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Facial Expression Recognition (FER) in the wild poses significant challenges due to realistic occlusions, illu-
mination, scale, and head pose variations of the facial images. In this article, we propose an Edge-Al-driven
framework for FER. On the algorithms aspect, we propose two attention modules, Arbitrary-oriented Spatial
Pooling (ASP) and Scalable Frequency Pooling (SFP), for effective feature extraction to improve classification
accuracy. On the systems aspect, we propose an edge-cloud joint inference architecture for FER to achieve
low-latency inference, consisting of a lightweight backbone network running on the edge device, and two
optional attention modules partially offloaded to the cloud. Performance evaluation demonstrates that our
approach achieves a good balance between classification accuracy and inference latency.
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1 INTRODUCTION

Facial Expression Recognition (FER) is an active and relevant research topic in the computer
vision field. For FER in the wild, the dataset consists of images captured from albums, videos, online
pictures, and so on, in contrast to laboratory-collected datasets in a standard laboratory environ-
ment. FER in the wild poses significant challenges to FER algorithms, as the data collection method
may cause significant image quality degradations, such as realistic occlusions, illumination, scale,
and head pose variations, which often make it necessary for multiple human labelers to vote to
determine the ground-truth labels. In contrast, a dataset gathered in a standard laboratory envi-
ronment consists of images shot in a studio with good conditions, where the human models are
asked to make certain expressions, so both the labeling task and the classification task are easier
than FER in the wild.

Deep Neural Networks (DNNs) trained with Deep Learning have achieved significant success
in many application domains, including FER. After model training, DNNs are typically deployed
as cloud services by commercial vendors, relying on large servers in the cloud for serving a large
number of inference requests. Edge devices, e.g., mobile phones or smart cameras, send images to
the cloud, which runs the DNN inference task and returns the results to the devices. Cloud access
across a wide area network alleviates the issue of resource constraints of edge devices, but it may
not provide the optimal Quality-of-Service due to network latency and disruptions. The network
transmission time and energy consumption may be unacceptably high, esp. for uplink transmission
of large high-resolution images over low-bandwidth and/or unreliable wireless networks. Edge
computing is an increasingly popular paradigm that aims to execute many tasks locally on local
edge devices instead of offloading them to the remote cloud. With the increasing computing power
of today’s edge devices such as mobile phones and smart cameras, DNN inference is increasingly
being performed locally on the edge device instead of in the cloud. This helps to ensure the real-
time performance of tasks in time-sensitive application scenarios (e.g., FER of vehicle drivers), and
also provides better privacy protection for the users. However, it may be infeasible or too slow
to deploy large models directly on edge devices with limited computing and memory resources,
making it necessary to offload all or part of the DNN computation to the cloud in some application
scenarios. Hybrid edge/cloud computing is also a popular approach, where the workload is split
and distributed between edge devices and the cloud, depending on runtime conditions such as
network bandwidth and battery power.

In this article, we propose an Edge-Al-driven Framework for FER, with contributions on two
aspects:

— On the algorithms aspect: we propose two attention modules: the Arbitrary-oriented Spa-
tial Pooling (ASP) module for spatial attention performs 1D pooling on the feature map in
four directions (horizon, vertical, forward diagonal, and backward diagonal) to encode long-
range dependencies in different directions to address the issue of head pose variations; The
Scalable Frequency Pooling (SFP) module for channel attention applies different levels of
Discrete Wavelet Transform (DWT) to encode multi-scale frequency information and fo-
cus on dominant frequency components representing salient image contents, to address the
issues of realistic occlusions, illumination, and scale variations. The combination of the two
modules (ASP and SFP) can effectively encode both long-range dependencies and multi-scale
frequency information in the feature maps and helps to improve the classification accuracy
for FER in the wild.

— On the systems aspect: we propose an edge-cloud joint inference architecture for FER
to achieve low-latency inference, consisting of a lightweight backbone network running
on the edge device, and two optional attention modules partially offloaded to the cloud.
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Intermediate feature maps of the backbone network are transmitted to and from the cloud,
thus reducing the amount of data transmission and network latency compared to transmit-
ting image pixels to the cloud. The joint inference architecture helps to reduce DNN infer-
ence latency compared to device-only and cloud-only execution.

The rest of the article is organized as follows. We present related works in Section 2; the de-
tails of our proposed Edge-Al-driven framework in Section 3, including the overall framework,
and the detailed design of the ASP and SFP modules; performance evaluation results in Section 4;
conclusions in Section 5.

2 RELATED WORK
2.1 Facial Expression Recognition (FER)

A FER system typically consists of three steps, i.e., face detection, feature extraction, and expres-
sion recognition. Face detection methods like CRFace [31] and HLA-Face [34] can locate faces
accurately in extreme conditions such as crowds, low lighting, and so on. We do not consider the
face detection problem in this article.

Many techniques have been proposed for feature extraction to capture the geometry and ap-
pearance characteristics of facial expressions. Liu et al. [18] extract robust deep salient features
from saliency-guided facial patches, which are further fed into a conditional convolutional neu-
ral network enhanced random forest (CoNERF) for FER classification. By involving the idea
of progressive refinement, Xie et al. [37] propose a Deep Attentive Multi-path CNN model, which
not only adaptively emphasizes the features that are highly relevant to the FER task, but also en-
codes intra-class variations to improve accuracy. Li et al. [15] propose Patch-Gated CNN, which
first decomposes an intermediate feature map into several patches according to the positions of
related facial landmarks to determine the regions of interest, then uses the Patch-Gated Unit to
reweigh each patch by the unobstructed-ness or importance that is computed from the patch itself.

For FER in the wild, Li et al. [16] propose a patch-based attention network for occlusion-aware
FER, where the patches are cropped from the areas of eyes, nose, mouth, and so on, and then
the selected 24 patches are fed into an attention network to assign weights for further global
FER. Wang et al. [32] propose a Region Attention Network (RAN) to adaptively capture the
importance of facial regions to handle occlusions and head pose variations. Zhao et al. [40] propose
EfficientFace for label distribution learning, with a local-feature extractor and a channel-spatial
modulator for extracting local and global-salient facial features. Zhao et al. [39] propose a global
Multi-scale and local Attention network (MA-Net), with a feature pre-extractor to extract middle-
level features, a multi-scale module to fuse features with different receptive fields, and a local
attention module based on CBAM [35] to guide the network to focus on local salient features.

2.2 Pooling Operations for Feature Extraction

Feature pooling layers (e.g., average pooling and max pooling) in CNNs serve the dual purpose
of providing increasingly abstract representations as well as reducing feature map dimensionality
and computational overhead in subsequent convolutional layers. If the convolutional filter size is
set to be the entire 2D feature map size, then we have Global Average Pooling (GAP) and Global
Max Pooling (GMP), which compress each channel of a feature map into one pixel, either the
average value or the max value among all pixels in the channel, thus transforming a feature map
of dimensions C X W X H into a vector of dimensions C X 1 X 1. Many well-known attention mech-
anisms, e.g., Squeeze-and-Excitation Network (SENet) [9], Bottleneck Attention Module
(BAM) [24], Convolutional Block Attention Module (CBAM) [35], and ECA-Net [33], apply
GAP and/or GMP to compress feature maps along both the spatial dimension and the channel
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dimension, e.g., the classic work of SENet [9] defines the SE block, an architecture unit that
integrates two operations: a squeeze operation that employs GAP to aggregate spatial features
into a channel feature, and an excitation operation that learns instance-specific channel weights
from the squeezed feature to re-weight each channel. While GAP and GMP are widely used in
attention mechanisms, they cause loss of spatial/positional information. Many authors designed
more sophisticated pooling operations to better compress feature maps. Zhai et al. [38] propose
a pooling strategy with stochastic spatial sampling, where the regular down-sampling is replaced
by a stochastic version, which acts as a regularizer by performing implicit data augmentation by
introducing distortions in the feature maps. Jin et al. [12] propose a two-stage spatial pooling
process: rich descriptor extraction to obtain a set of diverse (global and local) deep descriptors
that contain more informative cues than GAP, and information fusion to aid the excitation oper-
ation to return more accurate re-weight scores. Behera et al. [3] propose Context-aware Atten-
tional Pooling (CAP) that captures subtle changes via sub-pixel gradients and learns to attend
informative integral regions and their importance in discriminating different subcategories with-
out requiring the bounding box and/or distinguishable part annotations. Oh et al. [22] propose
Background-Aware Pooling (BAP) that focuses on aggregating foreground features inside the
bounding boxes using attention maps, to help extract high-quality pseudo-segmentation labels for
semantic segmentation. Some authors introduce more spatial priors into pooling operations for
further feature enhancement. Schuurmans et al. [27] propose superpixel pooling for semantic seg-
mentation, a flexible and efficient pooling strategy that incorporates spatial prior information. Hou
et al. [8] propose Coordinate Attention, which factorizes channel attention into two 1D feature en-
coding processes that aggregate features along the two spatial directions, respectively. Long-range
dependencies can be captured along one spatial direction and precise positional information can
be preserved along the other spatial direction. Qin et al. [25] prove that GAP is a special case of Dis-
crete Cosine Transform (DCT), and propose FcaNet with the multi-spectral attention module,
which generalizes the existing channel attention mechanism in the frequency domain. Coordinate
Attention [8] and FcaNet [25] form the inspirations for our designs of the ASP and SFP modules.

2.3 Edge-Al Algorithms and Systems

To deploy DNNs on resource-constrained edge devices with limited processing and memory re-
sources [1, 17], it is important to develop effective techniques for improving the computation and
memory efficiency of DNN inference. One popular approach is model compression with techniques
such as pruning and quantization [5, 19, 21]. Bhardwaj et al. [4] propose a Network of Neural
Networks, a distributed 10T learning paradigm that compresses a large pre-trained Teacher deep
network into several disjoint compressed Student modules without loss of accuracy. Li et al. [14]
propose the Edgent framework, which leverages edge servers for DNN collaborative inference
through device-edge synergy by exploiting two design knobs, including DNN partitioning that
adaptively partitions computation between device and edge, and DNN right-sizing that further re-
duces computing latency via early-exiting at an appropriate intermediate DNN layer. Wu et al. [36]
propose an edge-computing driven and end-to-end framework to perform tasks of image enhance-
ment and object detection under low-light conditions, consisting of a cloud-based enhancement
stage to perform illumination enhancement, and an edge device-based detection stage to detect
objects based on informative feature maps from the cloud.

Several authors [10, 11, 23, 29] propose input-specific adaptive inference for improving the com-
putation efficiency of DNN inference, i.e., dynamically adjusting the computational effort depend-
ing upon the difficulty of the input data. Panda et al. [23] propose Conditional Deep Learning
(CDL), where features computed by the convolutional layers are first used to identify the difficulty
level of input samples, and then conditionally activate the deeper layers of the network in the
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Fig. 1. The overall system architecture consists of a backbone network and optional ASP and SFP modules.

cloud. Jayakodi et al. [10] propose Learning Energy Accuracy Tradeoff Networks (LEANets),
which perform input adaptive inferences under multi-objective optimization, thus determining
thresholds for different energy and accuracy tradeoffs. Jayakodi et al. [11] propose SETGAN with
pre-trained SinGAN structure on remote servers, where its optimal number of scales is carefully
determined w.r.t. energy, accuracy, and communication constraints of the mobile device, Stamoulis
etal. [29] cast the design of adaptive CNNs as a hyper-parameter optimization problem, where they
adopt Bayesian optimization to reach optimal configurations in a few tens of function evaluations.
We view this body of work on input-specific adaptive inference as orthogonal and complementary
to our work.

3 EDGE-AI-DRIVEN FER FRAMEWORK

In this section, we first present our overall framework in Section 3.1, then the detailed design of
the ASP and SFP modules in Sections 3.2 and 3.3.

3.1 Overall Framework

Figure 1 shows our overall system architecture. The backbone network architecture is based on
ShuffleNet V2 [20], replacing the original output layer for ImageNet classification. It consists of the
following layers: Conv1, MaxPool, Stage2, Stage3, Stage4, Conv5, GAP, and a Fully-Connected
(FC) layer that outputs the softmax scores of all classes (e.g., seven classes for FER2013 and SFEW
datasets, and eight classes for the RaFD dataset in our experiments). The backbone network is
deployed on the edge device, and the ASP and SFP modules are deployed in the cloud, connected
sequentially. Note that Figure 1 is for illustration purposes only. First, the ASP and SFP modules are
not dependent on the specific architecture of the backbone network, and can be used in combina-
tion with any other backbone network. Second, the system may contain none, one, or both of the
ASP and SFP modules; one or both of them may be offloaded to the cloud; and two modules may be
connected in different sequential orders. For example, if none of the two modules is present, then
we have the “backbone-only” configuration with a direct connection between Stage 2 and Stage 3.

The ASP module is a spatial attention mechanism that weights each pixel in each channel in the
same way; the SFP module is a channel attention mechanism that performs channel-wise scaling,
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Fig. 2. Structure of the ASP module for spatial attention.

i.e., it weights each pixel of a channel in the same way. Each module outputs an attention map
that is multiplied element-wise with the feature map that is used to generate it, to assign different
weights to different pixels for spatial attention, or to different channels for channel attention. The
FER task has different characteristics from the face recognition task in terms of the most important
features. For FER, the important features are the global distribution of the face and low-frequency
signal characteristics, whereas, for face recognition, the important features are the color, contour,
texture, and other facial features that help distinguish among different faces. The ASP and SFP
modules are designed specifically to extract the important features for the FER task. Similar to
CBAM [35], the ASP and SFP modules are connected sequentially. Similar to EfficientFace [40],
the ASP and SFP modules are added only once after Stage 2 for two reasons: first, deeper feature
maps have small spatial sizes, and may not be very helpful for extracting local facial features for
FER; second, adding these modules at every stage may cause excessive computation overhead if
executed locally on the device, or excessive communication latency if executed remotely in the
cloud, which may hinder efficient model deployment on resource-constrained mobile devices.

It is conceivable (although not done in this article) to implement a dynamic adaptive processing
strategy based on the architecture in Figure 1, where only the backbone network is executed locally
when processing “easy” input images, or when faced with an unreliable network connection to the
cloud; the optional attention modules are deployed in the cloud and may be activated on-demand
upon detecting difficult inputs or user request to improve both classification accuracy and timing
performance.

3.2 Arbitrary-oriented Spatial Pooling (ASP) Module

Figure 2 shows our proposed ASP module. The input feature map has dimensions C X H X W, where
C, H, and W denote the number of channels, height, and width, respectively. We first perform 1D
pooling operations in four directions to capture long-range dependencies along them, then apply
1 X 1 convolution and Sigmoid activation, and finally fuse the four weight maps corresponding to
four directions to obtain the final spatial attention map. ASP remedies the shortcomings of SENet
[9], which loses spatial/positional information, and of BAM [24] and CBAM [35], which capture
local relations with convolution but fail to model long-range dependencies. The ASP module is

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 57. Publication date: April 2023.



Edge-Al-Driven Framework with Efficient Mobile Network Design for FER 57:7

Xoo-~*o1-~ %02 Xpo Xo1 Xg2 Yoo _Xo1_-Xo2 Xoo. Xo1__ %oz
X19--X11--H¥12 Xio Xi1 Xi2 X10 ¥11 _*12 ¥1q X1 X1
X20--¥21-- %22 Xpo Xp1 X2 X207 Xa1 %72 X0 a1 X2a
(a) Pooling in the hori-  (b) Pooling in the ver-  (c) Pooling in the for-  (d) Pooling in the back-
zontal direction. tical direction. ward diagonal direc-  ward diagonal direc-
tion. tion.

Fig. 3. Four types of pooling operations in ASP.

inspired by Coordinate Attention [8], but with several differences: (1) We use one 1x 1 convolution
layer instead of two layers with a reduction followed by an increase in the number of channels;
(2) The spatial feature map has dimensions 1 X H X W to apply the same spatial attention map to
all channels, instead of C X H X W in Coordinate Attention, since we have a separate SFP module
for channel attention.

We illustrate the four types of pooling operations with a toy example. We consider a tiny feature
map with dimensions C X 3 X 3. Equation (1) shows one channel of this feature map. Figure 3
illustrates the four types of pooling operations on each channel of the feature map. (We omit the
channel index 0 < ¢ < C for simplicity, with the understanding that the same pooling operation
is performed on every channel.)

Xo0 Xo1  Xo2
X0 X11 X2 |- (1)
X20 X211  X22

For average pooling in the horizontal direction (Figure 3(a)), we obtain a tensor with dimensions
C X H x 1 by replacing every row with the average value among all the pixels in the row:

T
[zé’ z{’ zé’ ] , (2)
where each pixel z! is computed as

Zg = (x00 + Xo1 + X02)/3, Z{l = (x10 + x11 + x12)/3, Zg = (xg0 + X21 + X22)/3. 3)

For average pooling in the vertical direction (Figure 3(b)), we obtain a tensor with dimensions
C X 1 X W by replacing every column with the average value among all the pixels in the column:

(% = &) )
where each pixel z7 is computed as
25 = (x00 + X10 + X20)/3, 27 = (01 + X11 + X21)/3, 25 = (x02 + X12 + X22)/3. 5)

For average pooling in the forward diagonal direction (Figure 3(c)), we obtain a tensor with
dimensions C X (H + W — 1) X 1 by computing the average value along all the pixels along each of
the H + W — 1 = 5 forward diagonal lines with different offsets:

[F40) i) @) i3 S ©)
where each pixel z/4(i) is computed as

d d d
Z(/; = X00, Z{ = (x10 + x01)/2, sz = (x20 + x11 + X02)/3,

(7)
ZJ;d = (x21 + x12)/2, Zfzd = X22.
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For average pooling in the backward diagonal direction (Figure 3(d)), we obtain a tensor with
dimensions C X (H + W — 1) X 1 by computing the average value along all the pixels along each of
the H + W — 1 = 5 backward diagonal lines with different offsets:

[2440) 2H4) @) 2i3) )] ®)

where each pixel 229 (i) is computed as

bd _ bd _
20 2 =

= X02, (x01 + x12)/2, ng = (x00 + X11 + X22)/3,

9
Zé’d = (x10 + Xx21)/2, Zi’d = X20- ©

For the two tensors in Equations (2) and (4) from horizontal and vertical pooling, we perform
the following steps:

— Concatenate them to form a tensor with dimensions C X (H + W) X 1.

— Apply a 1 X 1 convolution layer with output dimensions 1 X (H + W) X 1 (with one output
channel), followed by the Sigmoid activation function.

— Split the output tensor with dimensions 1 X (H + W) X 1 into two tensors of dimensions
IXHxland1X1xW.

— Reshape each tensor into the same spatial dimensions of the input feature map to obtain two
weight maps Z" and Z¢ with dimensions 1 x H x W, by setting each x;; to its corresponding
average value after pooling in Equations (3) and (5), e.g., Xo0 = Xo1 = Xo2 = z(’)l. (This re-
shape operation is used to achieve the same effect as NumPy’s broadcasting operation when
multiplying a vector with a matrix [30].)

For the two tensors in Equations (6) and (8) from forward and backward diagonal pooling, we
perform the following steps:

— Concatenate them to form a tensor with dimensions C X 2(H + W — 1) X 1.

— Apply a 1 X 1 convolution layer with output dimensions 1 X 2(H + W — 1) X 1 (with one
output channel), followed by the Sigmoid activation function.

— Split the output tensor with dimensions 1 X 2(H + W — 1) X 1 into two tensors of the same
dimensions 1 X (H+ W — 1) X 1.

— Reshape each tensor into the same spatial dimensions of the input feature map to obtain two
weight maps Z/¢ and Z"¢ with dimensions 1 x H x W, by setting each x; ; to its correspond-
ing average value after pooling in Equations (7) and (9), e.g., x10 = xo1 = z{ d (This reshape
operation has no equivalence in NumPy.)

The final spatial attention map with dimensions 1 X H X W is computed with element-wise
multiplication of the four weight maps, i.e., Z U AR WARE- WAL

3.3 Scalable Frequency Pooling (SFP) Module

DWT decomposes a signal into a set of mutually orthogonal wavelet basis functions. These func-
tions differ from sinusoidal basis functions of DCT in that they are spatially localized—that is,
nonzero over only part of the total signal length. In addition, DWT has the multi-scale property
that helps to address the scale variations. Figure 4 shows multiple levels of 2D-DWT applied to
an input High-Resolution (HR) image. After each level of 2D-DWT, the input is decomposed
into four components LL, LH, HL, and HH, where L denotes Low-frequency and H denotes High-
frequency along either the horizontal or vertical direction, e.g., LL denotes the low-frequency
components along both directions. After three levels of 2D-DWT, we obtain three components
LL1, LL2, and LL3 with increasingly lower frequencies. The motivation is that the low-frequency
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Fig. 5. Structure of the SFP module for channel attention.

components of an image contain the dominant information for FER, e.g., a human emotion may
be recognizable with low-frequency components only.

Figure 5 shows the detailed design of SFP based on DWT (it is inspired by FcaNet [25], which
is based on DCT). Consider an input feature map X with dimensions C X H X W. We assume
C = 8 as an example to illustrate the operation of the SFP module. We group the C channels into
n Channel Groups (CGs) with the PyTorch function torch.chunk, e.g., with C = 8 channels to
be grouped into n = 3 CGs, we obtain three CGs: CG-1 contains three channels with indices 0-2,
CG-2 contains three channels with indices 3-5, and CG-3 contains two channels with indices 6-7.
We apply DWT Level-i to each channel group CG-i to obtain the different frequency components,
and only keep the LL component and discard the rest of LH, HL, and HH components. For example,
we keep the LL1 component for CG-1 as a feature map with dimensions 3 X H/2 x W/2, the LL2
component for CG-2 as a feature map with dimensions 3 X H/4 X W/4, and the LL3 component
as a feature map for CG-3 with dimensions 2 X H/8 X W/8. We then apply GAP to compress
each feature map into a single value for each channel, resulting in three vectors with dimensions
3x1x1,3x1x1,2x1x1for CG-1, CG-2, and CG-3, respectively. We then concatenate them
along the channel dimension to obtain a vector with dimensions 8 x 1 x 1. We then apply a FC
layer with the same input/output dimensions, instead of two FC layers with a bottleneck hidden
layer as in CBAM [35] and SENet [9]. (This is inspired by ECA-Net [33], which empirically showed
that the SE block [9] that employs one single FC layer may work better than two FC layers with
dimensionality reduction in the bottleneck hidden layer.) Finally, we use the Sigmoid activation
function to scale each vector element into the range of [0, 1] as the channel attention weights.
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Fig. 6. Selected samples from the three datasets: FER2013, RaFD, and SFEW.

4 PERFORMANCE EVALUATION

In this section, we present the experimental setup in Section 4.1; evaluation of classification
accuracy in Section 4.2; ablation studies to evaluate different design choices in Section 4.3, and
evaluation of timing performance in Section 4.4.

4.1 Experimental Setup

We set up our experiments in a room with a Wi-Fi connection with maximum network bandwidth
of 1 Mb/s. The Cloud' is simulated by a server machine with 2.1 GHz E5-2620 processor and 10 GB
Memory, a Titan 1080Ti GPU for both training and inference in the Cloud. We consider two types
of edge devices: a laptop computer and a low-end smartphone (Redmi K30). The laptop computer
contains an Intel i7-9750h CPU with 6 cores, with base frequency 2.60 GHz and maximum Turbo
Frequency 4.50 GHz, and 8 GB memory. The smartphone contains a Qualcomm Snapdragon 730G
SoC with 8 cores (2 X 2.2 GHz and 6 X 1.8 GHz), and 6 GB memory.

We consider three well-known FER datasets: a laboratory-controlled dataset Radboud Faces
Database (RaFD) [13], and two FER in the wild datasets FER2013 [2] and Static Facial Expres-
sions in the Wild (SFEW) [6].

— The RaFD dataset contains 4,824 images collected from 67 participants. Each participant
makes eight facial expressions in three different gaze directions, which are captured from
three different angles, with eight expression labels (Anger, Disgust, Fear, Happiness, Sadness,
Surprise, Contempt, and Neutrality).

!The Cloud in our experimental setup may be more suitably called an edge server since our experimental setup is based
on a local area network. Nonetheless, we use the term Cloud to refer to a remote server in general, and control the Wi-Fi
network bandwidth to simulate a low-bandwidth wide area network.
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Table 1. Classification Accuracy for Different Datasets (%)

Dataset | ResNet18 | ResNet50 | MobileNetV2 | EfficientFace | MA-Net | RAN | Ours
RAFD 84.59 85.16 83.86 85.21 85.27 85.42 | 85.57
FER2013 58.72 60.45 57.12 62.43 61.97 61.52 | 63.26
SFEW 55.40 56.58 54.19 56.54 59.40 54.19 | 56.81

Bold indicates best performance.

— The FER2013 dataset is a large-scale unconstrained dataset collected by Google image search.
All images are registered and resized to 4848 pixels after rejecting incorrectly labeled frames
and adjusting the cropped region. FER2013 contains a training set (28,709 images), a valida-
tion set (3,589 images), and a test set (3,589 images), with seven expression labels (Anger,
Disgust, Fear, Happy, Sad, Surprised, and Neutral).

— The SFEW dataset contains a training set (958 images), a validation set (436 images), and
a test set (372 images), with seven expression labels (Neutral, Happiness, Sadness, Surprise,
Fear, Disgust, and Anger). SFEW contains difficult images for FER in the wild, with varied
head poses, large age range, occlusions, varied focus, different resolution of face and close
to real-world illumination.

Figure 6 shows selected samples from the three datasets, to provide some intuition about their
appearances and levels of difficulty. Under each sample, we show the Ground Truth (GT), the
predicted label (Pred) from our model, i.e., the full model of (backbone+ASP+SFP), with the highest
confidence score, and the confidence score (Conf) of the prediction.

For all datasets, we resize all the input face images into the same dimensions of 3 x 224 x 224
with the PyTorch function Resize, i.e, an RGB color image with a spatial size of 224 x 224 pixels.
We perform data augmentation with random cropping and random horizontal flipping to avoid
over-fitting. The model weights are initialized randomly. The model is pre-trained on the largest
FER2013 dataset for 100 epochs, with the SGD optimizer, mini-batch size of 128, and initial learning
rate of 0.1, which is reduced to 1/10 of its previous value every 30 epochs. For the RaFD and
SFEW datasets, we start from this pre-trained model, and replace its output layer according to the
corresponding set of classes for each dataset, initialized with random weights. The model is then
fine-tuned on either RaFD or SFEW for 100 epochs with a constant learning rate of 0.001.

4.2 Evaluation of Classification Accuracy

We first evaluate the classification accuracy metric for the three datasets. We consider the full
model of (backbone+ASP+SFP), and Daubechies wavelet with three DWT levels in the SFP module.
(The choice of these configurations is supported by ablation studies in Section 4.3.) We consider
the following comparison baselines: ResNet18 and ResNet50 [7], ResNet models with different
numbers of layers (18 and 50 deep layers, respectively); MobileNetV2 [26], a lightweight DNN for
mobile devices; EfficientFace [40], a lightweight DNN designed for FER; MA-Net [39] and RAN
(with ResNet18 backbone) [32], two relatively heavyweight DNNs designed for FER. As shown
in Table 1, for both RaFD and FER2013, our model achieves the highest accuracy, with a larger
winning margin over the baselines for FER2013 than for RaFD, since our model is designed for
FER in the wild. For the SFEW dataset, our model obtains the second-highest accuracy of 56.81%.
Although it does not outperform the winner MA-Net, our model is much more lightweight than
MA-Net (c.f. Table 4). We conclude that our model strikes a good balance between accuracy and
computation efficiency.

In the next two subsections, we consider the FER2013 dataset only for ablation studies and
timing measurements.
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Fig. 7. Ablation study with different DWT bases and levels in the SFP module.

Table 2. Ablation Study with Different
Combinations of the ASP and SFP Modules

Model Accuracy (%)
backbone only 60.25
backbone+ASP 61.88
backbone+SFP 61.34
backbone+ASP+SFP 63.26
backbone+SFP+ASP 62.58

Bold indicates best performance.

4.3 Ablation Studies

Different DWT bases and levels in the SFP module. In this ablation study, we consider the con-
figuration of (backbone+SFP) without the ASP module and consider three different DWT bases:
HAAR, Daubechies (DB) and Symlets (SYM), and different numbers of DWT Levels in the SFP
module. As shown in Figure 7, for all three bases, the classification accuracy increases with DWT
level going from 1 to 3, and stays the same or drops slightly with DWT level going from 3 to 4.
Daubechies wavelet achieves the highest accuracy with DWT level 3. Thus, we determine the op-
timal configuration of DWT in the SFP module to be Daubechies wavelet with three DWT levels,
which is used in the following experiments.

Different configurations of the ASP and SFP modules. Table 2 shows the ablation study with
none, one, or both of the ASP and SFP modules. If both modules are present, we consider two
sequential orders: either ASP preceding SFP (backbone+ASP+SFP) or SFP preceding ASP (back-
bone+SFP+ASP). We can see that the best-performing configuration is (backbone+ASP+SFP) with
an accuracy of 63.26%.

Different pooling directions in the ASP module. Table 3 shows the ablation study with different
combinations of pooling directions in the ASP module, for the configuration of (backbone+ASP),
without the SFP module. We can see that the best-performing alternative is pooling in all four
directions, with the highest accuracy of 61.88%. Pooling in any combination of the four directions
helps to increase accuracy to different degrees. Pooling in the horizontal and/or vertical directions
is generally more effective than pooling in the forward and/or backward diagonal directions. The
reason may be that the conventional frontal and upright head pose accounts for a large proportion
of all images in FER2013, even though it contains many face images with different head poses.
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Table 3. Ablation Study with Different
Combinations of Pooling Directions
in the ASP Module

Pooling Direction | Accuracy (%)
backbone only 60.25
H 61.43
\% 60.98
H+V 61.57
FD 60.72
BD 60.93
FD+BD 61.02
H+V+FD+BD 61.88

Abbreviations: H for Horizontal; V for
Vertical; FD for Forward Diagonal; BD for
Backward Diagonal.

Table 4. DNN Model Size Measured by Number of Parameters, Computation Load
Measured by Multiply-Accumulate Operations (MACs), and Inference time
on Two Edge Devices

Model Params (M) | MACs (G) Inf Time on Inf Time
Laptop (ms) | on Phone (ms)
ResNet18 11.18 1.82 114.8 249.3
ResNet50 23.52 4.12 239.1 510.8
MobileNetV2 2.23 0.31 29.3 93.7
EfficientFace 1.28 0.15 12.9 32.7
MA-Net 42.29 1.89 139.0 354.2
RAN 11.19 4.52 255.7 595.1
Ours (backbone only) 1.26 0.15 11.6 25.4
Ours (full model) 1.91 0.29 27.6 62.9

4.4 Evaluation of Timing Performance

Table 4 compares model size, computation load, and inference time on different edge devices. The
number of parameters and computation load in MACs are obtained with the open-source Flops
counter tool for CNNs [28]. The DNN inference time is roughly proportional to the MACs, but not
exactly due to the different number of parameters and memory access patterns of different DNN ar-
chitectures. The row labeled “Ours (full model)” refers to the full model with (backbone+ASP+SFP).
We can see that our model is more lightweight than most comparison baselines, except Efficient-
Face. We can also see that the ASP and SFP modules consume a significant proportion of the to-
tal DNN inference time, esp. on the resource-constrained smartphone platform, which motivates
the need for partial offloading of these modules from resource-constrained edge devices to the
cloud.

Each input image has dimensions 3 X 224 x 224 with size 150.5 KB (each pixel is encoded by
1 Byte). The intermediate feature map as output from Stage 2 in Figure 1 has dimensions 8 X 28 X
28 with size 6.3 KB. During one forward DNN inference, the total data size for transmitting the
intermediate feature maps to and from the cloud is 6.3 * 2 = 12.6 KB, taking into account two-way
data transmission between the edge device and the cloud. The total data size for transmitting one
image to the cloud and a classification result back to the device (which has negligible data size
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Fig. 8. Timing performance measurements with varying network bandwidth with two types of edge devices.

but not latency) is 150.5 KB. This highlights the benefits of transmitting the intermediate feature
maps instead of the image pixels in terms of reduced data size and hence network transmission
latency.

Next, we measure the DNN inference latency with varying network bandwidth with two types
of edge devices, considering three offloading strategies:

— No offloading (Edge): the full model (backbone+ASP+SFP) runs locally on the edge device.

— Full offloading (Cloud): the edge device sends the input image to the cloud, which runs the
full model (backbone+ASP+SFP), and returns the classification result to the edge device.

— Partial offloading (Edge+Cloud): the backbone runs on the edge device, and sends the in-
termediate feature map to the cloud, which hosts the ASP and SFP modules (as shown in
Figure 1).

We use the open-source NetLimiter tool? to control the Wi-Fi network bandwidth and increase it
stepwise from 200 KB/s to 1 MB/s by 100 KB/s every 2 minutes. The edge device processes the same
image in an infinite loop during the entire experiment process. Figure 8 plots the total latency of
each of the three offloading strategies. We make the following observations:

— Both the full offloading and the partial offloading strategies benefit from increased network
bandwidth: the higher the network bandwidth, the lower the total latency due to reduced
network transmission latency.

https://www.netlimiter.com.
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— With the laptop computer as the edge device, the best strategy that achieves the lowest
latency is no offloading, i.e., the full model runs locally on the laptop, thanks to the powerful
computing capability of the laptop computer.

— With the more resource-constrained smartphone as the edge device, the best strategy that
achieves the lowest latency is partial offloading when the network bandwidth exceeds
300 KB/s. (Full or partial offloading is expected to be even more beneficial for more resource-
constrained edge devices such as smart cameras.)

5 CONCLUSIONS

In this article, we present an Edge-Al-driven framework for accurate and efficient FER in the wild.
First, we propose two attention modules, ASP and SFP, that can be used in combination with any
backbone network, to encode both multi-direction spatial information and multi-scale frequency
information for effective feature extraction in the presence of realistic occlusions, illumination,
scale, and head pose variations. Second, we propose an edge-cloud joint inference architecture for
FER to achieve low-latency inference, with partial offloading of the two optional attention modules
to the cloud. Performance evaluation with several FER datasets demonstrates the effectiveness of
our proposed method in terms of both accuracy and computation efficiency.
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