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a b s t r a c t 

Scene text detection task aims to precisely locate text regions in natural scenes. However, the existing 

methods still face challenges in detecting arbitrary-shaped text, due to their limited feature representa- 

tion capability. To alleviate this problem, we propose a scene text detector, i.e., CDText, based on structure 

of context-aware deformable transformer. Specifically, CDText firstly adopts different convolution kernel 

designs for feature extraction, which designs receptive fields with different size for multi-scale feature 

perception and fusion. Meanwhile, multi-head self-attention mechanism is used to strengthen the reason- 

ing ability of CDText in a global sense, thus enhancing feature maps with abundant context information 

by extracting implicit relationship between multi-scale text features. Moreover, CDText designs a segmen- 

tation head to segment text instances of arbitrary shapes from rectangular detection boxes. Experiments 

show that CDText is superior to comparative methods in detection accuracy, achieving F -scores of 92.7, 

81.9, and 82.9 on ICDAR2013, Total Text, and CTW-1500 datasets, respectively. 

© 2023 Elsevier B.V. All rights reserved. 

1

s

y

n

i

r

p

d  

p

t

s

[

(

s

g

p

h

e

N

l

s

a

e

s

[

1

a

m

n  

h

0

. Introduction 

A wide range of applications are built on scene text detectors, 

uch as autonomous driving, real-time translation, document anal- 

sis and so on. Since deep learning methods have proved effective- 

ess in image analysis tasks, researchers have made great progress 

n scene text detection with deep learning. 

To achieve multi-directional text detection, Liu and Jin [1] di- 

ectly use quadrilateral boxes to detect oblique text. Since directly 

redicting polygon vertices leads to label confusion due to disor- 

er issue of vertex, Liu et al. [2] , Wu et al. [3] propose to first

redict key edges of detection boxes through discretization, and 

hen learn label information through a multi-class classifier. In- 

pired by anchor-free detection method, i.e., DenseBox, Zhou et al. 

4] , Zhang et al. [5] use a Fully Convolutional Neural Network to 
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enerate text detection boxes and the corresponding confidence on 

ixel-level feature map. One-stage detector with DenseBox cannot 

andle the detection of long and large texts well. Therefore, Zhong 

t al. [6] use DenseBox to replace the original Region Proposal 

etwork (RPN) of Faster R-CNN, where the updated method is no 

onger limited by the anchor box generation mechanism, thus pre- 

erving high accuracy of text detection in multiple directions. The 

bove methods mainly consider using a rectangular or a quadrilat- 

ral box for text detection, where the curved text cannot be closely 

urrounded. Inspired by R-FCN for curved text detection, Liu et al. 

7] modify the bounding box regression module to use a tighter 

4-vertex polygon detection box, where the text candidate regions 

re further refined by the Recurrent Neural Network (RNN) to be 

ore accurate. Arguing that a fixed 14-point multilateral shape is 

ot enough for long or curved text, Wang et al. [8] use RNN to pre-

ict polygon boxes with different numbers of vertices for text re- 

ions of different shapes. The idea of instance segmentation is also 

sed to detect curved text, where [9] use Mask R-CNN, the top- 

own instance segmentation framework, to perform text instance 

egmentation, thus detecting texts in any shape. 

https://doi.org/10.1016/j.patrec.2023.05.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
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mailto:211307030003@hhu.edu.cn
mailto:laiy@jlu.edu.cn
mailto:fnarducci@unisa.it
mailto:shaohua.wan@uestc.edu.cn
https://doi.org/10.1016/j.patrec.2023.05.025


Y. Wu, Q. Kong, L. Yong et al. Pattern Recognition Letters 172 (2023) 8–14 

Fig. 1. Difficult samples of text detection in natural scene, such as word art, over- 

exposure and background complexity arranging from left to right. 

p

c

t

o

o

F

w

a

o

b

b

w

d

w

p

r

t

r

n

e

t

fi

d

b

e

m

t

c

o

f

r

m

l

f

s

g

c

t

2

2

w

f

n

t

o

t

t

f

(

p

t

t

F

s

s

Even though deep learning methods have achieved superior 

erformance, accurate text detection in natural scenes is still a 

hallenging task, due to several difficulties shown in Fig. 1 . Firstly, 

exts often appear with arbitrary shapes, different sizes and col- 

rs in natural scenes. Compared with texts in documents, illegible 

r curved texts like wordart are possible to appear as shown in 

ig. 1 (a). Secondly, background in natural scenes is often complex, 

here non-uniform lighting, partial occlusion, perspective changes, 

nd image blurring make texts difficult to recognize as showcase 

f non-uniform lighting in Fig. 1 (b). Last but not least, objects in 

ackground are easily mistaken for texts, where local features of 

ricks, fences, windows, vegetation and so on have great similarity 

ith texts as shown in Fig. 1 (c). All these difficulties requires text 

etectors to own strong capabilities in feature extraction. 

To detect texts of arbitrary shapes, different sizes and colors, 

e regard texts as special objects, where a segmentation head is 

roposed to segment text instances of any shape on the basis of 

ectangular detection boxes. Essentially, feature maps generated by 

raditional CNN often lack of contextual information, leading rep- 

esentation capability of text features to be low facing complex 

atural scenes. To resolve this problem, Yu and Koltun [10] , Wu 

t al. [11] propose the dilated convolution. Different from tradi- 

ional convolution methods that improve the network receptive 

eld by combining convolution operations with pooling operations, 

ilated convolution eliminates pooling operations but insert gaps 

etween the kernel elements. It increases the spatial range cov- 

red by each convolution kernel without downsampling the feature 

ap, thus avoids information loss. Dilated convolution is useful in 

asks such as object recognition and semantic segmentation. 

Based on the above ideas, we propose CDText based on 

ontext-aware deformable transformer. Specifically, CDTex consists 
ig. 2. Network architecture of the proposed CDText. The context-aware feature extracto

cale context feature maps, transformer module generates classification and embedding 

egmentation Head module converts the input embedding feature for bounding box into 

9 
f context-aware feature extractor and transformer structure. The 

ormer not only uses dilated convolution operations of different 

eceptive fields to enhance perception capability, but also fuses 

ulti-scale features by pyramid structure design. Meanwhile, the 

atter samples a small set of key points to focus on informative 

eature subspace with multi-head self-attention mechanism, thus 

trengthening the reasoning ability of CDText in a global sense. The 

enerated feature map are rich in context information to detect 

haracters of any shape even in complex background, thus solving 

he inaccuracy detection with traditional CNN. 

The contribution of this paper is three-fold: 

• CDT-CAD could detect texts of arbitrary shapes in complex nat- 

ural scene, owing to the informative contextual information en- 

coding. 
• The proposed context-aware feature extractor refines feature 

map with context information, which exploits and fuses multi- 

scale interdependencies described by dilated context encoding 

blocks. 
• The proposed deformable transformer aggregates text fea- 

ture representation of rectangle detection boxes for instance 

segmentation, thus generating curved and compact bounding 

boxes. 

. Methodology 

.1. Overall structure 

As shown in Fig. 2 , CDText consists of ResNet backbone net- 

ork, context-aware feature extractor, position encoding, Trans- 

ormer, and segmentation head. Without post-processing steps like 

on-maximum suppression, CDText could firstly output horizon- 

al text detection boxes, and then segment text instances based 

n these rectangle boxes, where steps are (1) Send a text image 

o backbone network for feature extraction; (2) Extract contex- 

ual feature information on original feature, where context-aware 

eature extractor is composed of iterative Dilated context encoder 

DCE) blocks to generate multi-scale context feature maps; (3) Ex- 

and the obtained feature map to output sequential image fea- 

ures, where position coding is fused to obtain image features con- 

aining spatial information; (4) Results are sent to Transformer 
r is composed of iterative Dilated context encoder (DCE) blocks to generate multi- 

features for downstream tasks i.e. classification, detection and segmentation, and 

masks of any shape as text detection results. 
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Fig. 3. Structure design of the proposed Dilated context encoder (DCE) blocks. Each 

block contains several standard convolution layers (for 1 × 1 and 3 × 3 ) and a di- 

alated convolutional layer. Dialated convolution is used to obtain a lager receptive 

field. 
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Fig. 4. Structure design of the proposed segmentation head. The multi-head atten- 

tion scheme shown in the left of this figure generates attention map (heat map) for 

the latter upsampling progresses. During the upsampling process, heat map is fused 

with the corresponding DCE feature maps to obtain multiscale spatial information. 
ith multi-head self-attention mechanism; (5) Results are sent to 

he feedforward neural network to generate a fixed number of hor- 

zontal detection boxes, and their corresponding features; (6) Text 

etection results are obtained through the segmentation head on 

he basis of horizontal detection boxes, which could segment text 

nstances in multiple directions and any shape. 

.2. Design of context-aware feature extractor 

The proposed context-aware feature extractor adopts an itera- 

ive approach for multi-scale feature fusion as shown in Fig. 3 . Es- 

entially, feature maps at different levels in ResNet contain differ- 

nt information. For example, shallow feature maps contain spatial 

nformation, while deep feature maps correspond to rich seman- 

ic information. To effectively fuse multi-scale features and extract 

ey information, CDText adopts Feature Pyramid Network (FPN) 

13,14] structure to fuse feature maps from top to bottom. The fea- 

ure map of each level passes through DCE blocks to perceive con- 

ext information, which is then encoded into the original feature 

ap with a way similar to skip connections. Afterwards, we re- 

uce the size of feature map by down-sampling, and sum the re- 

uced feature map with the original one for output. The obtained 

eature map not only encodes abundant context information, but 

lso integrates feature information belonging to top and down lev- 

ls, thereby continuously improving representation ability of fea- 

ure map. 

Specifically, operations of context-aware feature extractor can 

e expressed as: 

F l = F l−1 + F DCE (F l−1 ) 

F l+1 = f down (F F P (F l )) 
(1) 

here F l represents feature map of the lth layer generated af- 

er down-sampling operations, + refers to element-wise addition, 

unctions F DCE () , f down () and Res l () represent operations of DCE 

lock, down-sampling and the lth Conv layer of ResNet, where l

anges from 2 to 5. It’s noted that dimensions of input and out- 

ut feature maps remains unchanged after F DCE () and is reduced 

o half after f down () . 

The structure of DCE block is shown in Fig. 3 . Features pass 

hrough a 3 × 3 and a 1 × 1 convolutional operation for finetune, 

nd are further sent to multiple bottleneck structures for enhanc- 

ng. Specifically, the bottleneck structure firstly uses a 1 × 1 con- 

olutional to reduce the number of channels and the amount of 

omputation. Then, a 3 × 3 Dilated convolutional operation is used 

o expand the receptive field, which is further restored by a 1 × 1 

onvolutional operation. 

At last, both expanded and original feature are merged by 

kip connections. It’s noted that each bottleneck structure uses di- 
10 
ated convolution with different dilated rates, resulting in receptive 

elds with different sizes. Therefore, DCE blocks can effectively en- 

ance receptive fields in multiple scales, then fusing multi-scale 

nformation to capture informative parts for generation of feature 

aps rich in context information. 

.3. Encoder and decoder structure in transformer 

Compared with traditional convolutional neural networks, 

ransformer can effectively capture global and key features to dis- 

inguish text and background areas. 

Since self-attention mechanism in Transformer has property of 

ranslation invariance, feature map will lose spatial information af- 

er being expanded into sequential features. Therefore, it’s neces- 

ary to use position encoding to re-add spatial information on the 

asis of the sequential feature map, which can be expressed as 

 box = F F N 2 (F F N 1 (T rans (S))) (2) 

here O box represents results of detecting rectangle boxes, S is the 

nput serialized feature, function T rans () represents encoder and 

ecoder structure of Transformer, functions F F N 1 () and F F N 2 () are

he fully connected networks to generate features for detection and 

he horizontal detection boxes respectively, both of which consist 

f multi-layer linear full connections, activation functions and reg- 

larization processing. Both encoder and decoder include multiple 

ayers of encoding and decoding layers, which is set to 4 by ex- 

eriments. Specifically, the encoding layer consists of a multi-head 

ttention mechanism module and a feed-forward neural network, 

hich requires to add position encoding for supplement of spatial 

nformation. The decoding layer share the same design of encoding 

ayer. Unlike decoder layer in natural language processing to com- 

ute an element each iteration, the decoding operation of CDText 

s running in parallel, where a positional encoding number, being 

he same as number of bounding boxes, is used to generate differ- 

nt detections. 

.4. Design of segmentation head 

Inspired by Mask R-CNN [15] , we design segmentation head to 

egment text instances based on the input text rectangle boxes, 

hus generating masks of any shape as text detection results. 

The structure design of segmentation head is shown in Fig. 4 , 

here features of detection boxes computed by Transformer de- 

oder are fed into the multi-head attention mechanism, which out- 

uts heat map with size N × M × H/ 32 × W/ 32 , where N is the

umber of detection boxes, M represents the number of heads 

ith multi-head attention, H and W are height and width of the 

nput image. It’s noted the dimension of M attention heatmaps are 
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Table 1 

Performance comparison with the existing methods on ICDAR2013, total text and 

CTW-1500 dataset. 

Methods ICDAR 2013 Total text CTW-1500 

P R F P R F P R F 

CTPN [16] 93.0 83.0 88.0 – – – 60.4 53.8 56.9 

SegLink [17] 87.7 83.0 85.3 30.3 23.8 26.7 42.3 40.0 40.8 

TextBoxes [18] 88.0 74.0 81.0 62.1 45.5 52.5 – – –

Mask R-CNN [15] 91.5 89.2 90.2 80.5 79.5 80.0 80.2 82.9 81.5 

DDR [19] 92.0 81.0 86.0 – – – – – –

CTD + TLOC [20] – – – 74.0 71.0 73.0 77.4 69.8 73.4 

EAST [4] 93.0 93.0 87.0 50.0 36.2 42.0 78.7 49.1 60.4 

PixelLink + MS [21] 88.6 87.5 88.1 – – – – – –

RRD + MS [22] 92.0 86.0 89.0 – – – – – –

TextSnake [23] – – – 82.7 74.5 78.4 67.9 85.3 75.6 

LOMO [24] – – – 87.6 79.3 83.3 85.7 76.5 80.8 

MSR [25] 91.8 88.5 90.1 85.2 78.6 78.6 84.1 79.0 81.5 

PSENet [26] 93.7 87.8 90.7 84.0 77.9 80.9 80.6 75.6 78.0 

CSE [27] 93.7 89.7 91.7 81.4 79.1 80.2 81.0 76.0 78.4 

TextDragon [28] – – – 85.6 75.7 80.3 84.5 82.8 83.6 

TextField [29] – – – 81.2 79.9 80.6 79.8 83.0 81.4 

ATRR [30] – – – 80.9 76.2 78.5 80.1 80.1 80.1 

The proposed 94.1 91.4 92.7 82.0 81.8 81.9 82.6 83.3 82.9 
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he same as the output of last layer of DCE blocks, which is defined

s size of input image by down-sampling with 32. Afterwards, 

attention heatmaps are concatenated by channel, which is fur- 

her sent to a FPN-similar structure for three times up-sampling 

o obtain a confidence feature map for mask prediction with size 

 × H/ 4 × W/ 4 . During these operations, they are fused with out- 

ut feature map of different DCE blocks containing abundant con- 

extual information through long-distance skip connections. With 

our stages of feature fusion, multi-scale contextual information 

an be utilized to help accurately segmente text instances. 

.5. Loss function design 

The total loss function is defined as 

 = 

N ∑ 

i =1 

(L p + ζp i � = ∅ L b + ζp i � = ∅ L s ) (3) 

here L p , L b and L s represent classification loss, regression loss of 

ounding boxes and segmentation loss respectively, function ζ () 

eans the output value is 1 once the condition is true, otherwise 

s 0, p i � = ∅ means the predicted category of the i th element is true,

hat is, text and background are correctly distinguished. Since text 

etection is a binary classification problem where only two cat- 

gories required to be classified, we define such condition as if 

 i > 0 . 5 . 

Among these losses, L p adopts cross entropy loss: 

 p (p ω (i ) , ˆ p i ) = −p ω (i ) log ( ̂  p i ) (4) 

here p ω (i ) represents the i th label after the optimal replacement 

ound by the Hungarian algorithm. When the label indicates text, 

ts value is 1. Otherwise, it’s 0. ˆ p i represents the probability of the 

 th prediction. L b is defined with GIoU loss and L1 loss: 

 b (b ω (i ) , ̂  b i ) = λiou L giou (b ω (i ) , ̂  b i ) + λL 1 ‖ b ω (i ) − ˆ b i ‖ 1 (5)

here b ω (i ) and 

ˆ b i represent the i th label and the coordinates of

he i th predicted detection box respectively, function L giou () repre- 

ent GIoU loss defined as the ratio of the overlapping area between 

wo boxes to the area of the smallest rectangle that completely 

overs two boxes, ‖ · ‖ 1 represents the L1 norm, λiou and λL 1 are 

yperparameters defined as 0.4 and 0.6, respectively. L s is defined 

s the Dice loss related to the intersection-over-union ratio (IoU) 

etween masks: 

 S (S ω (i ) , ̂  S i ) = 1 − 2 S ω (i ) σ ( ̂  S i ) + 1 

σ ( ̂  S i ) + S ω (i ) + 1 

(6) 

here S ω (i ) and 

ˆ S i are the ground-truth and predicted i th text in-

tance segmentation results respectively, and function σ () is the 

igmoid activation function. 

To train CDText, we firstly trains a sub-network for rectangu- 

ar box text detection, then freezes the weight of the sub-network 

art, and finally fine-tunes the network with the additional seg- 

entation head. After three steps of training, we could achieve an 

rbitrary-shaped text detector as CDText. 

. Experiments 

.1. Datasets and measurements 

We test CDText on three datasets, i.e., ICDAR2013, SCUT CTW- 

500 and Total Text. Specifically, ICDAR2013 is a dataset with the 

orizontal English texts, where 229 images are used as training set, 

nd the remaining 225 images are used as test set. SCUT CTW- 

500 is a dataset for detecting irregularly shaped text with both 

nglish and Chinese characters, where 10 0 0 images are used for 

raining and the remaining 500 images are used for testing. In 
11 
ataset, text instances are marked with polygon coordinates, with 

 total of 14 boundary points for marking. Total Text is a challeng- 

ng English dataset with horizontally oriented text, slanted text, 

nd some curved text, where 1255 images are used for training 

nd 300 images are used for testing. Unlike CTW-1500, the total 

umber of labeling points is not fixed. Measurements are defined 

s Precision ( P for short), Recall ( R for short) and F -score ( F for

hort). While ICDAR2013 dataset focuses more on straight text lay- 

ut, Total Text and CTW-1500 datasets has more irregular text lay- 

ut samples. Due to their different characteristics, we train 3 dif- 

erent models for each dataset. 

.2. Comparison experiments 

Horizontal text detection As shown in Table 1 , the experimental 

esults on ICDAR2013 dataset show high detection performance of 

DText on horizontal texts, since ICDAR2013 mainly consist of hor- 

zontal texts. Moreover, segmentation head of CDText is not trained 

or comparison, due to the exitance of only horizontal texts. Com- 

ared with Mask R-CNN [15] , CDText achieves superior results in 

recision, recall and F -score. With the help of context-aware fea- 

ure extractor and Transformer with self-attention mechanism, CD- 

ext has a larger receptive field to captures global information, 

hus effectively im proving the ability to distinguish background 

nd text areas. It should be noticed that we only keep the box re- 

ression branch and classification branch of the Mask R-CNN (mask 

ranch is removed from that scheme). The model is trained and 

ne-tuned on the three datasets in our experiment. 

In Table 1 , MS indicates the use of multi-scale testing. F -score of 

he RRD [22] with MS improves F -score with 8 points. Even though 

DText adopts a single-scale strategy in testing, its performance 

till exceeds methods with MS strategy. We thus conclude that CD- 

ext can effectively perceive context information in multiple scales 

o extract abundant and global information. Since evaluation in- 

icators of ICDAR2013 dataset tolerate one-to-one and many-to- 

any detection results to a certain extent, F -scores on ICDAR2013 

ataset are relatively high, where CDText reach more than 90. 

Arbitrary Shape Text Detection Table 1 shows the results of the 

omparative experiments on Total Text and CTW-1500 datasets 

ith irregularly shaped texts, where we can observe F -score of CD- 

ext reach 81.9 and 82.9 respectively, exceeding all other text de- 

ection methods and proving the ability of CDText to detect texts 

f arbitrary shapes. 
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Table 2 

Performance comparison with different parameter settings on TotalText dataset. 

Parameter Setting P R F 

DCE layers 0 80.2 79.7 79.9 

1 81.4 80.5 80.9 

2 81.8 81.4 81.6 

3 81.7 81.8 81.7 

4 82.0 81.8 81.9 

5 81.8 81.8 81.8 

Bottleneck Dilated conv 1 80.4 80.5 80.4 

2 81.3 81.2 81.2 

3 81.8 81.6 81.7 

4 82.0 81.8 81.9 

5 82.1 81.8 81.9 

Tradition conv 1 80.3 79.4 79.3 

2 80.2 79.9 79.9 

3 80.1 80.2 80.5 

4 80.2 80.5 80.2 

5 80.4 80.0 79.8 

Transformer Layer 2 73.2 69.5 71.3 

3 80.4 79.6 80.0 

4 82.0 81.8 81.9 

6 82.5 82.0 82.2 

Positional Coding Without 73.9 66.4 69.9 

Learnable 81.0 80.9 80.9 

Sin-code 82.0 81.8 81.9 
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Similar to Mask R-CNN [15] , CDText achieve segmentation of 

ext instances based on detection boxes with an upsampling strat- 

gy of FPN [13] . However, CDText outperforms Mask R-CNN in 

erms of precision, recall, and F -score on both datasets containing 

exts of arbitrary shapes, which proves the effectiveness of con- 

extual modeling idea in CDText to help segment text instances 

f any shape. It’s noted that CDText remains consist performance 

n both tasks of detecting horizontal and arbitrary texts. On the 

ontrary, methods such as East and SegLink, are not optimized for 

urved text detection, where these methods perform slightly worse 

n Total Text and CTW-1500. Compared with other text detection 

ethods based on semantic segmentation like TextSnake, CDText 

s 3.5 and 7.3 points higher on Total Text and CTW-1500 datasets, 

espectively, meanwhile recall is only slightly lower on CTW-1500 

ataset. In fact, semantic segmentation on the whole image of- 

en leads to insufficient accuracy, such as the unclear boundary of 

ext, and the broken text instance. Therefore, distinguishing text 

nstances on semantic segmentation results in slightly worse de- 

ection performance. CDText segments text instances on the basis 

f rectangular detection boxes, leading to a certain degree of accu- 

acy advantage. 

It’s noted that CDText obtains best results on F -score on Total 

ext and CTW-1500 datasets. However, we fail to achieve best per- 

ormance in either precision or recall. In fact, some methods are 

esigned to emphasize parameter precision or recall with specific 

tructure, where CDText take both parameters into account for a 

etter F -score performance. 

.3. Parameter setting experiments 

In this subsection, several sets of parameter, i.e., the number 

f DCE layers, the number of bottleneck structures, the number of 

ransformer encoder and decoder layers, and the way to achieve 

osition encoding, are tested on Total text dataset to determine. 

e show experimental results in Table 4 for further analysis. 

Number of DCE layers Note that number equals 0 means the 

ontext-aware feature extractor is completely removed. When 

qualling 4, we adopt the last 4 convolutional layers of back- 

one ResNet to be connected with the proposed DCE layer. When 

qualling 3, the second convolutional layer of ResNet is no longer 

onnected with DCE layer to directly compute. When equalling 5, 

he first convolutional layer of ResNet is also connected with DCE 

ayer. In all these experiment, the number of bottleneck structures 

s set to 4 in all DCE layers, and the dilation rate of dilated convo-

ution is 3, 5, 7, and 3, respectively. 

Compared with CDText without the context-aware feature ex- 

ractor, F -score increases from 79.9 to 81.9 by setting the number 

f DCE layers to 4. When number of DCE layers is less than 4, more

CE Layers lead to higher F -score. When number of DCE layer is 

efined as 5, text detection performance is slightly reduced, which 

roves that 4 is the optimal option. In fact, DCE blocks of differ- 

nt layers perceive context information of different scales, where 

ore DCE layers could increase the multi-scale perception ability 

f CDText. However, too shallow feature maps contain insufficient 

emantic information, thus DCE blocks with the first layer failing 

o bring significant improvement. 

Settings bottleneck structures The number of DCE layers is fixed 

o 4, when testing the optimized number of bottleneck structures. 

imilar with tests on number of DCE Layers, remove of bottleneck 

tructures starts from the last bottleneck structure. It’s proved by 

esults in Table 4 that more bottleneck structures brings higher F - 

core. In fact, different bottleneck structures use dilated convolu- 

ions with different dilated rates, resulting in different receptive 

elds with abundant context information encoded. When increas- 

ng from 4 to 5, the detection performance reaches saturation with 

nly a slight increase in precision ( Table 2 ). 
12 
Moreover, in order to verify the effectiveness of the deflated 

onvolution in the module, we also conduct a new experiment by 

eplacing the dilated conv-layers in the bottleneck blocks with tra- 

itional conv-layers of the same kernal size. Experimental results 

how that the performance of the model deteriorates significantly 

s the dilated conv-layers are replaced. This strongly demonstrates 

hat the traditional convolution is not able to satisfy the needs of 

ultiscale feature extraction due to information loss and small re- 

eptive fields. 

Number of transformer encoder and decoder layers In general, 

ore Transformer coding layers brings a higher F -value. Compared 

etween performance when setting number as 2 and 4, F -score in- 

reases from 71.3 to 81.9. When continuing to increase number 

f layers to 6, F -score only increase by 0.3. Since self-attention 

echanism of Transformer can perform global reasoning on fea- 

ure maps, using too few encoder-decoder layers would lack the 

bility to perform complex global reasoning. Meanwhile, the im- 

rovement would converge by more layers. We thus conclude that 

he reasoning of global information can effectively im prove ability 

f CDText to distinguish text and background. 

Positional coding Since the spatial information in feature would 

ost as input of Transformer, positional coding should be used to 

omplement the missing spatial information. We compares the de- 

ection performance of different network structures, i.e., without 

sing positional coding, using learnable positional coding and us- 

ng sin-wave positional coding. No matter using the learnable or 

he sine wave positional coding, F -score is much higher than that 

f CDText without positional coding. Compared with the learnable 

ay, detection performance of using sin-wave positional coding is 

etter, which proves the necessity and importance to adopt sin- 

ave position coding for CDText with Transformer structure. 

.4. Visualization of results 

The last layer of Transformer decoder can generate an attention 

eight for each text instance, which can be used to generate de- 

ection boxes. Figure 5 shows the attention weight map and the 

ectangular detection box of each text instance in an input image, 

here the right one is the final detection result after segmenting 

ext instances. It can be observed that CDText can effectively focus 



Y. Wu, Q. Kong, L. Yong et al. Pattern Recognition Letters 172 (2023) 8–14 

Fig. 5. Sample of attention weight map to show the capability of CDText to focus 

on key areas. 

Fig. 6. Samples of detecting texts achieved by CDText on ICDAR2013 dataset. 

Fig. 7. Samples of detecting texts achieved by CDText on CTW-1500 dataset. 
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n key areas with text instance inside, so as to accurately detect 

nd segment text instances. 

Figure 6 shows the detection results of CDText on ICDAR2013 

ataset. Since detecting texts on ICDAR2013 is easy with clear and 

orizontal texts, samples show the capability of CDText to accu- 

ately detect horizontal texts. Figures 7 and 8 show the detection 

esults of CDText on CTW-1500 and Total Text datasets, respec- 

ively. It can be seen that texts in CTW-1500 is lined in images, 

hile texts in Total Text are segmented by word form. Compared 

ith ICDAR2013, both datasets are significantly more difficult with 

urved texts, where CDText still accurately detect texts with any 

irections and arbitrary shapes, even curved text instances. 

.5. Time consumption test 

We randomly selected 900 images (300 images from each 

ataset) for speed test. We selected two ordinary devices as the 

xperimental hardware: a Core i7-9750H 2.60 GHz Laptop and a 

imensity 700 2.2 GHz smartphone. The average time spent on 
13 
 single image is about 225 ms on laptop and 412 ms on smart- 

hone. 

.6. Implementation details 

We use weights pre-trained on ImageNet as the initial value of 

he backbone ResNet-50 network. We then use Adam optimizer 

o pre-train CDText on ICDAR2017 MLT dataset, where the initial 

earning rate and weight decay are set to 1 e −4 and 1 e −4 . It’s noted

hat 125 epochs are pre-trained on the detection box sub-network, 

nd 25 another epochs are pre-trained on the segmentation head. 

or the ICDAR2013 dataset, the detection box subnet is fine-tuned 

or 300 epochs, and the learning rate is reduced to 1/10 of the 

riginal every 200 epochs. On CTW-1500 and Total Text, the de- 

ection box subnet is fine-tuned for 800 epochs, the learning rate 

s reduced to 1/10 every 300 epochs, and the segmentation head is 

ne-tuned for 100 epochs instead. For training images, randomly 

cale the short side of images to 480–800, and ensure that its long 

ide doesn’t exceed 1333. In the detection box sub-network train- 

ng phase, the batch size of each GPU is set to 2, meanwhile it’s 

ettled to 1 when training on segmentation head phase. 

. Conclusion 

This paper proposes a context-aware and Transformer-based ap- 

roach for scene text detection. It’s characterized by using Trans- 

ormer to increase the global reasoning ability, and using the 

ontext-aware feature extractor to perceive and fuse multi-scale 

eature information to obtain abundant context information. Exper- 

ments show that the proposed method achieve accurate perfor- 

ance for text detection in natural scenes by detecting texts with 

ny directions and arbitrary shapes. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

ata availability 

Data will be made available on request. 

cknowledgement 

This work was supported in part by Key Laboratory of AI 

nd Information Processing (Hechi University), Education De- 

artment of Guangxi Zhuang Autonomous Region under Grant 

022GXZDSY014 . 

https://doi.org/10.13039/501100011823


Y. Wu, Q. Kong, L. Yong et al. Pattern Recognition Letters 172 (2023) 8–14 

R

 

 

 

 

 

[  

 

 

 

 

[  

[  

[

[  

[  

[

[  

[  

[

[  

[

eferences 

[1] Y. Liu, L. Jin, Deep matching prior network: toward tighter multi-oriented text 

detection, in: Proceedings of CVPR, 2017, pp. 3454–3461 . 

[2] Y. Liu, S. Zhang, L. Jin, L. Xie, Y. Wu, Z. Wang, Omnidirectional scene text de-
tection with sequential-free box discretization, in: Proceedings of IJCAI, 2019, 

pp. 3052–3058 . 
[3] Y. Wu, L. Zhang, Z. Gu, H. Lu, S. Wan, Edge-ai-driven framework with efficient 

mobile network design for facial expression recognition, ACM Trans. Embedded 
Comput. Syst. 22 (3) (2018) 1–17 . 

[4] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, J. Liang, EAST: an

efficient and accurate scene text detector, in: Proceedings of CVPR, 2017, 
pp. 2642–2651 . 

[5] Y. Zhang, F. Zhang, Y. Jin, Y. Cen, V. Voronin, S. Wan, Local correlation ensem-
ble with GCN based on attention features for cross-domain person re-id, ACM 

Trans. Multimed. Comput., Commun. Appl. 19 (2) (2023) 1–22 . 
[6] Z. Zhong, L. Sun, Q. Huo, An anchor-free region proposal network for faster 

R-CNN-based text detection approaches, Int. J. Doc. Anal. Recognit. 22 (3) 
(2019) 315–327 . 

[7] Y. Liu, L. Jin, S. Zhang, C. Luo, S. Zhang, Curved scene text detection via

transverse and longitudinal sequence connection, Pattern Recognit. 90 (2019) 
337–345 . 

[8] X. Wang, Y. Jiang, Z. Luo, C. Liu, H. Choi, S. Kim, Arbitrary shape scene text
detection with adaptive text region representation, in: Proceedings of CVPR, 

2019, pp. 6449–6458 . 
[9] Y. Xiao, M. Xue, T. Lu, Y. Wu, S. Palaiahnakote, A text-context-aware CNN net- 

work for multi-oriented and multi-language scene text detection, in: Proceed- 

ings of ICDAR, 2019, pp. 695–700 . 
[10] F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, in: 

Proceedings of ICLR, 2016 . 
[11] Y. Wu, Q. Kong, L. Zhang, A. Castiglione, M. Nappi, S. Wan, CDT-CAD: context- 

aware deformable transformers for end-to-end chest abnormality detection on 
X-ray images, IEEE/ACM Trans. Comput. Biol. Bioinf. (2023), doi: 10.1109/TCBB. 

2023.3258455 . 

12] Y. Wu, H. Guo, C. Chakraborty, M. Khosravi, S. Berretti, S. Wan, Edge computing
driven low-light image dynamic enhancement for object detection, IEEE Trans. 

Netw. Sci. Eng. (2022), doi: 10.1109/TNSE.2022.3151502 . 
[13] T. Lin, P. Dollár, R.B. Girshick, K. He, B. Hariharan, S.J. Belongie, Feature pyramid

networks for object detection, in: Proceedings of CVPR, 2017, pp. 936–944 . 
[14] J. Gou, L. Sun, B. Yu, S. Wan, W. Ou, Z. Yi, Multi-level attention-based sample

correlations for knowledge distillation, IEEE Trans. Ind. Inf. 19 (5) (2022) 7099–

7109, doi: 10.1109/TII.2022.3209672 . 
14 
[15] K. He, G. Gkioxari, P. Dollár, R.B. Girshick, Mask R-CNN, in: Proceedings of ICCV, 
2017, pp. 2980–2988 . 

[16] Z. Tian, W. Huang, T. He, P. He, Y. Qiao, Detecting text in natural image with
connectionist text proposal network, in: Proceedings of ECCV, vol.9912, 2016, 

pp. 56–72 . 
[17] B. Shi, X. Bai, S.J. Belongie, Detecting oriented text in natural images by linking 

segments, in: Proceedings of CVPR, 2017, pp. 3482–3490 . 
[18] M. Liao, B. Shi, X. Bai, X. Wang, W. Liu, Textboxes: a fast text detector

with a single deep neural network, in: Proceedings of AAAI, 2017, pp. 4161–

4167 . 
[19] W. He, X. Zhang, F. Yin, C. Liu, Deep direct regression for multi-oriented scene 

text detection, in: Proceedings of ICCV, 2017, pp. 745–753 . 
20] Y. Liu, L. Jin, S. Zhang, S. Zhang, Detecting curve text in the wild: new dataset

and new solution, CoRR abs/1712.02170 (2017). 
21] D. Deng, H. Liu, X. Li, D. Cai, Pixellink: detecting scene text via instance seg-

mentation, in: Proceedings of AAAI, 2018, pp. 6773–6780 . 

22] M. Liao, Z. Zhu, B. Shi, G. Xia, X. Bai, Rotation-sensitive regression for oriented 
scene text detection, in: Proceedings of CVPR, 2018, pp. 5909–5918 . 

23] S. Long, J. Ruan, W. Zhang, X. He, W. Wu, C. Yao, Textsnake: a flexible represen-
tation for detecting text of arbitrary shapes, in: Proceedings of ECCV, vol.11206, 

2018, pp. 19–35 . 
24] C. Zhang, B. Liang, Z. Huang, M. En, J. Han, E. Ding, X. Ding, Look more than

once: an accurate detector for text of arbitrary shapes, in: Proceedings of 

CVPR, 2019, pp. 10552–10561 . 
25] C. Xue, S. Lu, W. Zhang, MSR: multi-scale shape regression for scene text de- 

tection, in: S. Kraus (Ed.), Proceedings of IJCAI, 2019, pp. 989–995 . 
26] W. Wang, E. Xie, X. Li, W. Hou, T. Lu, G. Yu, S. Shao, Shape robust text detec-

tion with progressive scale expansion network, in: Proceedings of CVPR, 2019, 
pp. 9336–9345 . 

27] Z. Liu, G. Lin, S. Yang, F. Liu, W. Lin, W.L. Goh, Towards robust curve text

detection with conditional spatial expansion, in: Proceedings of CVPR, 2019, 
pp. 7269–7278 . 

28] W. Feng, W. He, F. Yin, X. Zhang, C. Liu, Textdragon: an end-to-end frame- 
work for arbitrary shaped text spotting, in: Proceedings of ICCV, 2019, 

pp. 9075–9084 . 
29] Y. Xu, Y. Wang, W. Zhou, Y. Wang, Z. Yang, X. Bai, Textfield: learning a deep

direction field for irregular scene text detection, IEEE Trans. Image Process. 28 

(11) (2019) 5566–5579 . 
30] X. Liu, G. Zhou, R. Zhang, X. Wei, An accurate segmentation-based scene text 

detector with context attention and repulsive text border, in: Proceedings of 
CVPR Workshops, 2020, pp. 2344–2352 . 

http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0001
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0002
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0003
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0004
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0005
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0006
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0007
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0008
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0009
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0010
https://doi.org/10.1109/TCBB.2023.3258455
https://doi.org/10.1109/TNSE.2022.3151502
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0013
https://doi.org/10.1109/TII.2022.3209672
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0015
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0016
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0017
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0018
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0019
http://arxiv.org/abs/1712.02170
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0020
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0021
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0022
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0023
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0024
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0025
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0026
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0027
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0028
http://refhub.elsevier.com/S0167-8655(23)00159-9/sbref0029

	CDText: Scene text detector based on context-aware deformable transformer
	1 Introduction
	2 Methodology
	2.1 Overall structure
	2.2 Design of context-aware feature extractor
	2.3 Encoder and decoder structure in transformer
	2.4 Design of segmentation head
	2.5 Loss function design

	3 Experiments
	3.1 Datasets and measurements
	3.2 Comparison experiments
	3.3 Parameter setting experiments
	3.4 Visualization of results
	3.5 Time consumption test
	3.6 Implementation details

	4 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	References


