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Abstract—With fast increase in volume of mobile multimedia
data, how to apply powerful deep learning methods to process
data with real-time response becomes a major issue. Meanwhile,
edge computing structure helps improve response time and
user experience by bringing flexible computation and storage
capabilities. Considering both technologies for successful AI-based
applications, we propose an edge-computing driven and end-to-end
framework to perform tasks of image enhancement and object
detection under low-light conditions. The framework consists of a
cloud-based enhancement and an edge-based detection stage. In the
first stage, we establish connections between edge devices and cloud
servers to input re-scaled illumination parts of low-light images,
where enhancement subnetworks are dynamically and parallel
coupled to compute enhanced illumination parts based on low-light
context. During the edge-based detection stage, edge devices could
accurately and rapidly detect objects based on cloud-computed
informative feature map. Experimental results show the proposed
method significantly improves detection performance in low-light
conditions with low latency running on edge devices.

Index Terms—Low-light image enhancement, object detection,
edge-driven deep learning method.

I. INTRODUCTION

AS MORE cameras are applied to acquire images and vid-

eos from real-life, how to efficiently analyze multimedia

data becomes a hot topic. Motivated by highly distinguish

capability of deep neural networks (DNN), researchers have

successfully deployed DNN based applications on powerful

PCs [1], [2]. Among multimedia data analytics applications,

object detection plays a pivotal role by identifying and localiz-

ing all objects instances with category labels in an input image,

which is the major concerned topic in this paper.

In many multimedia analytics scenarios, simply uploading

and handling data at the cloud end leads to annoying user expe-

rience, especially considering time-sensitive property of

mobile computing. The edge computing paradigm thus appears

to provide efficient distributed computing resources at the edge

of networks, posing significant challenges on running deep

learning methods for multimedia data analytics [3]–[5].

Since prices of high-resolution cameras have been falling off

recently, object detection networks appear with larger capacity

with deeper layers or higher dimension of feature map to fulfill

the requirements of high-resolution inputs. The inherent com-

plexity of DNNs even largely increases by the unexpected cap-

tured conditions, such as conditions of low light, low resolution

and color distortion, resulting in a prohibitively high latency

when detecting objects on edge devices. Considering limited

computing and storage resource in edge devices, the tension

between resources-constrained edge devices and compute-

intensive inference workloads becomes the major challenge to

deploy DNNs for object detection task [6]–[8].

To fill the gap between the needs of object detection in low-

light environment, and of limited computation resource in edge

devices, we propose an edge computing driven framework,

which simultaneously performs the tasks of low-light image

enhancement and object detection with the support of the edge

computing infrastructure. The proposed method strikes the bal-

ance between edge resources and object detection performance

by enhancing high-resolution images in cloud and running

object detection network on intermediate computations in edge

devices. Unlike existing solutions that run one processing net-

work on input images [9]–[11], the proposed method adopts

multiple parallel subnetworks to compute enhanced images

that tend to be more informative, hence resulting in a higher

detection accuracy.

The design of the proposed method faces two core techni-

cal challenges. First, the overall structure design is non-triv-

ial, considering the aim of to best balancing the trade-off

between accuracy and computing requirement. Second, how

to deal with complexity brought by low-light conditions,

requiring the awareness of the variations to design specific

DNNs for enhancement purpose is often ignored by popular

object detection networks. To cope with the first issue, the

proposed method facilitates as many as possible subnetworks
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in resource-abundant cloud to enhance extremely low-light

images, and designs two detection networks to match with

edge devices owning different resources.

To deal with complexity of low-light conditions, we firstly

analyze effects by representing samples in Fig. 1 to reveal

cases of blurred or foggy conditions, dark objects with point

light source, objects in shadows. General thoughts to deal with

low-light conditions are to manually design sequential filters

for enhancement before detection, resulting in two drawbacks.

Firstly, evaluation metrics for low-night image enhancement

and object detection are inconsistent, where we generally

adopt measurements of image quality like SSIM/PSNR for

enhancement and label correctness like Precision/Recall for

detection. The proposed method designs an end-to-end para-

digm to solve the problem of inconsistent evaluation metric,

where we train the whole network by connecting enhancement

and detection stages, and enabling gradient propagation

between stages, achieving an unified evaluation metric, i.e.,

label correctness. During testing, enhancement and detection

stages are separately performed on cloud and edge devices,

making the best of computing resources by performing time-

consuming enhancement in cloud and light-weight detection

in edge devices.

Secondly, sequential filters may interrelate, like denoising

filter may simultaneously blur edges and texture of objects to

be detected, and is time-consuming on high-resolution images

with resource-constrained edge devices. The proposed method

adopts multiple and parallel subnetworks for enhancement in

cloud, which not only solves filter interaction by considering

specific categories of low-light conditions, but largely reduces

computing time by designing parallel processing in cloud. In

summary, the main contribution is three-fold:

� We propose an edge computing driven deep learning

method for object detection in low-light conditions,

which designs the overall structure of cloud-based

enhancement and edge-based detection stages to keep

balance between edge compute resources and object

detection accuracy.

� An end-to-end paradigm for the tasks of image enhance-

ment and object detection is introduced, which not only

performs training optimization within a unified measure-

ment metric to improve detection performance, but also

moves time-consuming enhancement to cloud, reducing

time latency during testing.

� We propose parallel and dynamic enhancement subnet-

works for extremely low-light image enhancement in

cloud computing stage, which not only saves computing

time by parallel running subnetworks, but also involves

low-light context information to improve enhancement

effects.

II. RELATED WORK

We classify the related existing methods into three topics:

low-light image enhancement, edge computing paradigm and

object detection.

A. Low-Light Image Enhancement

Since low-light condition could largely decrease perfor-

mance of semantical comprehension tasks, large amount of

image enhancement methods are proposed by researchers to

obtain high-quality images from original ones. Traditional

methods use either adaptive histogram equalization or Retinex

theory to perform enhancement, where the latter methods

enhance pixels based on well-designed illumination map. Fol-

lowing the idea of the Retinex theory, Ying et al. [12] proposed

to enhance low-light images by dynamically adjusting expo-

sure time to create more images at first, and then fusing images

with the help of estimated illumination map.

Inspired by significant power in constructing distinguish fea-

ture maps, deep learning methods are applied by researchers to

complete low-level vision tasks. Following the general steps to

process low-level image information, Gharbi et al. [13] pro-

posed the HDR-Net with pairwise supervision training, which

utilizes thoughts of bilateral grid processing and local affine

color transforms to work within structure of deep neural net-

works. To fuse advantages of deep learning methods and Reti-

nex theory, Wei et al. [14] proposed an end-to-end framework,

where their proposed Decom-Net is designed for image decom-

position and another Enhance-Net is responsible for illumina-

tion enhancement based on decomposed information. With the

conception of “learning to see in the dark,” Chen et al. [15] pro-

posed to learn the pipeline of color transformations, demosaic-

ing and denoising, which successfully prevent artifacts during

low-light enhancement. They later conducted experiments on

several public datasets showing impressive visual effects.

Afterwards, Zhu et al. [16] proposed the Edge-Enhanced

Multi-Exposure Fusion Network (EEMEFN) to deal with

extremely low-light image enhancement, which employed a

multi-exposure and an edge enhancement fusion module to

address the high contrast and color bias issues, and refined the

initial images with edge information, respectively. Liu et al.

[17] proposed the RUAS model to characterize the intrinsic

underexposed structure of low-light images to obtain a top-per-

forming image enhancement network. Most recently, Zhang

et al. [18] enforced the temporal stability in low-light video

enhancement with only static images by learning and inferring

Fig. 1. Diversity examples of low-light conditions taken by mobile devices,
where (a) and (b) correspond to extremely low light conditions, (c) and (d)
refer to weak illumination conditions with blurred or foggy scenes, (e) and (f)
represent objects in darkness with point light source, (g) and (h) show objects
in shadows with too bright scenes.
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motion field (optical flow) from a single image and synthesize

short range video sequences.

Due to unsupervised training property, GANs are popular to

be applied for image restoration and enhancement, where the

GANs structure is powerful in handling a quantity of unpaired

images without enough prior knowledge. For example, Zhu

et al. [19] adopted a two-way GAN with a novel cycle-consis-

tent loss, which could perform image synthesis and translation

tasks between two different domains with unpaired data. How-

ever, such work is often hard to train and unstable in perfor-

mance. Differ from complicated structure design, Jiang et al.

[20] proposed a lightweight and one-path unsupervised GAN

named as EnlightenGAN, which designs a global-local dis-

criminator structure and a self-regularized perceptual loss

fusion to enhance various real-world images.

B. Edge Computing Paradigm

Internet of Things (IoT) is fast developing, where billions of

smart devices are applied on objects to collect information

from real-life [21]. However, the cost of hardware equipments

restricts the speed of data processing in smart devices, thus

causing slow response, time delay and so on. To solve such

problem, edge computing emerges to provide real-time serv-

ices and mitigate the bandwidth demand. In contrast to the

idea of processing data in cloud, edge computing tries to pro-

cess most amount of data at the edge and upload small size of

data to cloud, where the uploaded data might request global

information or quantity of computation resources for further

processing [22].

We could roughly classify methods for edge computing into

three categories, i.e., fog computing, cloudlets and mobile

edge computing (MEC). We pay special attention to MEC,

which acts as a beneficial complement to cloud infrastructures

by encouraging computing works to be operated at the end of

IoT network, i.e., mobile devices. As a novel computing para-

digm, MEC brings advantages of low transmission delay,

enough battery life, low bandwidth expenditure, and privacy

preservation in the mobile IoT [23]. To solve the high compu-

tation and communication uncertainty of servers’ resources,

Apostolopoulos et al. [24] proposed to use a non-cooperative

game among the users a distributed low-complexity algorithm

that converges to the Pure Nash Equilibrium.

As the major data types generated by mobile devices, mobile

multimedia data (e.g., images, videos, and voice recordings)

processing becomes more critical in the domain of MEC. To

excavate valuable information from raw mobile multimedia

data [25], researchers have developed quantity of applications

by involving technologies like computer vision (CV), natural

language processing (NLP) and so on. How to properly deploy

these applications under the guidance of the MEC paradigm

becomes a major challenge. To this end, we migrate and imple-

ment the traffic flow detection algorithm to the edge device,

and the experiments have demonstrated the advantage of our

framework with a good performance [26]–[28].

Essentially, applications on multimedia data processing

require large computation resources, which might exceed local

computing capacity in edges. By constructing a powerful com-

puting system in cloud for computation supplement, Ali et al.

[29] proposed a dynamic priority-based resource allocation

scheme to provide media processing services with high QoS.

For edge server quantification and placement, Xu et al. [30]

developed a collaborative method, which could deal with

vehicular social media in a manner of low time delay and high

robustness. Most recently, Lu et al. [31] proposed a collabora-

tive learning approach named Colla, which allows cloud and

devices to learn collectively and continuously and build tai-

lored model for each device, greatly shortening the training

time and improving the accuracy. Jian et al. [32] proposed a

cost-efficient system named Spatula, which enables scaling

cross-camera analytics on edge compute boxes to large camera

networks by leveraging the spatial and temporal cross-camera

correlations. It can drastically reduce the communication and

computation costs.

With the similar idea to build computing servers in cloud for

large computation burden, the proposed framework is carefully

designed to allocate time-consuming computation for cloud

based on small-size data and other computing tasks for edges,

thus resulting in fast response and low-bandwidth requirement.

C. Object Detection

Object detection is to find out all interested objects in an

input image and determine their categories and positions,

which is one of the most fundamental problems in computer

vision. Early, the Viola-Jones algorithm [33] was proposed to

detect a frontal face by using Haar-like features to describe

face, and several different rectangular features were obtained

by establishing integral images. Afterwards, they adopted an

AdaBoost algorithm to construct a cascaded classifier for face

detection.

Currently, we can category most of object detection meth-

ods into two kinds, i.e., one stage and two stage, where two

stage means that the detection algorithm needs to be com-

pleted in two steps. Specifically, the candidate regions com-

puted by the first step need to be classified in the second step,

such as R-CNN series [34]. In contrast, a one-stage detection

directly regresses labels and locations of possible objects,

such as in the SSD [35] and Yolo [36] approaches.

To design for special application scenarios, ORSIm detec-

tor [37] adopted a novel spatial-frequency channel feature

(SFCF) by jointly considering the rotation-invariant channel

features constructed in the frequency domain and the original

spatial channel features, which meet the demand for effec-

tively and efficiently handling image deformations, particu-

larly objective scaling and rotation. Later, Wu et al. [38]

proposed a Fourier-based rotation-invariant feature boosting

method, which solved the sensitivity of object deformations

from the view of frequency domain.

Considering the complexity of classification on objects in

remote sensing images, Hong et al. [39] proposed a multimodal

deep learning (MDL) framework, which focuses on “what,”

“where,” and “how” to fuse with different fusion strategies as

well as how to train deep networks and build the network

3088 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: Hohai University Library. Downloaded on November 22,2023 at 02:01:04 UTC from IEEE Xplore.  Restrictions apply. 



architecture. Later, miniGCN [40] was proposed that allowed

training large-scale GCNs in a minibatch fashion, in order to

minimize the computational cost of Hyperspectral Image

Classification.

Most related to our work, Jiang et al. [8] proposed a flexible

framework for high-resolution object detection on edge devi-

ces, which divides the input image into different regions and

allocates different computing power to minimize latency.

Later, Zhang et al. [11] proposed the design of Elf, which

employs a recurrent region proposal prediction algorithm, a

region proposal centric frame partitioning, and a resource-

aware multi-offloading scheme. It can largely speed up the

applications and save bandwidth usage.

III. THE PROPOSED METHOD

In this section, we describe the proposed edge-driven and

multi-stage image enhancement method for object detection.

We firstly introduce the overall framework, which offers a

global view on how the proposed method works. Then, we

show the structure of one enhancement subnetwork to perform

dynamical image enhancement. Afterwards, we illustrate the

process to perform object detection on weighted feature maps

with two customized detectors. Finally, we will demonstrate

training procedures with loss functions.

A. Overall Framework

In this subsection, we offer descriptions of the proposed

cloud-edge computing framework and multi-stage network

design, respectively.

Cloud-Edge Computing Framework. The structure of the

proposed cloud-edge computing framework is shown in Fig. 2,

where we can notice the cloud-located computing server con-

nects with all mobile devices with good network connectivity

by a wireless network. The computing server then responds to

mobile users’ queries on the computation workloads. When the

computing server hears multiple requests from mobile users,

it performs parallel computing in cloud and offers proper

responses to users after computing. In our case, if a mobile

user wants to know the object categories inside his/her camera

captured image with bad light condition, the proposed frame-

work follows these four steps:

1) Users are given options to perform enhancement locally

or on the cloud server. If they choose the latter, the

mobile device will send the request for enhancement

tasks to the computing server and upload small-size

illumination images for further computation via cellular

network;

2) The computer server arranges computation workloads

for multiple mobile users and performs parallel running

on enhancement stage for one specific user;

3) The computing server sends small-size responses to

users via a cellular network, which contains packed

enhanced images and corresponding weights computed

by the last step;

4) Mobile devices work as edges to locally run the detec-

tion stage with the customized algorithm, which offers

accurate detection results to users.

It is worth noting that during actual use, users have the
right to choose whether to upload image data to the ECS.
If the user choose ‘yes,’ that means the data subject has
provided informed consent to data processing for lawful
purposes. This meets the requirements of General Data
Protection Regulation and California Consumer Privacy
Act. In summery, two communication budget should be
calculated, where only the component of luminance-chro-
minance color space, represented by Y , for an input image
is sent from the device to the serve, and the data sent from
the server to mobile devices refers to exposure maps.

We design the proposed framework based on several consid-

erations. To mitigate bandwidth requirements, we firstly

decrease the size of the transmission data between mobile devi-

ces and computing server by transmitting several vital data, i.e.,

illumination image, enhanced images and corresponding

weights. To deal with extreme low-light situations, it is essential

to place as many enhancement subnetworks for dynamical

enhancing. However, the quantity of subnetworks brings large

computation burden, which can only be performed in cloud with

sufficient computation resources. Furthermore, subnetworks are

dual connected, which are suitable to be parallel performed in

Fig. 2. Framework design of cloud-edge computing for one typical mobile multimedia processing task, i.e., dynamical image enhancement for object detection.
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cloud. Last but not least, mobile devices could have large gap in

computation capability, which leads us to design different ver-

sions of local running algorithms for fast response.

Edge-driven and Multi-stage Network Design. As illustrated

in Fig. 3, the proposed multi-stage network design consists of

two stages: a cloud-based enhancement stage and an edge-

based detection stage. In the enhancement stage, we adopt a

number of fully-convolutional subnetworks to generate sam-

ple-specific convolution kernels for dynamic enhancing of

low-light images. During the detection stage, either a one-

stage, i.e., variant of RetinaNet [41], or a two-stage detector,

i.e., variant of Faster R-CNN [34], is adopted for object detec-

tion, where they perform inferences based on weighted feature

maps extracted from enhanced images. It is noted that the

global goal of the proposed method is to accurately detect

objects other than image enhancement, where low-level fea-

tures corresponding to represent a low-light property are fur-

ther shared by a high-level vision task, i.e., object detection,

for performance boosting.

Specifically, the mobile captured RGB image I is firstly

transformed into a luminance-chrominance color space, which

outputs luminance component Y and the chrominance compo-

nents (including Cb and Cr). After transforming, Y is proc-

essed to be an illumination image by resizing into a fixed size,

i.e., 224 � 224, which is a rather small number for convenien-

ces of fast transmitting and processing.

Afterwards, if the user choose to complete the enhancement

on a cloud server, Y is uploaded to the cloud computing server

and processed by N enhancement subnetworks in parallel,

which could be represented as

Y 0i ¼ N iðY Þ 1 4 i 4 N; (1)

where Y 0i is computed by the i-th subnetwork represented as a

functionN iðÞ.
After the image enhancement in cloud step, outputs of mul-

tiple enchantment subnetworks Y 0i are packed as a batch. Both

set of enhanced images fY 0i ji ¼ 1; . . .; Ng and weight vector

v with size N are transmitted to mobile devices for further

local processing. After utilizing a backbone network for fea-

ture map generation, we multiply weights v and feature map

for task-specified enhancement for feature map. Finally, either

the one-stage or two-stage detector is applied to generate

bounding box and classify object category, where we specifi-

cally involve weighted classification loss and regression loss

for training of both detectors.

B. Structure of Enhancement Subnetwork

We show the structure design of the enhancement subnet-

work in Fig. 4, where we can notice two important outputs for

enhancement, i.e., dynamical filter and exposure map. We

design dynamic filter to simulate a specific manually designed

enhancement filter, while the exposure map could offer expo-

sure ratios for low-light images to make dark areas be lighter

for detection.

Essentially, we design both modules in one subnetwork due

to several advantages. First of all, sharing feature maps

between two modules could largely reduce computation cost,

and keep consistent performance after operations of enhancing

and exposing. By performing same operation on image pixels,

convolutional operation with pre-trained kernel is beneficial to

noise suppression. However, it is difficult for dynamic filter to

well simulate nonlinear enhancement methods, due to linear

property of the convolutional operation. Moreover, the convo-

lutional operation involves neighbouring pixel information to

blur edges of objects. On the contrary, the exposure map is a

pixel-wise operation to provide ability of non-linear modeling.

Meanwhile, it could retain noise and avoid blur effects without

introducing neighbouring information. Therefore, it is a wise

option to involve strengths of both modules for better low-light

enhancement, thus improving performance of object detection.

Specifically, the illumination image Y is fed into the down-

sampling part of a U-Net [42] to compute a feature vector

with a fixed size. Afterwards, the feature vector K could be

computed following with an additional fully-connected layer:

Fig. 3. The proposed Edge-driven and multi-stage network design consists of multiple enhancement subnetworks and two versions of detectors, i.e., one-stage
and two-stage detectors.
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K ¼ ffcðfdðY ÞÞ; (2)

where K 2 Rs�s�1, s is the pre-defined kernel size and will be
determined by parameter setting experiments in Section IV-B,

functions fdðÞ and ffcðÞ refer to the corresponding down-sam-

pling and fully-connected layers. After computing, we regard

the resulting feature vector as dynamic filter K for further

processing. It is worthy to be noted that the number of chan-

nels of the feature map is continuously increasing during

down-sampling, which proves that operations shown in (3)

can provide sufficient information for feature map generation.

Following the down-sampling process, the proposed expo-

sure map module firstly performs the up-sampling operations

of the U-Net. Then, it re-scales the feature with a 1� 1 convo-
lution layer and a sigmoid function. Finally, it resizes the gen-

erated feature with the original size of the input illumination

image Y using a bilinear interpolation method. All these pro-

cesses can be represented as:

E ¼ fbðsigðf1ðfdðY ÞÞÞÞ; (3)

where E 2 Rh�w�1, h and w are the height and width of Y ,

functions f1ðÞ, sigðÞ, and fbðÞ represent operations of the 1� 1
convolution layer, sigmoid function and bilinear interpolation,

respectively. It is noted the up-sampling process is opposite to

down-sampling in the number of feature channels.

Finally, the input illumination image Y will be enhanced

with operations of dynamic filterK and exposure map E:

Y 0 ¼ ðY �KÞ � E; (4)

where � and � denote the convolution operation and the Hada-

mard product, respectively. Specifically, the Hadamard prod-

uct can be regarded as applying one weighted feature map to

another one, which could fuse two feature maps with a small

amount of computation. Therefore we choose it for morpho-

logical operations other than other operations.

We note that each subnetwork N i is prevently and sepa-

rately trained by calculating the enhancement loss LE
i between

the output of the ith subnetwork Y 0i and the enhanced image Ti

computed by a manually designed enhancement filter like a

bilateral filter and histogram equalization:

LE
i ¼

XM
i¼1

MSE Y 0i ; Ti

� �
: (5)

Here, the function MSEðÞ refers to the mean squared error,

andM is the total number of training samples.

In fact, we employ the manually designed enhancement filter

to constrain the processing of each enhancement subnetwork,

leading the pre-trained subnetwork to simulate operations of

enhancement filters in the testing workflow. The reason for

such training procedure lies in the fact that manually designed

filters could be considered as prior knowledge to guarantee

good enhancement effects without enough pairwise training

samples. The pseudo code is shown in Algorithm 1.

C. Object Detection Based on Weighted Feature Maps

In this subsection, we first introduce a weight computing

scheme based on multiple enhancement subnetworks, then

illustrate the steps to detect objects based on weighted features.

Comparing with a traditional learning object detection meth-

ods, i.e., the Viola-Jones algorithm [33], which integrates Haar-

like features, the AdaBoost algorithm, and a cascade structure

for accurate detection, the reason that the proposed method, i.e.,

a typical deep neural network, generally outperforms traditional

Fig. 4. Architecture design of the proposed enhancement subnetwork, where heights of layers correspond to size of generated feature map, and convolution
blocks contain two consecutive convolutional layers activated by ReLU.
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methods lies in the fact that deep models have strong nonlinear

modeling ability facing real-life complex or semantical centered

tasks, thus achieving better performance with more layers for

processing. On the contrary, traditional learning methods gener-

ally adopt shallowmodel for processing, which is more effective

facing simple linear situations rather than highly non-linear

object detection methods.

We note that the first computing task occurs in cloud, and the

second one is designed to be performed in edges, i.e., on smart

devices. After computing weights, we first assemble enhanced

illuminate image set fY 0i ji ¼ 1; . . .; Ng and weight vector v

with sizeN as a minibatch, and then transmit them into mobile

devices for object detection via a wireless network.

After calculating the enhancement loss with (5) in the test-

ing workflow, we could achieve dynamic weight vi for each

subnetwork by regrading LE
i as a context information to

describe the fitness and effectiveness of applying the ith sub-

network for enhancement, which can be calculated as:

vi ¼ 1� LE
iPN

k¼1 L
E
k

 !
� N

N � 1
; (6)

where vi reflects the effectiveness to apply the ith enhance-

ment subnetwork for the enhancement task of this specific

low-light image. In other words, a higher value in v indicates

the corresponding enhancement subnetwork is fit to deal with

such low-light condition. Based on the weight vector v, the

proposed method can adaptively choose the most effective

enhancement subnetwork for further processing.

After enhancing on edge or on cloud and transmitting data

from cloud to edge, we transform Y 0 into the RGB color space

with other two chrominance components, thus generating an

enhanced image I 0. During the edge-based detection stage, we

first extract feature maps c via the backbone network by

inputting set of enhanced images fI 0iji ¼ 1; . . .; Ng and the

original image I. Afterwards, we assign the corresponding

weight vi to a feature map for informativeness evaluation,

which can be represented as:

ci ¼ vi � fboneðI 0iÞ; (7)

where the function fboneðÞ refers to operations in the backbone

network, and � denotes element-wise multiplication. It is noted

that we defined the weight as 1 for the feature map extracted

from I.
In that case, we design two versions of object detectors to

match with mobile devices of different computation capabili-

ties. Specifically, the core algorithm of the one-stage detector

is RetinaNet [41], which is a single and effective network con-

taining two task-specific subnetworks. The class subnet oper-

ates object classification based on weighted feature maps, and

the box subnet regresses bounding box’s locations. These two

subnetworks make the proposed one-stage detector fast and

simple enough for robust and dense inferences with less com-

putation requirement.

The two-stage detector based on Faster R-CNN, which

firstly generates RoIs through a regional proposal network

(RPN), and then classifies objects and refines boxes through

detection head. It iss a crucial problem to determine which

group of feature maps to extract ROIs. We try three different

setting, i.e., use the feature map extracted from the original

image, use mean of total N þ 1 feature maps, use weighted

mean of all feature maps. After experiments, we find the first

choice contributes to the most stable detection results. Due to

the additional structure of RPN, both computation requirement

and detection results achieved by the two-stage detector is

higher than those obtained with the one-stage detector. The

pseudo code is shown in Algorithm 2. Specifically, we choose

the one-stage or the two-stage detector by either users’ option

O or based on a calculation score S related to the computation

resource, i.e., CPU and RAM mostly.

D. Multi-Stage Joint Optimization

In this subsection, we unify the enhancement and detec-

tion stages in a multi-stage framework for end-to-end joint

Algorithm 1: Cloud-based Enhancement.

Data: single channel map Y
Result: enhanced images Y 0, calculated weight v

1N  the amount of sub networks;

2 for Ni 2 N do

3 Di  fi
dðY Þ;

4 Ki  fi
fcðDiÞ;

5 Ei  fbðsigðconvi1�1ðDiÞÞÞ;
6 Y 0i  ðY �KiÞ � E;

7 T 0i  manual designed filters computing on Yi;

8 LE
i  MSEðY 0i ; TiÞ;

9 vi  1� LE
iPN

k¼1 L
E
k

� �
� N

N�1 ;

10 end

11 return Y 0, v;

Algorithm 2: Edge-based Detection.

Data: imageX, calculate option C on cloud or not, O is 0 for

one-stage detector, 1 for two-stage detector, 2 for adaptively

determined by score S
Result: detection result Z

1X0  transformX into luminance-chrominance color space;

2 Y  luminance component ofX0;
3 if C ¼ True then
4 Y 0, vn  enhance Y on cloud;

5 end

6 else

7 Y 0, vn  enhance Y on edge;

8 end

9 ci  vi � fboneðY 0i Þ;
10 if use one stage detector determined by O and S then

11 Z  fclassðciÞ � fboxðciÞ;
12 end

13 else

14 Z  fdetectðRPNðciÞÞ;
15 end

16 return Z;

3092 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: Hohai University Library. Downloaded on November 22,2023 at 02:01:04 UTC from IEEE Xplore.  Restrictions apply. 



optimization. Through the joint optimization, the proposed

enhancement network can learn a sample-specific set of

parameters to improve detection performance. It is noted

that we train the proposed model in an end-to-end manner,

while we deploy parts of the trained network in either

cloud or edge.

Firstly, we define the enhancement loss LE to evaluate total

loss for multiple enhancement subnetworks as:

LE ¼ a �
XN
i¼1

LE
i ; (8)

where a is a weight value for the enhancement loss to be

determined by experiments in Section IV-B.

Then, we define a multi-stage loss for the enhancement net-

work and one-stage detector as

L ¼ LE þ 1

N þ 1
�
XN
i¼0

LclsF
i þ 1

N þ 1
�
XN
i¼0

Lreg
i ; (9)

where Lreg
i refers to the box regression loss based on the ith

weighted feature map ci, and LclsF
i is the a�balanced focal

loss defined in [41] to address keep balance between fore-

ground and background classes for training.

Finally, we use the weighted classification loss for backpro-

pagation, which could increase the transmitted amount of gra-

dient corresponding to effective enhancement subnetwork,

thus improving classification performance of RPN. Based on

this conception, we define multi-stage loss of enhancement

network and two-stage detector as

L ¼ LE þ 1

N þ 1
�
XN
i¼0

viL
rpn cls
i

þ 1

N þ 1
�
XN
i¼0

Lrpn reg
i þ Lcls þ Lreg; (10)

where v0 equals 1, L
rpn reg
i and Lrpn cls

i refer to the box regres-

sion and class classification loss achieved by RPN, respec-

tively. We note that the regression loss of RPN is not

weighted, since such design would lead to inaccurate object

localization.

IV. EXPERIMENTS

In this section, we firstly introduce dataset and measure-

ments. Then, we conduct multiple sets of parameter setting

and ablation experiments to evaluate sensitivity to parameters

and impact of different structure designs, respectively. After-

wards, we perform comparative studies and offer discussions

on performance. Finally, we provide implementation details.

A. Dataset and Measurement

Exclusively Dark (ExDark) [43] is an open-access image

collections composed by low-light images with object level

annotations, which contains 7,363 images and is structured

with 12 separate folders, named bicycle, boat, bottle, bus, car,

cat, chair, cup, dog, motorbike, people, and table. Specifically,

we follow its guidance to use total 3,000 images and 250

images per class for training, a total of 1,800 images and 150

images per class for validation, and 2,563 images for testing.

Moreover, the ExDark dataset identifies 10 categories of low-

light conditions in indoor and outdoor environments, i.e.,

extremely Low illumination, Ambient with weak illumination,

Object are bright in the dark, Single light source, multiple

Weak light source, multiple Strong light source, indoor with

bright Screen, indoor with bright Window, bright outdoor with

objects in the Shadow, and outdoor with Twilight, where bold

texts represent key information for low-light category. Based

on the above analysis, we believe the ExDark dataset is large in

size to provide sufficient information for training and covers as

many as low-light environments to abstract and simulate com-

plexity of real-life low-light scene. Therefore, we perform all

experiments on the ExDark dataset to show the detection per-

formance under low-light condition.

Since the ExDark dataset does not provide paired high expo-

sure and low-light images, it is difficult to apply supervised

enhancement methods on low-light images. In fact, most data-

sets provide pairwise images by applying low-light filters on

bright images, which simplifies the problem of low-light condi-

tion. By observing and analyzing complexity of low-light

scenes in real-life, we believe it is wise to use convinced object-

level annotations for joint optimization, which is appropriate in

order to deal with images from real-world environment.

Following the standard measurements for object detection

in [44], we apply AP for evaluation, where AP is defined as

the mean precision value over multiple IoU thresholds (Inter-

section over Union) and all the object classes:

APUj
¼ 1

10� C

XC
i¼1

X10
j¼1

P ði; UjÞ; (11)

where i and j refer to the index of class and threshold respec-

tively, C is the total number of classes, the IoU values Uj cor-

responds to a range from 0.5 to 0.95 with a step size of 0.05,

and the function P ði; UjÞðÞ calculates precision values for the

ith object class under a fixed IoU threshold Uj. Moreover,

AP50 and AP75 refer to mAP values over the IoU thresholds

of 0.5 and 0.75 respectively, while APS, APM and APL are

the AP for small, medium and large objects, respectively.

Furthermore, we define ARq as the average recall over

detections on Q images

ARq ¼ 1

Q

XQ
q¼1

RðqÞ; (12)

where Q is the number of total detected images. ARq offers

another view on robustness of detection results.

B. Parameter Setting Experiment

In this subsection, we perform experiments to determine two

important hyper-parameters, i.e., size s of the dynamical filter,

and weight for enchantment loss a. Since both hyper-parameters
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are related with design of the enhancement network, we adopt a

two-stage detector in the parameter setting experiments for

fairness.

As shown in Table I, we test with five groups of s, where we
can notice that group with 7� 7 filter shows best performance

in AP, AP50, APM , and APL, achieves the second best perfor-

mance in AP75, and the worst performance in APS . Such results

can be explained by variant properties brought by different size

of filters [45]. For example, a small filter size works well in

small object detection, which can be proved by the best perfor-

mance for the 3� 3 filter in APS . In our case, we aim to per-

form object detection without prior knowledge on object size.

Therefore, we can observe that a large filter size leads enhanced

images to be smooth without enough edge or boundary infor-

mation, while a small filter size makes it difficult for the trained

enhancement subnetwork to simulate manually designed

enhancement methods, due to the lack of capability of mathe-

matical modeling. Based on the above discussions, we choose

7� 7 as the hyper-parameter of size for dynamical filter.

The basic idea of defining a is to ensure that the enhance-

ment loss can share the same order of magnitude as other

losses. We tried several values, where we find a large value

like 1 can cause the proposed method to be collapsed, due to

the problem of gradient explosion. Meanwhile, too small val-

ues of a result in slow convergency speed. By considering

multiple factors, we define a ¼ 0:1 by experiments, which

guarantees the magnitude of the enhancement loss to be rea-

sonable for fast training.

C. Ablation Experiment

To show the efficiency of the proposed designs, we per-

formed two groups of ablation experiments as shown in

Table II, where the first group is designed to compare the

effectiveness with or without exposure map (EM), and the sec-

ond group is to compare among different designs on weighting

schemes. We note that all testings are carried out with parame-

ter settings determined in the last subsection.

By removing the generating steps for exposure map, the

proposed enhancement network only computes dynamic filters

for enhancing. From Table II, we can observe the performance

with EM is better than one without EM in most of the meas-

urements. Essentially, the dynamical filter is designed as a

convolutional operator, which is short of capability in non-lin-

ear modeling and could blur edges or areas with high gradients

by involving neighboring pixels for calculations. As a benefi-

cial supplement to dynamical filter, EM serves to provide non-

linear capability in modeling and avoids blurring effects to a

certain extent. During training, we observe fast decreasing

speed in the enhancement loss by introducing EM for experi-

ments, which proves that EM can help to achieve a faster con-

verged training. It is worth noting that EM slightly decreases

performance on APS . Such phenomenon can be explained by

the fact that EM may easily interfere with the original feature

representation of small objects, and this may cause small

objects to lose some valuable information. After all, this effect

is slight, and other benefits brought by EM have hedged

against its disadvantages.

As shown in Table II, we offer two structure designs on

weight schemes. Design of weighted sum feature map repre-

sents that we sum all feature maps into one after assigning

weights on different feature maps. Therefore, later process of

RPN is performed on only one feature map. The overall per-

formance of weighted sum feature map is worse than the

weighted feature map, since the weighted feature map largely

improves AP, AP75 and APL, and slightly decreases perfor-

mance on AP50 and APM . However, the weighted sum feature

map largely improves performance on APS . Such phenome-

non can be explained by the fact that it is difficult to accurately

locate small objects with insufficient information, where sum-

ming all the feature maps guarantee amount of information to

find small objects. After comparing, we adopt the weighted

feature map as the proposed weight scheme, since it results in

a higher performance improvement.

D. Comparative Experiment and Performance Discussion

We report detection results achieved by the proposedmethod

and existing methods in Table III, where RN, FR, BFilter, GFli-

ter, HistE and Ims refer to RetinaNet [46], Faster R-CNN [34],

Bilateral Filter, Guided Filter [49], Histogram Equalization and

Image sharpening, respectively. We note that any listed method

without specific defined detector is equipped with a Faster R-

CNN for detection. We further categorize methods into three

groups. Specifically, the first group shows performance of

directly applying the listed object detection methods, mean-

while the second group performs low-light enhancement with

manually filters and then utilizes detectors for detection. The

last group is designed to show the effectiveness of applying a

multi-stage framework for task-specified enhancing, where the

proposed enhancement network is pre-trained by HistEq and

Imsharpen. We also list several existing methods to compare

detection performance. Unlike algorithms for object detection,

the purpose of the proposedmethod is to improve detection per-

formance in low-light conditions by involving strengths of edge

computing paradigm and multi-stage learning.

TABLE I
PERFORMANCE COMPARISON ON DIFFERENT SIZE OF DYNAMICAL FILTERS

TABLE II
PERFORMANCE COMPARISON ON DIFFERENT STRUCTURE DESIGNS, WHERE

EM REPRESENTS THE DESIGN OF THE EXPOSURE MAP

3094 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: Hohai University Library. Downloaded on November 22,2023 at 02:01:04 UTC from IEEE Xplore.  Restrictions apply. 



It is claimed that we achieve public codes of RetinaNet [46],

Faster R-CNN [34], Jiang et al. [20], Lim et al. [47], Wu et al.

[48] and the Viola-Jones algorithm [33] for testing, where

Faster R-CNN is further improved with structure of FPN [47].

Since there exist few open-source deep-learning methods for

low-light enhancement, we modify two typical super-resolu-

tion methods, i.e., EDSR and CASR, and one face detection

method, i.e., the Viola-Jones algorithm, to complete the task

of enhancement. The reason lies in the fact that enhancement

is one of the important tasks in super-resolution. Specifically,

we remove the up-sample layer of two networks and retain

other parts for modeling, where Sony set in the See-in-the-

Dark [15] dataset is adopted for pairwise training on enhance-

ment task. It is noted that we modified the Viola-Jones algo-

rithm to fit for object detection other that face detection, and

422 cascade-connected detectors are adopted for detecting in

experiments.

First Group of Tests. Without any enhancement operations

for low-light images, directly applying RetinaNet and Faster

R-CNN leads to low detection performance, which not only

reflects a high degree of difficulty in accurately detecting with

extremely low-night condition, but also makes it essential to

design task-specified filter for enhancement.

Second Group of Tests.As illustrated in the second group, we

could notice that manually designed filters can even reduce

detection performance especially for Bilateral Filter and

Guided Filter [49], which might be caused by the fact that these

two filters would suppress noise, but blur boundary of objects.

These unexpected blurring effects would make it more difficult

to locate and classify objects in the dark. After comparing

among all manually designed filters, we choose histogram

equalization and image sharpening filter to construct the pro-

posed enhancement network.

Third Group of Tests. In the last group, we define “HistE

+Ims+FR” as sequentially apply two filters on the images for

low-light enhancing. We could observe that this simplified

integration design could improve the detection performance,

comparing with either “HistE+FR” or “Ims+FR”. However,

utilizing two or more filters can result in interrelation phenom-

enon, where filters might have opposite operations on the

same part of the image, thus generating artifacts or low

enhancement effects. Therefore, we need to design sample-

specific weight to dynamically combine multiple filters based

on context information, which is the core idea of the proposed

method. By simulating these two simple filters and adjusting

their weights for proper enhancement, the proposed method

largely outperforms “HistE+Ims+FR”. Essentially, the multi-

stage learning framework offers additional object detection

specified information for enhancement network in joint train-

ing procedure, which not only contributes to sharing of feature

TABLE III
PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND THE EXISTING METHODS ON THE EX-DARK DATASET,

WHERE * IMPLIES WE MODIFY ITS USAGE TO MATCH TOPIC OF LOW-LIGHT ENHANCEMENT

Fig. 5. Samples of intermedin results computed by the proposed enhancement
networks, where the first row computes detection results by defining red rectan-
gle as ground truth and green one as prediction, the second row shows training
image T output by Imsharpen filter, resulting exposure map E and enhanced
image Y , and the third row is arranged as the same as the second one.
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maps, but also becomes the source of context information for

dynamical weighting scheme. Due to the low capability to

deal with non-linear complexity, the Viola-Jones algorithm

appears to be worst in performance even with quantity of cas-

cade-connected detectors, which proves the power of deep

neural networks for multimedia data processing.

As shown in the last group, “proposed+FR” achieves the best

precision performance among comparative studies, except for

APM . In fact, the proposed enhancement network fails in

improving performance corresponding to the task of detecting

medium-size objects, comparing with APM achieved by FR.

The reason lies in the fact that we cannot cover up all situations

to improve detection tasks by defining a fixed size of the filter

before training. Meanwhile, “proposed+FN” achieves the best

recall performance among comparative studies, except for AR10

and ARM . We note that the measurement of AR only takes recall

values into account, which cannot reflect overall detection per-

formance comparing with AP. However, it could provide infor-

mation on tendency of detectors. We thus conclude that the one-

stage detector, i.e., FN, tends to achieve a high recall value rather

than a high precision value, which depends on its strategy in

keeping balance between computation and performance.

We could further notice that GAN-based methods, i.e., Jiang

et al. [20], slightly improve the overall performance comparing

with original FR detector, which can be explained by the fact

the purpose of their algorithm is to provide visual desirable

effects rather than improving detection performance. Both

CNN-based methods, i.e., Lim et al.* [47] and Wu et al.* [48]

achieve significant improvement on overall performance, due

to their capability in constructing high distinguish and task-

specified feature maps for enhancement. However, their abili-

ties are highly constrained by the training dataset, where the

See-in-the-Dark dataset mostly contains indoor images and

cannot provide enough flexibility and diversity to deal with

extreme low-light situation in the Ex-Dark dataset.

Intermediate Results. We demonstrate the intermediate

results, i.e., exposure map E and enhanced illumination image

Y 0, computed by the enhancement network in Fig. 5, where we

can observe the proposed enhancement network is powerful in

simulating manually designed filter. Moreover, we believe

such training procedure can be viewed as transferring of priori

knowledge frommanually designed filters to a neural network.

Detection Results. Both Figs. 6 and 7 show a quantity of

detection examples obtained by the proposed method with

Fig. 6. Quantity of detection samples achieved by the proposed method with a two-stage detector. Rectangles with the same color refer to detection results with
the same category. Zoom for the best viewing experience.

Fig. 7. Quantity of detection samples achieved by the proposed method with a one-stage detector.
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different detectors, where we can view accurate locations of

bounding boxes and class labels, especially in extremely low-

light conditions. All these samples show the effectiveness on

the task of object detection in low-light conditions. For read-

ers’ convenience to understand the shortages of the proposed

method, we also show some failure cases in Fig. 8 computed

by our method, where we can notice most of the cases are

wrongly predicted due to the complexity of extreme low-light

conditions. Several failure cases like the fourth images in both

the first and second row are caused by the semantical ambigu-

ity of the visual information, which might require context

information for accurate inferences.

Complexity Analysis. The proposed method run either on

the cloud or on the target edge devices. According to our

measurements, when offloading to the cloud, a typical high-

resolution image with 4000� 3000 in size is compressed and

transmitted in 30 seconds under a 4 G cellular network. The

analyzing spend around 15 seconds in total on the server with

Intel Xeon E5-2620 v4 (@2.1 GHz) CPUs and four NVIDIA

GTX 1080Ti graphics cards. Afterwards, it also cost around

42 seconds for offloading to the mobile phone. The consuming

time for the one stage detector is around 36 seconds for an

image, which this can be larger to 52 seconds for the two stage

detector, where the mobile phone is adopted as Huawei Pro30

with Kylin 990 chips. For a fair comparison, we apply Wu

et al. [48] for complexity comparisons in cloud, where the

analyzing speed is about 12 seconds per image. Being faster

than the proposed method, Wu et al. [48] performs the super-

resolution task without a special design purpose to deal with

the complexity of extreme low-light conditions, which can be

proved by the lower improvements in object detection.

E. Implementation Details

All our experiments were conducted on a server with two

Intel Xeon E5-2620 v4 (@2.1 GHz) CPUs and four NVIDIA

GTX 1080Ti graphics cards. Our experimental codes are

mainly based on the PyTorch framework. We train all our

models for 12 epochs using the SGD optimizer with an initial

learning rate of 0.01. The weight decay is set to 0.0001 for the

two-stage detector and 0.005 for the one-stage detector, and

the momentum is 0.9. Due to the linear warm up mechanism,

the learning rate increases from 1=3� 0:01 to 0.01 in the first

500 iterations. We choose the ResNet-50 as the backbone net-

work and a 5-level feature pyramid extracted by FPN. We

apply data augmentation by horizontal flip with 0.5 probability

for both baselines and our method.

V. CONCLUSION

This paper presents an edge-computing and multi-stage

driven solution for object detection task in low-light condi-

tions. The proposed framework consists of two stages: cloud-

based enhancement and edge-based detection stage. In the first

stage, we design parallel running enhancement networks to

dynamically generate filters and exposure maps. During the

second stage in edge, two versions of detectors perform detec-

tion task based on weighted feature maps. By testing on the

Exclusively Dark dataset, results show that our method signifi-

cantly improves detection performance by involving ideas of

multi-stage learning and edge computing. Our future work is

to test the proposed method with potential datasets, such as

the SID dataset, which offers pictures in dark indoor environ-

ment, and the MEF dataset which contains 20 multi-exposure

sequences of dynamic scenes and their corresponding fused

images computed by nine MEF algorithms.
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