network first extracts features from the input bird’s-eye view, front view, and RGB im-
ages and then obtains a large number of candidate 3D bounding box predictions that may contain
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objects from the obtained feature maps. By integrating candidate features from different sources
into the same dimension using Rol pooling, the latter network fuses features to accurately predict
the class and 3D bounding box of the object.

Voxelization-based defect detection algorithms aggregate unstructured points into struc-
tured voxel representations, while maintaining three-dimensional information [9]. For example,
SECOND [36] designs a 3D coefficient convolution operation that effectively improves the speed
of the voxel-based 3D point cloud detection algorithm, while solving the problem of empty voxels
in transformed data. Different from information loss caused by the previous two kinds of methods,
detection methods based on raw-data designs to directly extract the structured multi-dimensional
feature data from the original point cloud, such as Hierarchical features [11, 26, 27]. For exam-
ple, PointNet++ [27] design a local feature extraction module that performs feature extraction by
downsampling on the original point cloud. Multiple features of different receptive fields are then
obtained by cascading the set, where the last layer outputs the global features for accurate de-
feat detection. Compared with the method using single modal data and common feature fusion
methods, our method can more effectively fuse the features extracted from the depth map and
pseudo-color map and dynamically adjust the fusion weight between the feature relations of the
two maps.

Moreover, some other methods, such as radar, can be applied to surface defect detection. Cheng
et al. [7] propose a radar-vision fusion-based method for small surface object detection, which
adopts a novel representation format of millmeter wave radar point cloud. By fusing the multi-
scale features of RGB images and radar data, the method effectively improves the accuracy and
robustness of water surface precision measurement and achieves advanced performance.

3 THE PROPOSED FRAMEWORK

We introduce how to effectively monitor product conditions and generate a predictive analytic with
dynamic and real-time characteristics in this section. To fulfil these high standard requirements,
we design a framework of intelligent small surface defect detection for DT with CMS technolo-
gies. Specifically, we build an Edge—Cloud architecture to collect 3D point cloud data of a product
surface through 3D scanners, while keeping load balance in either cloud or edges for high compu-
tation capacity. Then, we offer descriptions on design of defect detection algorithm driven by the
proposed Edge-Cloud architecture. Afterwards, an overview on structure design of the proposed
intelligent small surface defect detection algorithm is proposed to perform the manufacturing de-
tection task. Finally, we will demonstrate processing steps of the framework, including feature
extraction and fusion, detection, and post-processing, which move toward the goal of building DT
with CPS technologies.

3.1 Edge-Cloud Architecture for Smart Manufacturing

Considering dynamic characteristics and real-time response requirements, we construct a simple
and effective Edge—Cloud architecture for smart manufacturing, which is shown in Figure 1. It
enables remote sensing, load balance, and results to be sent back for improvement through the
mutual mapping and timely interaction between physical manufacturing environment, i.e., factory
and virtual space.

To reach such goals, the proposed architecture requires us to accurately describe the proximity
of the digital model to the physical model, where the edge server close to the collecting devices
are capable to meet these requirements. More precisely, the edge server in Figure 1 can quickly
respond to the variations of physical products, thus dynamically adjusting the whole framework
for better performance. The proposed architecture is thus designed with sensing devices, edge
servers, and cloud servers, which effectively and automatically collects, processes, analyzes, and
stores big data produced by stream lines of factory.
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Fig. 1. Framework design of the proposed Edge—Cloud architecture for smart manufacturing, which enables
interaction between the physical manufacturing environment and virtual space via steps of collecting data,
feature processing, defect detection, and results back for improvement.

Specifically, to reduce the pressure of data transmission, we transfer the collected data captured
by sensing devices to the nearest edge servers for feature processing through edge selection. Af-
terwards, the extracted feature are further transmitted to the cloud server for defect detection,
which generally requires high computation cost via deep learning algorithms. Finally, the detec-
tion results are returned to the edge servers, guiding production activities for promotion in the
factory.

Since the Edge-Cloud architecture is a physically distributed and logically collaborative system,
the proposed framework ensures capability by significantly increasing computing and storing ca-
pacity without purchasing expensive devices, while solving the limitations of local collection and
processing equipments. Moreover, computing and storage pressure is effectively dispersed to sev-
eral edge servers and a cloud server, where the short distance between edge servers and sensing
devices guarantee real-time synchronization between the physical manufacturing environment
and virtual space, thus alleviating the unified management workflow of traditional automatic algo-
rithms. Last, the design of feature processing on physically closer edge servers can greatly reduce
the size of transferred data, reducing latency of data transmission from edge to cloud. Since cloud
could undertake computationally intensive workloads due to its sufficient computing and storing
resources, we employ detection and post-processing in the cloud for reliable and cost-effective
analyzing.

3.2 Design of Edge-driven Defect Detection Algorithm

To fit with the proposed Edge-Cloud architecture for smart manufacturing, we modify the gen-
eral steps of the defect detection algorithm for better performance. As illustrated in Figure 1 and
Algorithm 1, the proposed edge-driven defect detection algorithm consists of four steps:
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ALGORITHM 1: Design of Edge-driven defect detection algorithm.

Require: Collected data S
Ensure: Defect detection results P
1: while Collection device is working do
2: if Obtain the data from both 2D and 3D scanners then
3 Upload the data S to edge servers
4 Extract features Fo; and F34 from 2D and 3D input, respectively
5 Fuse features F,; and Fs,4 to obtain F
6: Upload F to cloud server
7
8
9

Obtain defect detection results P in cloud server based on F
Return P to first edge and then sensing devices (workers) for pipeline adjustment
else
10: Wait for new collected data
11: return P

collecting data S transmitted from sensing devices to edge servers, extracting and fusing a feature
map F transmitted from edge servers to cloud servers, and detecting defects results P transmitted
from cloud to edge and then edge to sensing devices. More precisely, if a worker working with
sensing devices tries to obtain the defect detection results of a current product in a pipeline for
timely adjustment, then the whole process can be described as follows:

(1) Workers have options to upload their captured data probably containing small surface de-
fects to the edge server. If they choose yes to upload, then the sensing equipment, includ-
ing 2D cameras and 3D scanners, will collect surface data on the corresponding workpiece
through the gateway in a timely manner. Then the data will be transmitted to the nearest
edge server based on certain selection rules for edge selection.

(2) The edge server employs a multi-modal feature extraction and fusion module to generate
a feature map based on the uploaded data, which provides both 2D and 3D analysis to dis-
tinguish feature desorption. After extraction and fusion, a feature map is transmitted to a
cloud server for further detection.

(3) The cloud server employs defect detection and post-processing modules to achieve accurate
detection results based on the uploaded feature maps. Both modules are designed to obtain
high recall performance, thus guaranteeing non-existence of valid products during smart
manufacturing.

(4) The detection results are returned to first edge servers and then sensing devices, where
resulting images with bounding boxes to intuitively show small surface defects can be used
by workers for further determination. Once the worker standing by the sensing devices is
notified with defects on current product in real time, he or she can simply abandon this
product or half the whole pipeline to investigate the problem in production.

It is worthwhile to note that multiple sensing devices or workers, who are located in different
factories and are willing to share data, can upload data to compensate for data scarcity with the
proposed Edge-Cloud architecture, thus greatly improving the accuracy of the defect detection
model trained in the cloud. Such benefits of non-local unconstraint and iterative optimization
allows grouped factories to build DT with more confidence and patience. in addition, workers
have the right to choose whether to upload data to the cloud or not, thus opting out of sharing
data at any time. If the data are private, workers can choose to only upload the collected data to
local private edge servers for defect detection services, thus ensuring privacy of users and security
of data.
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(a) Rendering from a top-down view (b) Rendering from the best view to find defects

Fig. 2. A sample of small surface defect, where we render it from different views to better find defects.

3.3 Structure Design of Intelligent Small Surface Defect Detection Algorithm

In this section, we first analyze requirements to design an intelligent small surface defect detec-
tion algorithm for DT and then offer descriptions on the overall structure design of the proposed
algorithm.

Requirement Analysis. Facing the challenge of recognizing defects in complex industrial sce-
narios, it is difficult for general algorithms to maintain consist performance in both easy and hard
cases due to their data-driven property. By investigating a manual detection process complicated
by lighting, observation, and hand touch, it is of great significance to learn how to achieve robust
and accurate detection results. We show 3D point cloud data of small surface defects renderings
from different views in Figure 2. Note that we can only observe the texture of the workpiece under
a top-down view in Figure 2(a). Meanwhile, a skilled worker can quickly find the best view for
defect detection, as shown in Figure 2(b), where red and black boxes mark intrinsic protruding
shapes and surface deformation defects, respectively.

Based on a previous analysis, we briefly list requirements of algorithm design to construct DT
for smart manufacturing.

o High recall performance. It is wise to adopt multiple modalities for defect detection for the
following two reasons: (1) weak deformation in a depth map can lead to missed detection
results and (2) severe deformation in the background in a pseudo-color mapcan easily be
amplified in the rendering process, thus resulting in incorrect detection results. Moreover,
Figure 2 shows the drawbacks of using single modality, which ignores much of the informa-
tion of defects.

o Low False Rejection Rate. Most existing defect detection algorithms suffer from bias of train-
ing data, which refers to large deviation from training samples and real product samples,
resulting in high false rejection rate, especially in non-overlapping detection. Since most of
post-processing algorithms like NMS [12], softNMS [3], and softerNMS [14], fails in han-
dling non-overlapping detection errors, it is a high priority requirement to design novel
post-processing algorithms to eliminate such errors.

Algorithm Design. We show the structure design of the proposed intelligent small surface de-
fect detection algorithm in Figure 3, which includes general steps of multi-modal feature extraction
and fusion, defect detection, and post-processing within the proposed Edge-Cloud architecture.
Note that we design the entire defect detection algorithm with three stages following the classic
idea of Faster-RCNN structure, i.e., feature extraction, detection, and post-processing. Moreover,
we modify it to fit with multi-modal input and improve it in post-processing with morphology
operations to further improve detection performance on extremely small surface defects.

Aiming to improve low recall performance caused by only using single modality of surface
defect samples, the first step of feature extraction and fusion adaptively defines fusion weights
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Fig. 3. Workflow of the proposed intelligent small surface defect detection algorithm.

ALGORITHM 2: Design of Intelligent small surface defect detection algorithm.

Require: Input depth data S’, color image data S, where i refers to the ith batch
Ensure: Detection bounding boxes B, their corresponding confidence scores C’
1: Extract multiple modality feature maps F é and F! based on S ; and S! respectively, represented
by Equation (2)
2: Obtain F ]i by fusing F 'fl and F! with a weighting scheme, represented by Equation (3)
3: Obtain set of detection bounding boxes B* and their corresponding confidence scores C* with
the proposed defect detection module, represented by Equation (1)
4 Suppress jth bounding box B} by decreasing C; if distance in feature map between F}] and
pre-extracted prototypes F,, is larger than threshold, represented by Equation (5)
5. return (B*,C")

for either 2D or 3D modality based on cross-modality relationship between depth and pseudo-
color maps. Since early fusion would lead to information lost due to both modalities has large gap
in representation structure, we thus utilize idea of feature fusion instead of raw and early fusion.
Then, defect detection module applies steps of region proposal, region classification, and regression
to accurately predict defect regions. Finally, the post-processing module adopts morphological
information of detected defects to perform alignment, thereby suppressing the incorrect detection
of non-overlapping areas.

We describe steps of the proposed defect detection algorithm in Algorithm 2. Specifically, each
input batch of data can be represented as a set: {(S?, Sé), (S;, Sf;), el (Sg, Sf) }, where i represents
the index of splitting batch, K is the total batch number, and Sfi and S! refer to the ith batch of
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depth and color imaging data, respectively. The later multi-modal feature extraction operation
extracts semantic 3D and 2D features F), and F! based on input Sfi and SI, respectively. Then
the feature fusion operation fuses F; and F; to obtain a distinguished feature map F } for further
detection. After multiple modality feature extraction and fusion accomplished by Equations (2)
and (3), respectively, the defect detection result can be obtained by

(B',C") = fuer(S%,S1), where 1 < i < K. (1)

where function fy.;() refers to operations of the proposed defect detection module and B and C
represent set of bounding boxes and the corresponding confidence scores as detection results.

Finally, post-processing operation is used to suppress incorrect detection results based on the
Euclidean distance in the feature map between F i,j and the pre-extracted defect prototype feature
set Ff, p, which utilizes characteristics of general defects to improve robustness of small defect
detection. Note that operations in the algorithm are designed with sequential connections, where
they are trained first in individual sections and then in a collaborative way, thus optimizing the
whole process first locally and then globally.

3.4 Design of Multi-modal Feature Extraction and Fusion Module

Most of the existing image-based defect detection methods focus on extraction of information
from single image modality rather than multiple modalities. To boost detection performance even
facing extremely small defects, we want to extract and fuse information from both modalities, i.e.,
the input depth and color imaging data. Note that this module is deployed on edge servers, which
transmit a fused feature map to cloud servers for further detection.

We perform feature extraction on color imaging data S, through backbone network, i.e., Swin-T,
which is built on a self-attention network. Swin-T not only performs multi-level recursive feature
extraction being similar with the classic convolutional neural network but also constructs window-
shifting self-attention scheme to perform multiple iterations of feature optimization. Moreover,
Swin-T introduces a down-sampling operation similar to pooling, which is more conducive to
expand size of receptive field. Owing to hierarchical structure of feature maps computed by Swin-
T, end-to-end feature fusion methods like Feature Pyramid Fusion can be directly applied.

Specifically, we first apply chunking operation to process raw color imaging data S., which is a
common pre-processing step for feature extraction via transformer. More precisely, S, is divided
into non-overlapping sub-blocks with a stride of 4 pixels in both the row and column directions.
Each 3D feature map is constructed with multiple sub-blocks as 4 X 4 X 3 = 48. Then, a fully
connected layer is adopted to map dimension of the sub-block from 48 to &, where & is a preset
constant. Afterwards, we use a window-shifting self-attention scheme for local feature extraction.
Finally, we use three different sub-block fusion layers to down-sample the generated feature map,
where the same self-attention scheme is further adopted to generate local feature with different
scales. Note that the sub-block fusion layer can reduce the number of sub-blocks to a quarter of
the original and double the dimension of sub-block, which is similar to a pooling operation.

After feature extraction by Swin-T, we design a pyramid fusion operation to fuse a feature map
of a different scale, which can effectively enhance feature representation ability, especially low-
level ones, to improve detection performance of small defects. Such an operation can be written
as

ﬁc,m = fup(ﬁc,mfl) 69fconv(Fc,m), where 2 <m < 4, (2)

where m refers to the index number of the pyramid level; F ,, and Iz"c,m represent a feature map be-
fore and after the pyramid fusion operation, respectively; f,,() denotes an up-sampling operation
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using nearest-neighbor interpolation; f.o, () represents the use of a 1 X 1 convolution operation
to reduce number of feature channels; and @ denotes an element-wise addition operation.
Similarly, the proposed module extracts features from depth map data S; with Swin-T and a
pyramid fusion operation, obtaining a feature set {I:“d, mb-m = 1,2,3,4. Note that I:“d, m for the
depth data and ﬁc,m for the color imaging data have the same size in different scales.
Last, we fuse I:“d, m and 1:"6, m for information enhancement via multiple modalities, which can be
written as

Fr.m = 0m © fy(Fom) + (1 — @m) © fy(Fa,m), where1 < m < 4, (3)

where function f, () refers to global pooling operation for feature generation with dimension 1x D,
© refers to element-wise multiplication, and w,, is weight for different modality. It can be adap-
tively calculated based on an input feature map of different modalities as

om = frut(feon(fy(Fem)s f3(Fam))), where 1 < m < 4, (4)

where fion () refers to the concatenate operation and fr,;() represents two fully connected layers.
Note that the number of nodes in each fully connected layer is 2D, % and D, respectively, and
each layer uses ReLU and a Sigmoid activation function, respectively.

3.5 Designs of Defect Detection and Post-processing Module

In this subsection, we will introduce designs of defect detection and post-processing modules with
three steps, i.e., ROI proposal, ROI classification and regression, and Post-processing via morphol-
ogy operations.

ROI Proposal Step. In the first step, we adopt CNN to predict regions that may contain surface
defects based on feature map computed by last module. Moreover, we adopt a k-means algorithm
to improve anchor box settings for higher accuracy.

Specifically, we first perform the operation of generating region proposals on all levels of fused
feature maps {Fy,,,,,m = 1,2,3,4}, which encodes visual clues in different modalities and scales.
Moreover, a low-level feature map not only interacts with a high-level feature map for semanti-
cal meaning boosting but also involves local information for small defects, thus benefiting defect
detection with high recall performance. Afterwards, we use a k-means algorithm to cluster defect
size based on the generated region proposals, thus setting the size of the clustering centers as a
preset size of the anchor boxes. In fact, the k-means algorithm could largely promote a further
classification step with an optimized initial values, thus achieving convergency in few iterations.

ROI Classification and Regression Step. Based on the preset sizes of the anchor boxes, we
not only classify defect categories and predict the exact bounding boxes by calibration on region
proposals but also offer prediction confidence for each group of prediction, including category and
bounding box. Therefore, we define B; and C; as the prediction of bounding box and confidence
score for the jth defect located by intelligent detection algorithm f;.,, where 1 < j < Oand O is
the total number of defects for the input and sensing product.

Post-processing Step via Morphology Operations. After detection, there exist non-
overlapping incorrect detection results due to weak deformation and similar patterns of defects. To
suppress these errors for higher precision performance, a post-processing module is proposed that
performs morphological alignment by comparing between general patterns of defects and the cur-
rent detected defect, thus suppressing non-usual defects by decreasing its prediction confidence.

First, we collect a quantity of typical defect samples to construct a multi-modal feature set of
defect prototypes Fj,, which acts as a parametric conclusion on defeat patterns from depth and
imaging modalities. Then we scale all depth maps in F, to the preset size (200, 200) using nearest-
neighbor interpolation and normalize them as values from 0 to 1.
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Afterwards, we calculate distances dj,, in a feature map between the jth bounding box Fy ;
and the nth defect prototype, where 1 < n < N and N is the total number of defect prototypes in
training dataset. Once the minimal value in d; ,,, represented as d ;,is larger than a pre-set threshold
d, we would greatly decrease the corresponding prediction confidence C; for suppressing and even
eliminating. The whole process can be represented as follows:

L e %)

where d ; is calculated as
Jj = min ||Ff; = Fp nll, where 1 < n < N, (6)

where [||| refers to calculate Euclidean distance between two feature maps with same size.

4 EXPERIMENT

In this section, we show the effectiveness of the proposed DT framework in detecting small sur-
face defeats. We first introduce the dataset and measurements. Then ablation experiments are
conducted to prove positive impacts of different structure designs. Afterwards, we perform com-
parative studies on two novel modules and offer discussions on performance. Finally, we provide
an analysis on computation cost and implementation details.

4.1 Dataset and Measurement

We collect two datasets, i.e., DeA and DeB, from a factory that correspond to two industrial prod-
ucts, A and B. Since the occurrence probability of small surface defects is relatively low in all types
of defects, we collect fewer samples than expected, where DeA and DeB contain 24 and 37 original
3D point clouds by scanning surface defeats of A and B, respectively. We show several examples in
Figure 4 by rendering 3D point clouds as pseudo-color images for display, where we can observe
rough surface and complex texture appearance of A. Moreover, green rectangles are used to locate
defects, which are difficult to recognize due to their small size and irregular shape. Essentially, all
these properties reflect difficulties in a real-world production scenario with DT sense, which im-
proves generality of the proposed framework. DAGM 2007, KTH-TIPS, and several other datasets
with the similar properties can be used for testing as well.

After obtaining DeA and DeB, we further construct DeA+ and DeB+, where original samples are
manually annotated and enhanced to generate more samples. Specifically, we first use a point cloud
rendering algorithm that renders the original 3D point clouds as pseudo-color and depth map data
with enhanced deformation characteristics. Then, we follow a COCO annotation format for manual
annotation based on a pseudo-color map. To ensure fairness of testing during sample generation,
we first divide original data into three parts by a cross-validation criterion and then generate
another 300 samples in each part without interferences among testing and training samples. Finally,
DeA+ and DeB+ is constructed by merging original and generated data, which can be represented
as pairs of depth and color imaging data S = {(S(ii, SH,1<i<k}

Following requirement analysis for algorithm design in Section 3.3, we apply AP and recall for
evaluation. Specifically, AP is defined as the mean precision value over multiple Intersection over
Union (IoU) thresholds and all the object classes:

1
APy, = 0P(i, U)), 7
U T 10 % C < (.05) @

C
i=1

1
Jj=1
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Fig. 4. Several samples of small surface defects in the DeA dataset, where green rectangles refer to deforma-
tion defects.

where i and j refer to the index of class and threshold, respectively; C is the total number of classes;
the IoU values U; correspond to a range from 0.5 to 0.95 with a step size of 0.05; and the function
P(i,U;)() calculates precision values for the ith object class under a fixed IoU threshold U;. More
precisely, APsg refers to mAP values over the IoU thresholds of 0.5.

Recall is used to measure the capability of the detection algorithm to accurately find out all
defects from quantity of scanning products, where we expect to obtain high recall performance
during testing. Since prediction results can be divided into four categories, i.e., true positive (TP),
false negative (FN), false positive (FP), and true negative (IN), recall can be calculated with
Recall = N7p/(N7p + NpN), where N represents number of classified samples.

4.2 Ablation Experiment

To explore effectiveness of structure designs, results of ablation experiments are shown in Table 1,
where we add algorithm modules on the basis of Faster RCNN network for performance compar-
isons. Specifically, Post-pro refers to adding the proposed morphological alignment algorithm on
the basis of NMS in the post-processing module. Fusion represents adoption of the proposed multi-
modal feature extraction and fusion module rather than only using one modality, i.e., pseudo-color
data, for training. Enhance refers to generating new samples based on morphological operations
rather than only adopting basic transformations for data enhancement, such as rotation, clipping,
scaling, and so on. Render denotes rendering of the original 3D point clouds as pseudo-color and
depth map data with enhanced deformation characteristics rather than only using point clouds
and depth maps for training.

From Table 1, we can observe that the Render and Enhance settings greatly improve defect de-
tection performance, proved by large promotion in APsy and Recall. In fact, Render helps generate
the 2D modality, i.e., pseudo-color data, and offers more informative 3D modality, i.e., depth data,
on the basis of point cloud data, which offers multiple views to better locate small and weak defects,
as shown in Figure 2. Meanwhile, Enhance greatly increases the number of samples in the training
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Table 1. Performance Comparisons with Different Structure Designs
on the DeA+ and DeB+ Datasets

Dataset Render Enhance Fusion Post-pro APs5i (%) Recall(%)

DeA+ v v v v 75.2 95.4
DeA+ v v v — 71.7 96.9
DeA+ v v — — 71.2 89.7
DeA+ v — — — 67.3 82.4
DeA+ — — — — 41.9 52.5
DeB+ v v v v 77.0 97.7
DeB+ v v v — 72.4 98.2
DeB+ v v — — 72.6 91.9
DeB+ v — — — 68.1 85.7
DeB+ — — — — 45.9 64.7
Bold indicates the best.

dataset with novel morphological operations, which prevents overfitting of the small dataset and
improves the generalization ability of the trained network.

Later, we could observe that Fusion could greatly increase recall performance but fails in promot-
ing APs. This phenomenon can be explained by the fact that fusion introduces multiple modalities
with new visual clues on defects, which helps to mine all possible defects with a high recall perfor-
mance. However, new possible defects are difficult to accurately locate due to its small and weak
deformation properties, resulting in the same or even lower APs, performance.

Last, Post-pro greatly improves APs, while slightly decreasing recall performance. Essentially,
post-processing operations, including NMS and the proposed morphological alignment algorithm,
generally help suppress non-overlapping false detection defects, thus increasing APsy and decreas-
ing recall explained by definitions of both measurements.

Based on all former analysis, it is our best choice to adopt all four modules for the highest APs
and second highest recall, which keeps balance between the precision and recall measurements,
thus promoting intelligent and applicable capability of the whole framework.

4.3 Comparative Experiment on Multimodal Feature Extraction and Fusion Module

We report defect detection results achieved by the proposed method and several comparative meth-
ods in Table 2, where we modify settings of multimodal feature extraction and fusion module for
comparisons. Specifically, OnlyColor abandons structure of data fusion with only pseudo-color
data. On the contrary, OnlyDepth abandons structure of data fusion with only depth data. FuseAdd
adopts feature fusion method with element-wise addition operation, where feature map of both
modalities directly sums for output. FuseConcat use concatenation operation and 1Xx 1 convolution
filter for feature fusion, where feature map of both modalities are first concatenated as one feature
map and then re-scaled by convolution operation.

On both DeA+ and DeB+ datasets, the proposed method generally achieves the best performance
in terms of APs5y and recall, except that we achieve slightly worse performance than FuseConcat
in DeB+ and ResNet50. Note that the proposed method has achieved large improvement in recall,
since design of multi-modal feature fusion enables us to better locate small and weak deformation
defects by viewing and examining surface patterns via distinguish feature maps. Adopting one
modality, such as OnlyColor and OnlyDepth, fails to search for the best view to locate defects
without abundant information, which is proved by the fact that their results are much smaller
than the other three methods. Moreover, the proposed adaptive weighting scheme offers weights
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Table 2. Performance Comparisons between the Proposed Method and
Several Comparative Studies on the DeA+ and DeB+ Datasets

Dataset  Backbone Fusion APso(%)  Recall(%)
DeA+ ResNet18 OnlyColor 69.5 85.5
DeA+ ResNet18  OnlyDepth 65.2 81.3
DeA+ ResNet18 FuseAdd 71.1 88.3
DeA+ ResNet18 FuseConcat 69.8 90.4
DeA+ ResNet18 Ours 72.1 94.3
DeA+ ResNet50 OnlyColor 70.0 88.3
DeA+ ResNet50  OnlyDepth 64.9 80.8
DeA+ ResNet50 FuseAdd 70.8 90.1
DeA+ ResNet50 FuseConcat 71.3 91.3
DeA+ ResNet50 Ours 71.7 96.9
DeB+ ResNet18 OnlyColor 70.8 89.5
DeB+ ResNet18 OnlyDepth 68.5 84.4
DeB+ ResNet18 FuseAdd 70.2 93.1
DeB+ ResNet18 FuseConcat 71.8 92.1
DeB+ ResNet18 Ours 71.8 97.1
DeB+ ResNet50 OnlyColor 71.8 90.2
DeB+ ResNet50  OnlyDepth 68.7 85.2
DeB+ ResNet50 FuseAdd 72.1 94.6
DeB+ ResNet50 FuseConcat 72.7 94.1
DeB+ ResNet50 Ours 72.4 98.2

Note that we modify settings of multimodal feature extraction and fusion module
for comparisons. Bold indicates the best.

on feature maps of different modalities based on input content information, thus achieving more
convincing and accurate detection results. Such an advantage can be proved by the fact that the
proposed method outperforms FuseAdd and FuseContact in all testings, which apply fixed and
inflexible fusion strategies for multiple modalities fusing.

The proposed method has a smaller gain on AP5, compared with the recall measurement. This
phenomenon can be explained by the fact that adopting multiple modalities offers more potential
defect regions to improve recall, nevertheless bringing difficulties in identifying them as defects
with their complicated input raw data. We further find these hard cases as non-overlapping bound-
ing boxes, where the algorithm misclassifies them due to their similar appearance and texture with
defects. To distinguish such hard cases for precision boosting, we thus design a post-processing
module with idea of morphological alignment.

Experimental results also show that ResNet50 is more useful than ResNet18 in the backbone
network for defect detection, where the deeper structure of ResNet50 is able to extract more in-
formative and fine-grained features for locating small defects, compared with relatively shallow
network depth of ResNet18.

4.4 Comparative Experiment on Post-processing Module

Table 3 shows comparative experimental results on the DeA+ and DeB+ datasets, where we modify
settings of the post-processing module as comparative studies. Specifically, NMS sorts detection
bounding boxes of the same category based on their corresponding confidence scores, thus elim-
inating boxes with larger IoU than threshold. Meanwhile, SoftNMS removes detection bounding
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Table 3. Performance Comparisons between the Proposed Method
and Several Comparative Studies on the DeA+ and DeB+ Datasets

Dataset Backbone Post-pro APso(%) Recall(%)

DeA+  ResNetl18 NMS 72.1 94.3
DeA+  ResNetl18 NMS+Ours 76.8 93.6
DeA+  ResNet18 softNMS 70.1 94.3
DeA+  ResNet18 softNMS+Qurs 74.6 93.6
DeA+  ResNet50 NMS 71.7 96.9
DeA+  ResNet50 NMS+Ours 75.2 95.4
DeA+  ResNet50 softNMS 70.9 96.9
DeA+  ResNet50 softNMS+Ours 73.6 95.4
DeB+  ResNet18 NMS 71.8 97.1
DeB+  ResNet18 NMS+QOurs 74.7 96.5
DeB+  ResNet18 softNMS 70.2 97.1
DeB+  ResNet18 softNMS+Ours 73.3 96.5
DeB+  ResNet50 NMS 72.4 98.2
DeB+  ResNet50 NMS+OQurs 77.0 97.7
DeB+  ResNet50 softNMS 71.6 98.2
DeB+  ResNet50 softNMS+Ours 74.2 97.7

Note that we modify settings of post-processing module for comparisons.
Bold indicates the best.

boxes whose confidence scores are smaller than the threshold by decreasing confidence scores
based on their IoU values. Note that all post-processing algorithms in this article are designed
without a learning process so that they can be merged in sequential order for accuracy boosting. In
Figure 5, we show samples of the detected defeats before and after morphological post-processing
operations, where we can observe that proper post-processing algorithm could greatly prevent
error detections, even with similarities in appearance and texture.

It is observed that the proposed morphological alignment algorithm improves APs, and slightly
decreases recall on the basis of NMS and softNMS. Such experimental results show that morpholog-
ical post-processing can effectively suppress non-overlapping false detection regions to improve
precision performance. Meanwhile, NMS or softNMS is arranged in sequential processing order to
deal with overlapping false detections. However, the proposed morphological alignment algorithm
eliminates a small number of correct detection regions, since their shape patterns are not included
in the pre-extracted prototype dataset. In fact, this drawback can be avoided by enlarging size of
prototype dataset with more captured samples.

Only using NMS or softNMS achieves the same recall and different APs, as illuminated in
Table 3, since post-processing methods help remove incorrect detections other than finding more
defeats. Moreover, NMS generally achieves better APsy performance than softNMS, no matter
whether it is used only or with the morphological alignment algorithm. This phenomenon can
be explained by the fact that softNMS achieves more redundant bounding boxes on sparse data,
due to its strategy to suppress incorrect detections via decays in the confidence score. Last, usage
of ResNet50 helps to defeat detection performance due to its deeper network structure compared
with the shallow structure of ResNet18.

4.5 Computation Cost

In this subsection, we only discuss the time-consuming part of our surface defect detection method,
including transmission time, defect collection time, and processing time in both edge servers and
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Before
morphological
post-processing

After
morphological
post-processing

Fig. 5. Samples of the detected defeats before and after morphological post-processing operations.

cloud centers. Under the hardware and software environment mentioned in Section 4.6, the trans-
mission of image mentioned in DeA+ has a total cost of 2.55 s between the edge server and cloud
center, which is the same as the transmission time between the devices and edge servers. The
simulation results show that the processing time of each image in edge servers is 9.76 s, and the
processing time in the cloud center is 8.74 s. After all, the proposed method is still applicable to
the actual surface defect detection scene, and simulation is only a means to verify the effectiveness
and correctness of the proposed surface defect detection system.

4.6 Implementation Details

All our experiments were conducted on a server with two Intel Xeon E5-2620 v4 (@2.1 GHz) CPUs
and one single NVIDIA GTX 1080Ti graphics cards. We adopt threefold cross-validation to di-
vide training and testing set. ImageNet dataset is used to pre-train weights. The training learning
rate and batch size is set to 0.001 and 1, respectively. All methods in comparative experiments are
trained for 50 epochs. To evaluate the accurate computation cost of the Edge-Cloud structure, we
choose the Amazon’s reserved instance “m3.medium” as the virtual machines on the edge servers.

5 CONCLUSION

Automatical defect detection is widely used in manufacturing. However, it is still difficult to con-
struct the relationship between twin simulation and real scenarios considering dynamic variations,
especially when dealing with small surface defects. We thus propose a framework of intelligent
small surface defect detection with CMS technologies for DT, including an Edge-Cloud architec-
ture and an intelligent surface defect detection algorithm. Considering dynamic characteristics and
real-time response requirement, the Edge—Cloud architecture is built to efficiently collect, process,
analyze, and store big data produced by stream lines of factories. Then, we extract and fuse fea-
tures from both 2D and 3D modalities to accurately identify the status of surface. Finally, a novel
morphological alignment algorithm is proposed to aid in eliminating incorrect detection for pre-
cision boosting. Ablation and comparative experiments prove the effectiveness of the proposed
method in building a DT environment for small defeat detection. Our future work includes 3D ge-
ometry reconstruction via multi-view captured images to promote detection accuracy with surface
geometry information.
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