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Abstract—Deep learning methods have achieved great success in medical image analysis domain. However, most of them suffer from
slow convergency and high computing cost, which prevents their further widely usage in practical scenarios. Moreover, it has been
proved that exploring and embedding context knowledge in deep network can significantly improve accuracy. To emphasize these tips,
we present CDT-CAD, i.e., context-aware deformable transformers for end-to-end chest abnormality detection on X-Ray images.
CDT-CAD firstly constructs an iterative context-aware feature extractor, which not only enlarges receptive fields to encode multi-scale
context information via dilated context encoding blocks, but also captures unique and scalable feature variation patterns in wavelet
frequency domain via frequency pooling blocks. Afterwards, a deformable transformer detector on the extracted context features is built
to accurately classify disease categories and locate regions, where a small set of key points are sampled, thus leading the detector to
focus on informative feature subspace and accelerate convergence speed. Through comparative experiments on Vinbig Chest and
Chest Det 10 Datasets, CDT-CAD demonstrates its effectiveness in recognizing chest abnormities and outperforms 1.4% and 6.0%
than the existing methods in AP50 and AR on VinBig dateset, and 0.9% and 2.1% on Chest Det-10 dataset, respectively.

Index Terms—Chest X-Ray Images, Abnormality Detection, Iterative Context-Aware Feature Extractor, Frequency Pooling Block,
Dilated Context Encoding Block; Deformable Transformer Detector
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1 INTRODUCTION

M EDICAL diagnosis refers to the process for determin-
ing which disease or condition explains a patient’

symptoms. The required information for medical diagnosis
is obtained from a patient’s medical history and various
medical imaging data, including functional magnetic res-
onance imaging (fMRI), magnetic resonance imaging (MRI),
computed tomography (CT), X-Ray imaging(X-Ray), and
other diagnostic tools [1], [2], [3], [4]. Chest X-Ray (CXR)
Images are one of the most preferred diagnostic tools in
medical practice, which has an important role in the diagno-
sis of thoracic diseases. There exists an increasing demand
in taking CXR images, where it’s reported that 129 million
CXR images were acquired in the United States [5], equaling
that 238 erect-view of CXR images are required for disease
diagnosis annually per 1000 persons. The inherent reason of
large requirement for CXR images is that CXR has several
advantages over another common radiography, i.e., CT.
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Fig. 1. Difficulties for chest abnormality detection sampled from Vinbig
dataset, where (a) refers to occlusions among different abnormalities,
(b) corresponds to classifying multiple and complex pathological pat-
terns, and (c) means detecting small or subtle abnormalities.

Firstly, CXR is able to reveal some unsuspected pathologic
alterations, thus accurately diagnosing various kinds of
chest diseases. Secondly, it has non-invasive characteristics,
since the radiation dose is relatively low comparing with
CT. Last but not least, it’s highly economical and affordable
even in the most undeveloped countries.

Considering advantages of CXR, accurately diagnosing
chest abnormality via CXR images is a highly professional
work, requiring years of expertise and considerable man-
ual efforts. Facing the increasing demand and diagnose
complexity brought by CXR images, it’s expected to auto-
matically detect chest abnormality with high-potential algo-
rithms, which will not only relieves the burden of doctors
for manually recognizing, but also reduces human errors in
assisting radiologists to make well-informed decisions.

Since deep learning methods have proved their effec-
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tiveness in image analysis tasks, building automatical CXR
diagnose tools based on deep learning becomes a hot re-
search topic, where its core idea is to analyze complex
CXR data with highly-nonlinear modeling capability of
deep learning models. Inspired by the great success of
object detection methods, researchers have made tremen-
dous progress on chest abnormality detection. For example,
Baltruschat et al. [6] firstly pre-train a neural network on the
ImageNet dataset for classification of natural images, and
then utilize transfer learning for chest radiography analysis,
which proves the efficiency of proper knowledge transfer
on medical image analysis domain. Later, Annarumma et
al. [7] develop a system for automated and real-time chest
radiographs diagnose, which adopts an ensemble of two
deep CNNs to predict clinical priorities from radiologic
appearances.

Regarding the successful trials in applying deep learn-
ing models, superimposition and overlapping of different
anatomical structures locate along the projection direction,
leading to the diversity of chest abnormalities. Hence, de-
tecting abnormalities from CXR images still requires to
deal with difficulties, namely occlusions, multiple and com-
plex pathological patterns, small or subtle abnormalities, as
shown in Fig. 1. In fact, various patterns of chest abnor-
malities leads deep learning models to perform with slow
convergence and high computation cost. Moreover, most of
the existing methods directly derive their network structure
from object detection methods on natural images, thus suf-
fering from domain shift for low accuracy and requiring
clinic knowledge to embed to boost performance.

To tackle these problems, we propose CDT-CAD,
context-aware deformable transformers for end-to-end chest
abnormality detection task. CDT-CAD consists of two mod-
ules, i.e., an iterative context-aware feature extractor and
a deformable transformer detector. The first module itera-
tively fuses multi-scale features, which not only enlarges
receptive fields to encode multi-scale context information
via dilated context encoding blocks (DCE), but also captures
unique and scalable feature variation patterns in wavelet
frequency domain via frequency pooling blocks (FP). In
fact, moving to frequency and pooling in frequency domain
offers an alternative view to encode features other than only
performing in spatial domain, which helps to better deal
with difficulties of realistic occlusions and scale variations
existed in CXR images.

Regarded as a powerful architecture for machine trans-
lation, transformer structure adaptively aggregates and re-
fines distinguish features, thus achieving superior feature
representation to solve complexity of tasks. In CDT-CAD,
deformable attention blocks, i.e., the core of deformable
transformer detector, attend to a small set of sampling loca-
tions as a pre-filter, which focuses on key elements out of the
whole feature space, thus greatly decreasing computation
and memory cost at training and testing.

The reason to adopt such architecture for medical image
analysis is on the basis of two key steps for object detec-
tion task, i.e., feature extraction and classifier. Abnormality
detection can be regarded as a variance of object detection
on X-ray images. Therefore, we propose DCE anf FP for
specially designed feature extraction, which corresponds to
solve the problem of multi-scale, realistic occlusions and etc

with highly distinguished characteristics. Deformable trans-
former structure is adopted to refine feature map by self-
attention scheme and serves as a highly efficient classifier to
locate abnormal and compute disease labels.

The contribution of this paper is three-fold:

• The proposed CDT-CAD could efficiently discover
inherent patterns of chest abnormality. As far as we
know, CDT-CAD is the first work to apply powerful
deformable transformer structure for CXR diagnosis.

• The proposed iterative context-aware feature extrac-
tor iteratively re-scales and refines feature map by
exploiting and fusing multi-scale interdependencies,
including DCE and FP.

• A novel frequency pooling block is proposed to en-
code multi-scale frequency information into feature
channels via wavelet transform, thus dealing with
realistic occlusions and scale variations.

The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 presents an overview
of the algorithm. Details of network structure, iterative
context-aware feature extracotr, and deformable transformer
detector are discussed in Section 4. Section 5 presents the
experimental results and discussions. Finally, Section 6 con-
cludes the paper.

2 RELATED WORK

We introduce relevant research in this section, including
chest X-ray image analysis, object detection methods and
transformer structure.

2.1 Chest X-ray Image Analysis
Chest X-ray image analysis includes three important sub-
tasks, i.e., image-level prediction, localization, and segmen-
tation. Approaches adopted for chest X-ray image analysis
are summarized in Table 1. Image-level prediction refers
to predict a label (classification) or a continuous value
(regression) with respect to the entire image. For example,
Baltruschat et al. [8] compare the performance of various
methods including deep learning methods, where they clas-
sify 14 classes of disease based on Chest X-ray 14 dataset.
Considering the impact to analyze both front and lateral
chest X-ray images, Huang et al. [9] propose Dual-Ray Net
as a deep convolutional neural network, which can deal
with the front and lateral chest radiography at the same
time. Later, Paul et al. [10] train a model with multi-view
semantic embedding and self-training technologies, which
successfully perform zero-shot diagnosis of chest radio-
graphs. Recently, Janjua et al. [11] propose a framework
based on deep machine learning approaches empowered
with fuzzy for object detection and classification , which
can classify diagnostic objects to determine whether they
are malignant or benign. Considering the presence of image
artifacts such as lettering often generate a harmful bias in the
classifier, Rocha et al. [12] propose Attention-driven Spatial
Transformer Network for abnormality detection in chest X-
Ray images.

Segmentation refers to assign category label to each
pixel, which can be considered as pixel classification. Based
on U-Net, i.e., a fully convolutional architecture for natural
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TABLE 1
List of recent methods for chest X-ray image analysis.

Authors Application Year
Baltruschat et al. [8] Image-level prediction 2019

Huang et al. [9] Image-level prediction 2020
Paul et al. [10] Image-level prediction 2021

Janjua et al. [11] Image-level prediction 2022
Rocha et al. [12] Image-level prediction 2022
Kim and Le [13] Segmentation 2021
Que et al. [14] Segmentation 2018

Eslami et al. [15] Segmentation 2020
Zhang et al. [16] Segmentation 2021

Cho et al. [17] Localization 2020
Xi et al. [18] Localization 2021

Han et al. [19] Localization 2022
Ji et al. [20] Localization 2022

image segmentation, Kim and Lee [13] use U-Net with self-
attention scheme for lung segmentation, meanwhile Que et
al. [14] propose DenseNet-based network for segmentation
and classification of cardiomegaly. Later, Eslami et al. [15]
design an image-to-image translation network for multi-
task segmentation in Chest X-ray radiography, successfully
generating bone-suppressed images and organ-segmented
images at the same time. Recently, ABMDRNet [16] gains
complementary information from visible (RGB) and ther-
mal(T) images, and uses bridging-then-fusing strategy to
deal with the reduced discriminability caused by modality
differences.

Localization refers to the identification of a specific area,
typically indicated by drawing a bounding box as well as
the corresponding class label. It’s noted that the proposed
CDT-CAD could be classified as a localization work. For ex-
ample, Cho et al. [17] adopt a YOLOv2 based structure with
multi-scale scheme to detect 5 different classes of chest ab-
normalities. Later, Xi et al. [18] propose an attention-driven
weakly supervised algorithm, which design explicit ordinal
attention constraints to enable principled models’ training in
a weakly-supervised fashion. To extend contrastive learning
to medical image domain, Han et al [19] propose an end-
to-end semi-supervised knowledge-augmented contrastive
learning framework tailored for the medical images, which
seamlessly integrates radiomic features as knowledge aug-
mentation means. Recently, Ji et al. [20] propose PBC as an
abnormality localization framework, which utilize a small
number of fully annotated CXRs with lesion-level bounding
boxes and extensive weakly annotated samples by points.

2.2 Object Detection Methods
Many chest abnormality detection methods are inspired by
object detection methods. One of the most famous cases is
Faster R-CNN [21], which is a typical two-stage detector by
generating region proposals via the RPN module at first,
and then determing the final detection results based on the
region proposals. Another famous one-stage object detector
is called as YOLO [22], which divides the input image into
many grids and each grid should offer hints on whether
objects are inside or not. Afterwards, YOLO v4 [23] appears
as a significantly improvement, which adopts technologies
of the modified spatial attention module, path aggregated
network, cross iteration normalization and many other com-
ponents to achieve high accuracy and fast speed.

Intending to solve the problem of multi-scale feature
encoding, Feature Pyramid Network [24] generates multi-
scale feature maps in parallel, and adopts a divide and
conquer strategy for the predictions of different sizes. Later,
Retina Net [25] presents a novel Focal Loss, which makes
training process focus on a sparse set of hard examples and
prevents the vast number of negatives to overwhelm the
detector during training. Using a single convolution neural
network, CornerNet [26] detects an object bounding box,
which is regarded as a pair of keypoints and corners on the
main diagonal lines of the bounding box. Recently, Sangaiah
et al. [27]propose a method for conserving position confi-
dentiality of roaming PBSs users using machine learning
techniques. Zhang et al. [28]design a multiple features fu-
sion method and propose a correlation filter object function
model called Spatial-Channel Selection and Temporal Regu-
larized Correlation Filters to improve tracker performance.
Most recently, FCOS [29] directly makes dense predictions
on each pixel of the feature map and introduces centerness,
which could be used to filter low-quality results and for
refinement.

2.3 Transformer Structure

Transformers are firstly introduced as a new structure block
with attention mechanism for machine translation [30].
Since a sequence can be computed by transformer in paral-
lel, transformers are more suitable than RNN when dealing
with a long sequence, thus being more popular in language
processing problems than traditional RNN. As transformers
are limited by a fixed-length context in the setting of lan-
guage modeling, Transformer-XL [31] is proposed to enable
learning dependency beyond a fixed length without disrupt-
ing temporal coherence, which manages to generate reason-
ably coherent, novel text articles with thousands of tokens.
To increase computation efficiency, routing transformer [32]
proposes a clustering-based attention mechanism that learns
the attention sparsity in a data driven fashion. Inspired by
the idea that Neural Architecture Search (NAS) could be
used to search for more efficient transformers, Wang et al.
[33] propose HAT (Hardware-aware Transformers), where
hardware efficiency feedback is used as a reward signal.

Transformers have been applied in many other domains,
such as recommendation systems [34], computer vision
and so on. For example, VIT [35] represents an image as
patches of words and uses transformers to process these
words as in the NLP task, achieving better results than
CNN on extremely large datasets. Since vision transformers
usually suffer from high computation costs, Data-efficient
image Transformers (DeiT) [36] is proposed, requiring less
data and less computing resources to generate a high-
performance image classification model.

Most recently, researchers propose DETR [37] as a
transformer-based detector, which directly uses transformer
to map feature maps into detection results. Since DETR has
a slow convergence speed and limited feature resolution,
Deformable DETR has been proposed to deal with those
problems [38], where its attention module only focuses on
several sampling points near the reference point as the key
element in the attention module.
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3 THE PROPOSED METHOD

In this section, we first describe the overall network struc-
ture and loss function. Then, we introduce the proposed
iterative context-aware feature extractor, including dilated
context encoding (DCE) block and frequency pooling (FP)
block. Finally, we offer descriptions on deformable trans-
former detector.

3.1 Network Structure Overview

As shown in Fig. 2, we design two main modules, i.e., itera-
tive context-aware feature extractor and deformable trans-
former detector. The former module contains ResNet-50
backbone, dilated context encoding (DCE) block, frequency
pooling (FP) block and positional encoding structure, while
the latter one contains transformer encoder, transformer
decoder and a feed-forward network for classification and
regression tasks.

The proposed context-aware feature extractor first
adopts ResNet-50 to process input CXR image as feature
map. Then, we design an iterative feature fusion scheme,
which iteratively refines feature map with both DCE blocks
and FP blocks. The former one is capable to enlarge recep-
tive fields, thus locally encoding multi-scale information by
convolutional filters with different sizes, while the latter one
directly resize feature map based on output of DCE blocks,
which acts as a multi-scale feature encoding scheme in a
global sense. Afterwards, we flatten the resulting feature
map with abundant local and global information, resulting
in a sequence feature map for further processing. Finally,
positional encoding scheme is adopted to add spatial con-
text information, thus better dealing with the problem of
permutation invariance of transformers.

Regarding the sequence feature map with abundant
multi-scale context information in both image and frequency
domain as input, the proposed deformable transformer de-
tector is used to directly map the input into a set of abnor-
mality predictions. Specifically, the proposed transformer
encoder adopts deformable attention block to select a small
set of sampling locations as a pre-filter for prominent key el-
ements, thus acting as feature subspace for computation and
memory decreasing. Afterwards, the proposed transformer
decoder takes the input as queries, which adaptively aggre-
gates the key contents according to the attention weights
that measure the compatibility of query-key pairs. Finally, a
feed-forward network is adopted to make final predictions
on categories and locations of abnormalities.

Note that CDT-CAD requires a fixed number Nobj for
possible predictions, each with a coordinate regression re-
sults and an abnormality classification result. Let y the
ground truth and ŷ = {ŷi}

Nobj

i=1 denotes the set of Nobj pre-
dictions. The total loss for both regression and classification
tasks is achieved by searching for a permutation ω ∈ ΩNobj

of the Nobj predictions with Hungarian algorithm, which
could be described as:

ω̂ = arg min
ω∈ΩN

N∑
i=1

Lmatch

(
yi, ŷω(i)

)
(1)

where y is padded to the size of Nobj , ˆyω(i) is the ith
element of the predictions. Each element of the prediction

refers to ŷω(i) =
(
p̂ω(i) (ci) , b̂ω(i)

)
, where b̂ω(i) represents

the bounding box and p̂ω(i) (ci) represents the probability
of the class with the maximum probability.

The loss function for training is a combination of the box
loss and classification loss, which is defined as:

L(ŷ, y) =
N∑
i=1

[
α1Lcls

(
ci, p̂ω(i) (ci)

)
+ α2Lloc

(
bi, b̂ω(i)

)]
(2)

where the classification loss is the cross entropy, represented
as

Lcls
(
ci, p̂ω(i) (ci)

)
=

N∑
i=1

− log p̂ω(i) (ci) (3)

and the bounding box loss is

Lloc
(
bi, b̂ω(i)

)
=

N∑
i=1

[
β1Liou

(
bi, b̂ω(i)

)
+ β2Lreg

(
bi, b̂ω(i)

)]
(4)

which is essentially the summation of IoU loss and L1 loss.
It’s noted that α1, α2, β1 and β2 are all hyper-parameters.
Specifically, we adopt GIoU [39] to balance the loss between
large and small objects. Parameters of the proposed CDT-
CAD method are updated based on the loss obtained by
the best search of permutation, which enables the proposed
network to be trained in an end-to-end manner without
many hand designed components.

3.2 Design of Iterative Context-Aware Feature Extrac-
tor
The proposed context-aware feature extractor consists of
three parts, i.e., iterative feature fusion scheme, DCE block,
and FP block.

Iterative Feature Fusion Scheme. We design the pro-
posed iterative feature fusion scheme for multi-scale feature
fusion as shown in Fig. 2. Essentially, the proposed feature
fusion scheme builds on top of the Feature Pyramid Net-
works (FPN) [24] by iteratively and progressively refining
scaled feature map from the top layers to the bottom-up
ones. Unrolling the iterative structure to a sequential imple-
mentation, we obtain feature map for abnormality detector
that looks at the images twice or more with structures of
multiple stages, and much more carefully with DCE and
FP blocks to enhance feature representation in both spatial
and frequency domains. Similar to the cascaded detector
in Cascade structure, the proposed feature fusion scheme
iteratively enhances original feature map of FPN to generate
increasingly powerful representations. In other words, the
proposed feature fusion scheme acts as a multi-scale feature
encoding scheme in a global sense by directly resizing
feature map, meanwhile DCE and FP blocks encodes multi-
scale information in a local sense by not only enlarging
receptive via fields convolutional filters with different sizes,
but also encoding the multi-scale frequency information
into feature channels via wavelet transform. Such iterative
feature fusion operations could be represented as{

Fl = Fl−1 + FDCE(Fl−1)
Fl+1 = fdown(FFP (Fl))

(5)

where Fl refers to the lth feature map after l−1 times down
sampling operations, functions fDCE(), fFP () and fdown()
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Fig. 2. Network architecture of the proposed CDT-CAD method. It’s noted that CDT-CAD could output a set of predictions without pre- and post-
processing steps in an end-to-end manner.

Fig. 3. Architecture design of the proposed DCE block, where the dilated
convolution filter is adopted to enlarge the receptive field, thus acquiring
quantity of multi-scale context information for further processing.

represent single-in-single-out operator of DCE block, opera-
tors of FP block and down-sampling operator, l varies from
2 to 4 in the proposed method.

Dilated Context Encoder Block. Inspired by YOLOF
[40], we design structure of DCE block as shown in Fig. 3,
where dilated convolution and skip connections are used
to enlarge the receptive field and capture more local con-
text information. Essentially, this powerful one-level feature
successfully finds a way to generate an output feature
with various receptive fields, compensating for the lack of
multiple-level features. Therefore, it exceeds the range of
scales matching to the scaled feature’s receptive field, which
benefits the detection performance for abnormalities across
various scales.

Specifically, we first design a 1× 1 and a 3× 3 standard

convolution layer as a projector, which is used for feature re-
finement. The main component in DCE block is the residual
block, which consists of two 1 × 1 convolution layer with
a 3 × 3 dilated convolution layer. Then, we stack several
residual blocks with residual connection to build a short-
way for gradient flow. Each residual block has a different
dilated rates with different receptive field, covering all scales
and extracting extensive contextual information. Finally, we
sum the resulting feature map with the original feature map
for output.

Frequency Pooling Block. Frequency transform is a
powerful tool for content analysis, since images or signals
are general to be sparse on an appropriate DWT basis. This
property makes it easy to filter noise or informative part
out of feature channels, which is considered to be an ideal
methodology to be adopted in pooling structures to sepa-
rate useful part from original feature channels. Moreover,
we compare the frequency distribution of different CXR
images, which generally show obvious differences in the
frequency domain. The advantages of analyzing and the cor-
responding output orders of frequency transform motivate
us to construct a frequency based pooling module. Among
different possible frequency transform methods, we further
choose wavelet transform due to its multi-scale property,
which coincides with one of the problems in CXR task, i.e.,
scale variance. In fact, encoding frequency information with
different size of windows in DWT offers a hierarchical and
complementary view to analyze input CXR images, which
is extremely helpful to filter the unnecessary or informative
part for decrease of computation cost.

The structure design of Frequency Pooling Module is
shown in Fig. 4. Specifically, we start from revisiting the
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Fig. 4. Architecture design of the proposed FP block, where wavelet
transform brings benefits of robustness to degradation of occlusion
variations by focusing on dominant frequency information representing
saliency parts of CXR content.

equation of 1D-DWT, which can be represented as:

xα,L[n] =
K−1∑
k=0

xα−1,L[2n− k]g[k] (6)

xα,H [n] =
K−1∑
k=0

xα−1,L[2n− k]h[k] (7)

where g[k] and h[k] represent low-pass and high-pass filter
with window size k, respectively. In this way, the low-
frequency component xα,L and the high-frequency compo-
nent xα,H corresponding to the αth layer are extracted.

Following the definition of 1D-DWT, 2D-DWT separates
a signal into low-frequency parts and high-frequency parts
along the horizontal direction as L and H at the first step.
Afterwards, 2D-DWT separates L and H in the vertical
direction, which computes four individual frequency parts,
i.e., LL, LH, HL and HH. It’s noted the upper left part (LL)
contains the dominate content-related information, which
can be decomposed into signal parts with different reso-
lutions. In other words, multi-scale frequency domain can
be extracted by adopting different number of levels in 2D-
DWT. We show this particular design of 2D-DWT in the
right part of Fig. 4.

Input feature channels X ∈ RC×H×W are firstly split
into n parts, namely {X1,X2 . . . Xn}. After processing
via the i-layer wavelet transform, we could get Yi ∈
RC/i×H/(2

i)×W/(2i). Then, we perform global average pool-
ing on the decomposed parts to achieve multi-scale fre-
quency domain information. Finally, we concatenate all
these compressed parts in channel direction to compute the
output feature Z ∈ RC×1×1:

Yi = DWT i(Xi), where i = 1, 2, 3, . . . n (8)

Z = GAP (Y1) +GAP (Y2) + · · ·+GAP (Yn) (9)

where operator + represents concatenate operation, DWT k

means the kth level DWT processing step, and function
GAP () means global average pooling.

It should be noted that the proposed frequency pooling
block is designed as a plug and play module, so it is not an
integral part of context-aware feature extractor structure. In
other words, context-aware feature extractor can maintain
functional integrity without it.

Fig. 5. Architecture design of the proposed deformable attention block,
which is the core component of deformable transformer detector. It’s
noted that K points are sampled from the input multi-scale feature map.

3.3 Design of Deformable Transformer Detector

Self-attention transformer is a powerful network that can
automatically aggregate key and distinguish features, thus
discovering complex and inherent patterns from input
scratches. However, directly using standard self-attention
transformer is suboptimal, since it will look over all possible
locations of the entire feature map to compute reasonable
attention weights. Such searching strategy not only brings
computation burden and memory cost, but also makes
training difficult and slow to converge.

Deformable attention block is capable to focus on infor-
mative parts of the input feature, which firstly samples k
points from all possible locations and then computes the
corresponding attention weights on the sub feature map. As
the computation cost is largely reduced by computing on
feature subspace, deformable attention can attend to multi-
scale feature maps for simultaneous and light-weight com-
putation, thus successfully encoding context information on
feature subspace on multi-scale feature map.

The proposed deformable attention block is illustrated
in Fig. 5 with single-scale and multi-head attention property.
Given a sequence input feature, we first obtain query feature
z and feature map x via several linear layers. By apply-
ing linear layers on z, we can compute multi-head offsets
{∆xm,∆ym}

M
m=1 and the corresponding attention weights

A. It’s noted that each pair of offsets is used to sample k
points from the feature map x. Afterwards, single-scale and
multi-head deformable attention block can be defined as:

At(A, x) =
M∑
m=1

Wm[
K∑
k=1

Am,k ·foff ([x,∆xm,∆ym]k)] (10)

where m indexes the attention head, k indexes the sampled
keys, M and K are total number of attention heads and
sampling points, respectively.

Furthermore, the efficiency property of single-scale and
multi-head deformable attention block leads multi-scale de-
formable attention block to be easily built as:

MsAt(
{
Al
}L
l=1

,
{
xl
}L
l=1

) =∑M
m=1 Wm[

∑L
l=1

∑K
k=1A

L
m,k · foff ([xl,∆xlm,∆y

l
m]k)]

(11)
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where l refers to the index of layers and L is the total num-
ber of layers. We stack 6 deformable encoder and decoder
layers with deformable attention blocks to achieve decoder
output, whose size is (Nobj , cout). It’s noted that Nobj is the
number of the abnormalities detected and cout is the output
dimension of decoder layers.

4 EXPERIMENTS AND ANALYSIS

In this section, we first give introduction to dataset and
measurements. Then, we conduct comparative studies with
several existing methods. Afterwards, we perform ablation
experiments to show the effectiveness of the proposed DCE
blocks and frequency pooling blocks. Additionally, we an-
alyze training performance of CDT-CAD. Finally, we offer
implementation details for readers’ convenience.

4.1 Datasets and Measurements
We adopt two datasets to conduct chest X-Ray abnormal-
ity detection, i.e., Vinbig Chest X-Ray Dataset and ChestX
Det-10 Dataset. For former dataset, we select a subset for
experiments, which contains 5000 training images and 1063
testing images in total. With annotations of bounding boxes
and the corresponding class labels, all images are labeled
by a panel of experienced radiologists for the presence of
14 critical radiographic findings. The latter one is a subset
Dataset with box annotations of a public dataset NIH Chest-
14, which contains 3001 and 541 images in the training set
and testing set. Specifically, we follow each of their guidance
use total 3000 images and 1000 images per class for training,
total 1800 images and 600 images per class for validation,
and 1604 images for testing. Respectively, It’s noted each
image is annotated with 10 common categories of diseases.

To evaluate the performance of detection results, we
follow the evaluation rules of both datasets, where AP is de-
fined as the mean precision value over multiple IoU thresh-
olds (Intersection over Union) and all the object classes:

IoU =
area (Bp ∩Bgt)
area (Bp ∪Bgt)

(12)

IoU is defined as the area of the intersection divided by the
area of the union of the predicted bounding box.

APUj
=

1

10× C

C∑
i=1

10∑
j=1

P (i, Uj) (13)

where i and j refer to the index of class and threshold
respectively, C is the total number of classes, the IoU values
Uj corresponds to a range from 0.5 to 0.95 with a step
size of 0.05, and the function P (i, Uj)() calculates precision
values for the ith object class under a fixed IoU threshold
Uj . Moreover, AP50 and AP75 refer to mAP(Mean Average
Precision) values over the IoU thresholds of 0.5 and 0.75
respectively, whileAPS ,APM andAPL are the AP for small,
medium and large objects, respectively.

mAP =

∑K
i=1APi
K

(14)

mAP is defined as the average of K-class APs.
Furthermore, we apply AR for evaluation, where AR

represents the average recall at IoU threshold from 0.5

to 1, and mAP is adopted as evaluation metric with IoU
threshold setting as 0.5 and 0.75 respectively.

AR = 2

∫ 1

0.5
recall(o)do (15)

where o is the number of detected objects. Specifically,
a prediction is considered as positive only if it has a larger
IoU than threshold (0.5 and 0.75) with any ground truth.

4.2 Ablation Study
In this subsection, we conduct three groups of ablation
experiments, where the first one is to prove the effectiveness
of the proposed iterative context-aware feature extractor, the
second group is designed to show the effectiveness of CDT-
CAD with or without bottleneck structure in DCE block, and
the last one is performed to compare performance of CDT-
CAD with different number of DWT levels in FP block.

The Effectiveness of Proposed Extractor. We show stat-
ics of the first ablation experiment in Table. 2, where we
can observe that a larger number of layers (as 4 for both
experimental datasets) settled in iterative context-aware fea-
ture extractor contributes to a higher AP50 ,AP75,APS ,APM
and APLvalue. The inherent reason lies in the enhancement
ability for feature representation of the serial-connected
DCE and FP blocks in each iteration, where DCE blocks
enlarge receptive fields to encode multi-scale context in-
formation via dilated context encoding blocks, and FP
blocks capture unique and scalable feature variation pat-
terns in wavelet frequency domain. However, it’s noted
that AP50,AP75,APS ,APMand APLfails to increase after
exceeding 4 layers in layer number, where we believe too
many layers bring noisy information for feature map, thus
preventing to achieve accurate CXR diagnose results.

The Performance of Bottle Neck Structure. Details of
the second ablation experiment are presented in Table. 3.
Higher AP50 ,AP75,APS ,APMand APL achieved by CDT-
CAD with 3 bottle neck structures for VingBig and ChestX
Det-10 dataset demonstrate the capability in improving CXR
detection results with a few number of bottle neck struc-
tures. In fact, more bottle neck structures bring advantages
of serial dilated convolutions to generate feature map, thus
offering diversity on different size of receptive fields.

The Performance of Different DWT Levels. Table. 4
shows quantitative comparative results with various num-
ber of DWT levels in FP block. We observe that more
DWT layers lead to a higher AP50, AP75,APS ,APMand
APL,which proves that encoding multi-scale frequency in-
formation could help in accurately localizing abnormalities
in chest images. It’s shown that all the filters perform well
when the DWT level is fixed to 3. When the level is increased
to 4, the accuracy remained unchanged. The reason that
more DWT levels fail in contributing to higher accuracy
lies in the fact, that high-level of down-sampling frequency
parts contain nearly rare information for disease diagnosis
task. As explained in the theory of DWT, low-frequency
part corresponds to the dominate information of image
content, which is proved by the fact that we can recover
an image based on only low-frequency part. With higher
levels of sampling in DWT, high-frequency part proves to be
useless for disease diagnosis task, which should be filtered
for benefits of low computation cost.
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TABLE 2
Performance comparison with different number of layers in iterative context-aware feature extractor.

Dataset No.of Layers AP50 AP75 APS APM APL

Vin Big

0 33.9 15.1 3.2 12.2 21.1
1 34.5 15.3 3.4 12.3 21.3
2 35.1 15.5 3.4 12.3 21.4
3 35.7 15.7 3.5 12.5 21.6
4 36.3 15.8 3.6 12.6 21.7
5 36.1 15.6 3.4 12.4 21.5

ChestX Det-10

0 41.9 15.3 4.9 15.0 25.1
1 42.5 15.7 5.1 15.1 25.3
2 43.0 15.9 5.2 15.2 25.4
3 43.4 16.2 5.4 15.2 25.7
4 43.6 16.5 5.6 15.4 25.8
5 43.5 16.3 5.5 15.3 25.6

TABLE 3
Performance comparison with different number of serially-connected bottle neck structures in DCE block.

Dataset No.of Bottle Neck AP50 AP75 APS APM APL

0 34.7 15.2 3.1 12.0 21.0
1 35.3 15.4 3.2 12.2 21.2
2 36.1 15.5 3.4 12.5 21.4
3 36.3 15.8 3.6 12.6 21.7

Vin Big

4 36.1 15.7 3.5 12.4 21.5
0 41.9 15.9 4.9 15.0 25.1
1 42.5 16.1 5.1 15.1 25.3
2 43.3 16.2 5.5 15.2 25.5
3 43.6 16.5 5.6 15.4 25.8

ChestX Det-10

4 43.4 16.4 5.4 15.3 25.4

4.3 Comparison with Existing Methods

Experimental results of performance comparison on VinBig
Dataset and ChestX Det-10 Dataset are shown in Table. 5.
Among comparative studies, Yolov3 uses a single neural
network to predict bounding boxes and class probabilities,
directly estimating from images in one-round evaluation.
Next, DETR reasons about the relations of the objects and
the global image context to directly output the final set
of predictions. Meanwhile, Cascade R-CNN, a multi-stage
object detection framework, is designed to avoid the prob-
lems of overfitting at training and mismatch at inference.
Afterwards, we use DenseNet, a convolutional network
architecture, to introduce direct connections between any
two layers with the same feature-map size, which allevi-
ate the vanishing-gradient problem and strengthen feature
propagation. It is claimed that we achieve public codes of
Cho et al. [17] and Ji et al. [20] for testing. It’s noted that
YoLo Modified adopts DenseNet as its backbone, Faster R-
CNN Modified adopts special design of data augmentation
for better performance, and Faster R-CNN with FPN adopts
FPN to bring property of multi-scale feature map. We follow
the code instructions online to implement three ensemble
network structures of 5 detectors, 3 detectors and 3 detectors
with lighter structure design.

From Table. 5, we could observe that accuracy in VinBig
Dataset is generally lower than ChestX Det-10 Dataset, since
CXR images in VinBig Dataset not only correspond to more
categories of abnormalities, but also vary in appearance
with more complex patterns. It’s observed that the pro-
posed CDT-CAD has achieved the highest AP50,AP75,AR,
APS ,APMand APL on both datasets, which outperforms

Cho et al. [17] and Ji et al. [20], Faster R-CNN, YoLo
and their modified versions by a large margin. All these
facts prove structures of deformable transformer detector,
iterative dilated context encoder and frequency pooling are
helpful to improve detection accuracy.

On the challenging VinBig dataset, CDT-CAD achieves
competitive performance comparing with the ensemble
baseline 1, which is a complicated structure that ensem-
bles the results of five different detectors. So are the other
two ensemble baseline methods. All these facts point out
that complexity in structure design not always brings ad-
vantages on performance boosting. When comparing with
DETR, the better performance obtained by CDT-CAD shows
that the proposed deformable attention block can help focus
on informative feature subspace without having to look
over the entire space, which might bring noise information
to decrease accuracy of detection results. When comparing
with Cho et al. [17], the proposed deformable transformer
structure brings high distinguish capability with large re-
ceptive field due to its self-attention scheme, being larger
than that of convolutional filters adopted in Cho et al.
[17]. Moreover, We outperforms Ji et al. [20] which serves
as a benchmark for weakly semi-supervised abnormality
localization in chest x-rays, focusing on inferences based on
partly labeled situation rather than labeled samples.

In Fig. 7, we compare the abnormality detection accuracy
between ground truth and detection results achieved by
CDT-CAD and Faster R-CNN, where we can view that
CDT-CAD is capable to detect hard cases ignored by Faster
R-CNN, such as nodules proved by the first column of
examples, and complicated pattern of disease proved by the
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TABLE 4
Performance comparison with different number of DWT levels in FP Block.

Dataset No.of DWT Levels AP50 AP75 APS APM APL

0 35.6 15.2 3.2 12.1 21.2
1 36.0 15.4 3.3 12.3 21.3
2 36.0 15.6 3.5 12.4 21.5
3 36.3 15.8 3.6 12.6 21.7

Vin Big

4 36.1 15.7 3.4 12.5 21.6
0 43.0 15.7 5.0 15.1 25.2
1 43.3 15.9 5.2 15.2 25.4
2 43.5 16.1 5.4 15.3 25.6
3 43.6 16.5 5.6 15.4 25.8

ChestX Det-10

4 43.2 16.3 5.5 15.3 25.5

TABLE 5
Performance comparison among CDT-CAD and the existing methods, bold texts refer to the best performance.

Dataset Method AP50 AP75 AR APS APM APL

Faster R-CNN with FPN 29.1 13.6 29.1 1.7 7.3 14.4
Yolov3 [22] 26.2 11.5 24 1.4 6.8 12.2
DETR [37] 33.7 15.1 32.9 2.5 10.5 18.4

Cascade R-CNN [41] 33.5 14.4 29.9 2.4 10.8 18.6
Yolo Modified 29.5 13.4 28.2 2.1 8.5 16.8

Faster R-CNN Modified 30.3 14.2 31.5 2.5 8.9 17.5
Ensemble Model 1 35.7 15.2 32.4 3.3 12.5 20.8
Ensemble Model 2 34.3 14.8 32.6 3.2 11.9 19.7
Ensemble Model 3 33.9 13.6 33.1 3.1 11.5 19.8

Cho et al. [17] 35.3 15.1 33.1 3.0 12.3 20.9
Ji et al. [20] 35.8 15.3 33.4 3.2 12.5 21.4

VinBig

CDT-CAD 36.3 15.8 35.4 3.6 12.6 21.7
Faster R-CNN with FPN 39.3 15.6 45.3 4.2 13.2 22.8

Yolov3 [22] 37.7 15.9 39.3 4.1 13.8 23.2
DETR [37] 41.5 16.3 47.7 4.4 13.4 24.6

Cascade R-CNN [41] 41.1 14.4 46.5 4.2 13.5 23.9
DenseNet [42] 42.7 15.1 47.9 4.8 14.8 24.5
Cho et al. [17] 42.8 15.9 47.2 5.2 15.3 25.3

Ji et al. [20] 43.2 16.2 47.3 5.3 15.2 25.4

Chest Det-10

CDT-CAD 43.6 16.5 48.2 5.6 15.4 25.8

TABLE 6
Comparison results on mean precision and convergence speed

between CDT-CAD and DETR.

Dataset Method AP50 AP75 Epoch

VinBig DETR 33.5 12.8 1000
CDT-CAD 36.3 15.6 400

ChestX Det-10 DETR 41.5 14.4 1000
CDT-CAD 43.5 16.5 400

last column of examples.

4.4 Training Time Analysis
As shown in Table. 6, CDT-CAD achieves much lower
training epochs when comparing with DETR on both VinBig
and ChestX Det-10 datasets. Meanwhile, CDT-CAD grantees
performance to be much higher than that of DETR on both
datasets. In other words, CDT-CAD performs not only better
in accuracy , but also faster in convergence than DETR. The
reason of such performance lies in the fact that the proposed
iterative context-aware attention extractor successfully ex-
tracts multi-scale attention information to boost accuracy
performance without increasing computation burden.

Fig. 6 shows the training loss of CDT-CAD with either
standard transformer or deformable transformer. We can

clearly view that deformable transformer offers higher loss
speed than the standard one, thus leading to fast conver-
gence and less computation cost. Such phenomenon can
be explained that deformable transformer detector utilize
a small set of key points for further calculation, thus leading
the detector to focus on informative feature subspace and
accelerate convergence speed.

Using the hardware configuration in implementation de-
tails, on the Chest Det-10 Dataset, it take an average of 1.251
seconds for a single image to complete the target detection
process. Considering high-performance video cards are not
popular in the medical environment of most developing
countries, we use CPUs(in implementation details) for test-
ing. In this case, the time consumption become 5.32 seconds.

4.5 Implementation Details
All our experiments were conducted on a server with two
Intel Xeon E5-2620 v4 (@2.1GHz) CPUs and 4 NVIDIA
GTX TITAN XP graphic cards. Our experimental codes are
mainly based on the PyTorch framework. For data augmen-
tation, we use random clip, resize and crop. We train our
network will multiple size. Our initial learning rate is set as
0.0001, weight decay is 0.0001 and the momentum is 0.9.
Due to the linear warm up mechanism, the learning rate
increases from 1/3 × 0.01 to 0.01 in the first 500 iterations.
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Fig. 6. Comparisons of training loss of CDT-CAD with standard trans-
former and deformable transformer on chestX Det 10 dataset.

We firstly use Adam optimizer to pre-train our network
on MS COCO dataset and then finetuned on the chest X-
Ray image dataset. We choose ResNet-50 as the backbone
network and finetune backbone network with ImageNet
pretrained backbones. On VinBig and Chest Det-10 Dataset,
finetune 800 epochs for the detection frame subnet, reduce
the learning rate to 1/10 of the original for every 300 epochs,
and finetune 100 epochs for the segmentation head.

5 CONCLUSION

In this paper, we present a context-aware deformable trans-
formers for end-to-end chest abnormality detection on X-
Ray images. The proposed method firstly constructs an
iterative context-aware feature extractor to not only encode
multi-scale context information by dilated context encoding
blocks, but also encode multi-scale frequency information
into feature channels via frequency pooling blocks. Af-
terwards, we build a deformable transformer detector for
abnormality detection with properties of accelerating con-
vergence speed. Comparative experiments on Vinbig Chest
and ChestX Det-10 Dataset prove that the proposed CDT-
CAD method is effective and efficient for chest abnormality
detection on X-Ray images. Our feature work includes ideas
of interpretable deep learning methods for knowledge em-
bedding explanation on abnormality detection results.

Medical diagnosis and analysis has become the most
important and core application scenario of artificial intel-
ligence in the medical field. CNNs for medical diagnosis
has been successful, but their conventional formulation is
limited to data structured in an ordered, grid-like fashion.
Now, graph-based deep learning for medical diagnosis has
attracted attention because graph neural networks can ex-
ploit implicit information present in biological systems.
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