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a b s t r a c t 

Deep learning methods have shown significant performance in medical image analysis tasks. However, 

they generally act like “black box” without explanations in both feature extraction and decision processes, 

leading to lack of clinical insights and high risk assessments. To aid deep learning in envisioning diseases 

with visual clues, we propose a novel Group-Disentangled Representation Learning framework (GDRL). 

The key contribution is that GDRL completely disentangles latent space into disease concepts with abun- 

dant and non-overlapping feature related explanations, thus enhancing interpretability in feature extrac- 

tion and decision processes. Furthermore, we introduce an implicit group-swap structure by emphasizing 

the linking relationship between semantical concepts of disease and low-level visual features, other than 

explicit explanations on general objects and their attributes. We demonstrate our framework on predict- 

ing four categories of diseases from chest X-ray images. The AUROC of GDRL on ChestX-ray14 for thoracic 

pathologic prediction are 0.8630, 0.8980, 0.9269 and 0.8653 respectively, and we showcase the potential 

of our framework in enhancing interpretability of the factors contributing to different diseases. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Advances in deep learning has resulted in significant per- 

ormance in medical image analysis tasks [1–3] . However, they 

enerally act like “black box” without explanations in both feature 

xtraction and decision processes, leading to lack of clinical in- 

ights and high risk assessments [4] . Most attempts to explain DL 

ocus on ‘post-hoc’ analysis by proving the importance of low-level 

eatures (e.g., parts of an image) in producing accurate predictions 

5] . However, they fail in linking low-level features with higher- 

evel pathology concepts, and visually explain decision-making 

rogress, where both are valuable for clinicians and patients to 

nderstand DL for pathology prediction. 

As an alternative way, interpretable DL methods consider 

he need for knowledge related explanations into the structure 

esigning. In other words, these methods are naturally transparent 

nd interpretable by properly encoding knowledge in advance. 
∗ Corresponding author. 
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n this way, in medical image analysis, we can locally tune the 

eature output of part of the model according to the clinical man- 

festations, instead of training the entire model from scratch, thus 

educing the cost of model training. For instance, [6] propose an 

nterpretable DL framework based on a variational auto-encoder 

VAE) [7] , which enables links between low-level features and 

igher-level explanatory concepts, as well as visualization of 

ecision making boundary. Their work provides a significant 

tep towards self-explaining DL methods. However, they achieve 

artly disentangled effects with overlapping and coarse-grained 

ow-level features, resulting in confused explanations and low- 

ccuracy classification results. The most important factor that 

istinguishes a partly disentangled latent space from a completely 

isentangled latent space is the overlap degree of the feature 

roups. 

To completely disentangle the latent space, Group Supervised 

earning (GSL) [8] designs an attribute swap operation to promote 

he consistency between latent representations and attributes, ob- 

aining an excellent image synthesis effect by learning attributes 

rom a group of samples. Following their idea, we propose a novel 

roup-Disentangled Representation Learning framework (GDRL) to 

id deep learning in envisioning pathologys with visual clues. The 

https://doi.org/10.1016/j.patrec.2022.12.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2022.12.020&domain=pdf
mailto:wuyirui@hhu.edu.cn
mailto:211307030003@hhu.edu.cn
mailto:xifeng@hhu.edu.cn
mailto:casanova@unica.it
mailto:abate@unisa.it
mailto:shaohua.wan@uestc.edu.cn
https://doi.org/10.1016/j.patrec.2022.12.020


Y. Wu, H. Li, X. Feng et al. Pattern Recognition Letters 165 (2023) 154–160 

Fig. 1. Comparisons between partly and completely disentangled latent space, 

where the former one could be achieved by Esther et al. [6] , and the latter one 

is generated by our GDRL. 
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ey contribution is that GDRL completely disentangles latent space 

nto pathology concepts with abundant and non-overlapping fea- 

ure related explanations, thus enhancing interpretability in fea- 

ure extraction and decision processes. Furthermore, we introduce 

n implicit group-swap structure by emphasizing the linking rela- 

ionship between semantical concepts of pathology and low-level 

isual features, other than explicit explanations on general objects 

nd their attributes. 

Specifically, GDRL enables to extract representations of pathol- 

gy concepts (e.g., Atelectasis, Cardiomegaly, Effusion, Infiltration, 

nd Background in this paper) with a group of features, i.e., the 

umber of features is up to 20 or more. To visually show how 

DRL works, we draw in Fig. 1 to reveal the differences in latent 

epresentation space between GDRL and [6] , thus offering clues 

n differences between completely and partly disentangled latent 

pace, i.e., the overlaps of feature groups in partly disentangled la- 

ent space make the information of the corresponding pathology 

ontained in feature groups not pure, resulting in the predictive 

erformance of feature groups on the corresponding pathology be- 

ng lower, while higher on other pathologies. 

GDRL allows to decompose input (i.e., chest X-ray images) into 

 disentangled latent representation space with swappable com- 

onents, each component encoding one pathology concept. With 

linical knowledge on two samples sharing the identical latent val- 

es, i.e., the same pathology concept, an implicit group-swap struc- 

ure is introduced, which seeks to link low-level visual features 

ith high-level pathology concepts in space, thus laying an pathol- 

gy interpretable basis in feature extraction process. In fact, the 

roposed implicit group-swap structure enforces semantic consis- 

ency of pathology concepts, and extracts features of pathology 

oncepts by leveraging semantic links between samples, i.e., in- 

ut chest X-ray images. Owning the ability to visualize pathol- 

gy concepts with fine-grained and non-overlapping visual fea- 

ures, thus enhancing the interpretability of decision process of 

lassifiers. 

To sum-up, our contributions are as follows. 

• We propose Group-Disentangled Representation Learning (GDRL) 

framework, which completely extracts group-disentangled 

pathology concept representations with fine-grained and non- 

overlapping features, thus promoting both interpretability and 

prediction accuracy. 
• We introduce an implicit group-swap structure that enables 

to extract linking relationship between semantical concepts of 

pathology and low-level visual features in latent space. 
155 
• We experimentally demonstrate that GDRL can significantly im- 

prove classification accuracy compared with partly disentangled 

interpretable or other DL methods, and showcase the potential 

of GDRL to help clinicians’ understanding in factors related with 

thoracic pathologic pathologys. 

The rest of the paper is organized as follows. Section 2 gives 

n overview of the related work on relative aspects. In Section 3 , 

etails of the proposed GDRL, including Auto-Encoder network, 

roup-Disentangled representation learning, disentanglement by 

roup-Swap module are discussed. Section 4 shows our experi- 

ental results, and finally Section 5 concludes the paper. 

. Related work 

Disentangled Representation Learning . Deep learning has 

chieved significant improvements in multiple domains like digital 

win [9] , object detection [10] , and so on. As one most promis-

ng aspect of deep learning, disentangled Representation Learn- 

ng aims to learn disentangled representation for one specific task, 

here single latent units are sensitive to changes in single gener- 

tive factors, while being relatively invariant to changes in other 

actors. 

Related methods can be divided into unit disentanglement 

ethods and group-disentanglement methods. The former meth- 

ds treat one feature as an independent concept. Following Vari- 

tional Autoencoders, most unit-disentanglement methods achieve 

nit-disentanglement by incorporating KL-divergence into the ob- 

ective to force the latent factors to be independent statistically 

11] . 

Meanwhile, group-disentanglement methods treat a group of 

eatures as a concept. For example, [12] proposes a deep proba- 

ilistic model for learning a disentangled representation of a set 

f grouped observation, and separates the latent representation 

nto semantically meaningful parts. Later, [13] proposes that im- 

ge pairs within a group can generate partially swapped images by 

wapping their partial vectors. 

Thoracic pathologic prediction . Early, Wang et al. [14] release 

 chest X-ray dataset, namely “ChestX-ray8”, which are extracted 

rom quantity of radiological reports, and benchmarked with dif- 

erent DLs pre-trained on ImageNet. Afterwards, CheXNet [4] has 

urpassed radiologists in its ability to predict pneumonia, which 

s proved by achieving high accuracy on “ChestX-ray8” dataset for 

athologies prediction. Majoring in significant cybersecurity and 

rivacy concerns, [15] focus their attention on the IEC 60 870-5- 

04 protocol, which is widely adopted in industrial healthcare sys- 

ems, thus solving issues of threats on cyberattacks and intrusion 

etection with quantity of latest technologies like reinforcement 

earning and internet of medical things. 

Later, CheXpert dataset [16] , i.e., one of the largest CXR dataset, 

re proposed, which contains 200 studies and is manually an- 

otated by 3 board-certified radiologists. Since rib segmentation 

ased on chest X-ray images is essential in the computer-aided 

iagnosis systems of lung cancer, [17] propose a novel rib seg- 

entation framework based on Unpaired Sample Augmentation 

nd Multi-Scale Network, aiming to improve the accuracy of ribs 

egmentation with limited labeled samples. The classical random 

alk segmentation explores merely local affinity among neighbor- 

ng pixels for cutting out objects, which falls short of effectiveness 

hen handling distant repetitive patterns in medical domain. To 

lleviate the quandary, [18] propose to introduce nonlocal affinity 

mong distant pixels with similar local features in the underlying 

egmentation graph, thus enabling label propagation among dis- 

onnected foregrounds and thus multiple repetitive patterns can 

e segmented jointly. 
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Fig. 2. Demonstration of encoding group-disentangled latent space based on auto-encoder. Each feature group in the latent space corresponds to a specific disease with 

medical usage. 
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. Methodology 

.1. Auto-encoder network 

Our GDRL framework is based on Auto-Encoder to decompose 

nputs (i.e., chest X-ray images) into a disentangled latent space. 

herefore, before introducing our GDRL framework, we introduce 

he knowledge of auto-encoder network in this section. 

The auto-encoder network is composed of an encoder network 

hat embeds the input image into a latent space, followed by a 

ecoder network trained to reconstruct the original image from 

he latent space. Typically we use convolutional and deconvolution 

eural networks as encoders and decoders respectively. We show 

hese two processes in Fig. 2 . After these processes is trained, we 

an take out the decoder and randomly pass in a code, hoping to 

enerate a data similar to the original data through the decoder. 

Formally, Auto-Encoder : X → X are composed of an encoder 

 : X → R 

d ; and a decoder D : R 

d → X , where d denotes the di-

ension of the latent space Z = E(X ) ∈ R 

d . 

Although the auto-encoder network can compress the image 

nto the latent space and reconstruct it well, we still do not know 

he internal structure of the latent vector, thus it lacks inter- 

retability and can’t create images arbitrarily by constructing la- 

ent vectors. Therefore, we propose GDRL based on auto-encoder 

etwork, which can completely disentangle the latent space into 

ifferent parts, each part corresponding to a pathological concept 

r context. 

.2. Group-disentangled representation learning 

To enhance interpretability in feature extraction, we wish to 

ivide latent space into several semantic-specific parts. Formally, 

uch property is defined as below: 

Definition (Group-Disentangled Latent Space). A group- 

isentangled latent space refers to a space consisting of several con- 

ecutive, non-overlapping subspaces, each of which is responsible for 

ne specific concept. 

It can also be expressed in the view of row-vectors: 

 

(1) = [ g (1) 
1 

, g (1) 
2 

, . . . , g (1) 
m 

, b (1) ] , (1)

here row-vector z (1) is the concatenation of m row-vectors 

 g (1) 
i 

∈ R 

d i } m 

i =1 
and a background row-vector b (1) ∈ R 

b where d = 

 m 

i =1 d i + b, the values of { d i } m 

i =1 
and b are hyperparameters, and g i 

orresponds to the concept c respectively. 
i 

156 
To get group-disentangled latent space, we propose Group- 

isentangled Representation Learning framework (GDRL), which 

xtract group-disentangled representations of pathology concepts 

e.g., Atelectasis, Cardiomegaly, Effusion, Infiltration, and Back- 

round) from a group of semantically related images and then uses 

hem to accurately predict corresponding pathologys. 

As shown in Fig. 3 , the training step of our GDRL inputs a group

f semantically-related images, then it trains the encoder and de- 

oder through 3 modules, which enable the encoder to encode the 

mage to a group-disentangled latent space. 

The first module is a Linking Scheme, like auto-encoder, which 

inks relationship between semantical concepts of pathology and 

ow-level visual features, we calculate the reconstruction loss L ls 
or each image. The next module is Group-Swap Module and will 

e introduced in Section 3.3 , which enforces semantic consis- 

ency of pathology concepts by the after-swap reconstruction loss 

 gsm 

. Group-Swap module and Group-cycle-swap module can retain 

he information of pathological concepts in the specified feature 

roups through swap operations, thus achieving completely group- 

isentangled latent space. 

The last module is the prediction module (PM), which uses g i 
o predict the value of concept c i by constraint of binary cross en- 

ropy Loss L pm 

. The prediction module consists of m 3-layer MLPs 

 M i } m 

i =1 
, thus higher accuracy can reflect the informativeness of 

isentangled representations. We combine their losses into a total 

oss 

 (E, D, M; S) = L ls + λgsm 

L gsm 

+ λpm 

L pm 

, (2) 

here L gsm 

and L pm 

respectively are the losses of linking scheme, 

roup-swap module and prediction module. Scalar coefficients 

gsm 

, λpm 

> 0 control the relative importance of the loss term. 

nd we can minimize the total loss L by gradient descent on pa- 

ameters of encoder (E), decoder (D) and 3-layer MLPs. 

The testing step of our GDRL uses the encoder to encode the 

nput image into a group-disentangled latent space, and then pre- 

icts pathology concepts by prediction module. 

For all experiments, the encoder E is composed of a convolu- 

ional layer, followed by 4 residual convolutional blocks with stride 

, followed by reshaping the response map to a vector, and finally 

 fully-connected layer to output 100-dim vector as latent feature. 

he decoder D mirrors the encoder, and is composed of a fully- 

onnected layers, followed by reshape into cuboid, followed by 4 

esidual de-conv blocks with stride 2, then finally a de-conv layers 

o output a reconstruction image. 
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Fig. 3. Overall structure of GDRL, which trains an Auto-Encoder to extract group-disentangled representations of pathology concepts based on a group of semantically related 

images, and uses them to accurately predict corresponding concept labels. 

Fig. 4. Group-Swap Module for learning group-disentangled latent space. (a) Group Image , where we input a group of semantically related images to learn their common 

properties; (b) Linking scheme , where we calculate the self-reconstruction loss function for each image; (c) Group-Swap : For each pair of images, we swap part of the latent 

representations of their shared concept value. (d) Group-Cycle-Swap : For input image and a random sampling image, we encode, randomly swap subspace, then decode, 

re-encode, swap same subspace again for reversing the first swap, and decode to reconstruct the inputs. 

3

l  

a

w

d  

f

i

a

s

e

g

m

.3. Disentanglement by group-swap module 

While training our GDRL, we wish to group-disentangle these 

atent spaces by E. Following the idea of Ge et al. [8] , we propose

n implicit group-swap structure to link low-level visual features 

ith high-level pathology concepts in space. To achieve this, we 

esign steps in Fig. 4 . It’s noted that the proposed structure is dif-
157 
er from them in three aspects, where (1) we design a novel link- 

ng scheme to automatically search possible links between features 

nd concept; (2) our group-swap structure prefer implicit and ab- 

tract feature aggregation for concept representation other than 

xplicit attributes; (3) we consider other information (e.g. back- 

round) and disentangle it from concept representations, which 

ay be entangled by them. 
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Group Image . As shown in Fig. 4 (a), we first randomly select 

n image from the data set and randomly select images with the 

ame labels as it, which implies that the latent subspace of these 

mage pairs is similar. Then we randomly and singly selected an 

mage for subsequent operations, and all these images add up to 

n image group. 

Linking Scheme . As shown in Fig. 4 (b), Linking Scheme is based 

n auto-encoder, which links relationship between semantical con- 

epts of pathology and low-level visual features. Specifically, for 

ach input X , we embed data in a low-dimensional vector by en- 

oder. Then we link d i units of the vector to a specific pathol- 

gy concept c i . Formally, we select a subset of the latent space 

 i = [ μl i +1 , . . . μl i + d i ] , where l i is the start of the subset for concept

 i . 

Group-Swap Module . We follow Ge et al. [8] and use two swap 

perations to enforces semantic consistency of pathology concepts, 

nd extracts features of pathology concepts by leveraging semantic 

inks between input images. 

To simplify the notation to follow, swap operation is defined as: 

wap (z (1) , z (2) , k ) 

= swap ([ . . . , g (1) 
k 

, . . . , b (1) ] , [ . . . , g (2) 
k 

, . . . , b (2) ] , k ) 

= [ . . . , g (2) 
k 

, . . . , b (1) ] , [ . . . , g (1) 
k 

, . . . , b (2) ] 

(3) 

As shown in Fig. 4 (c), the first swap in our framework is called

roup-swap, considering an input image x and semantically rele- 

ant images in images group S, for all x o ∈ S, x o � = x , the pair ( x o ,

 ) share one concept value j (e.g., Atelectasis), we define a Group- 

wap operation: 

, z o = E (x ) , E (x o ) and z s , z 
o 
s = swap (z , z o , j) (4)

nd s.t. 

 gs = || D (z s ) − x || 2 2 + || D (z o s ) − x o || 2 2 (5)

If sufficient sample pairs share only that concept for each 

oncept, the loss of group-swap L gs will be zero and group- 

isentanglement is achieved for that concept. 

The second swap in our method is called group-cycle-swap, 

onsidering x and another randomly selected image x̄ , regardless of 

hether they share an concept value or not. As shown in Fig. 4 (d),

e first randomly choice a concept, then encode and swap the 

art of latent representation of the concept, after decode these 

wapped factor, we may have a partly changed images, which have 

o ground-truth images. After a same encode-swap-decode, out- 

uts should be reconstructed into nearly the original images. 

Formally, with the random chosen concept j ∼ U[1 . . . m ] the 

roup-Cycle-Swap operation can be defined as: 

, ̄z = E (x ) E ( ̄x ) , and z s , z̄ s = swap (z , ̄z , j) (6)

ˆ 
 = D (z s ) , ̂  x̄ = D ( ̄z s ) (7) 

ˆ 
 , ̂  z̄ = E( ̂  x ) E( ̂  x̄ ) , and ˆ z s , ˆ z̄ s = swap ( ̂ z , ̂  z̄ , j) (8)

nd they are s.t. 

 gcs = || D ( ̂  z s ) − x || 2 2 + || D ( ̂  z̄ s ) − ˆ x || 2 2 (9)

ame as before, if sufficient samples are provided, the loss of 

roup-cycle-swap L gcs will be zero, then group-disentanglement 

s achieved. Finally, We combine the two group-swap losses into 

 gsm 

= L gs + L gcs . 

. Experiments 

We evaluate our method on its ability to learn group- 

isentangled representations and on its accuracy of thoracic patho- 

ogic prediction. 
158 
.1. Datasets and measurements 

We adopt two datasets to conduct thoracic pathologic predic- 

ion, i.e., chestxray-14 and ChestXpert, For former dataset, we se- 

ect a subset for experiments, which contains 36,764 training im- 

ges and 7353 testing images with 4 pathology labels (Atelectasis, 

ardiomegaly, Effusion and Infiltration), which are extracting from 

he associated radiological reports using natural language process- 

ng. For the latter one, we also select a subset, which contains 

62,188 training images and 32,437 testing images with 3 pathol- 

gy labels(Pleural Effusion, Edema and Cardiomegaly). 

To evaluate the performance of prediction, we follow the eval- 

ation rules of both datasets, and adopt area under receiver oper- 

ting characteristic curve (AUROC) as our evaluation metric. 

.2. Group-disentangled representation analysis 

To see the effect of group-disentanglement of our GDRL, we use 

he subspaces of disease concepts to predict four thoracic patholo- 

ies by a simple 3-MLP. If the hidden subspace contains all the in- 

ormation about the disease, the predicted result should be a ma- 

rix with 1 on the diagonal and 0.5 on the rest. 

We use Esther et al. [6] and standard auto-encoder with classi- 

cation head as comparison methods. The former partly disentan- 

les the latent space, and the latter is not a disentangled method. 

able. 1 shows that GDRL successfully decomposes the image into 

 group-disentangled latent space and uses each subspace to accu- 

ately predict the corresponding concept, but not to predict other 

oncepts. Results of two comparison methods, whose latent space 

s not completely group-disentangled, show that each subspace 

oesn’t know what it corresponds to, so their AUROCs are nearly 

.5. 

This result shows that the simple autoencoder structure can- 

ot disentangle latent space. Instead, our method can effectively 

earn to group-disentangle representation and decompose the fea- 

ure space into several independent parts, each of which represents 

 certain disease concept. However, other methods do not enforce 

he semantic consistency between the latent space and the concept 

f diseases, which leads to unsatisfactory results. 

.3. Accuracy of thoracic pathologic prediction 

Table 2 shows that our GDRL has significantly improved on 

hestXray-14 and ChestXpert dataset by prediction with group- 

isentangled latent representation compared with the existing 

ethods and other disentangle methods. The blanks in Table 2 are 

ue to the ChestXpert dataset has not yet been published in 2017, 

o it is hard to find the results of these methods on ChestXpert. 

or the ChestXray-14 dataset, the two methods compared were not 

ested on this dataset. 

The proposed network obtains 86.30%, 89.80%, 92.69%, 86.53% 

or Atelectasis, Cardiomegaly, Effusion and Infiltration, being 5.36%, 

2.68%, 6.31% and 13.08% higher than the second-highest achieved 

y CheXNet. Considering the reason for the decline of AUROC in 

redicting Cardiomegaly, we explored the ChestXray-14 and found 

hat there was an extreme imbalance of the label of Cardiomegaly. 

his may be a weakness of interpretable models, making it difficult 

o learn concepts from these imbalanced datasets. 

The accuracy of the proposed network is slightly lower on 

hestXpert than the two latest networks, that is because our 

ethod considers not only the categories of predicted pathology, 

ut also the interpretability of the network. It is useful in promot- 

ng clinicians’ and patients’ confidence and expanding usage of DL 

n automated pathology diagnosis. 

Ablation Experiment To verify the effectiveness of each mod- 

le in the proposed method, we conduct ablation studies on 
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Table 1 

Group-Disentangled representation analysis. For each row of group-disentangled representations to predict each column of thoracic pathologies, we train a 3-layer 

MLP. The numbers in the table represent the AUROC of prediction on test datasets. Diagonals are bolded. 

GDRL Puyol-Anton et al. [6] (partly disentangled) AutoEncoder + PM (without disentangled) 

pathology concepts Atel Card Effu Infi Atel Card Effu Infi Atel Card Effu Infi

Atel ectasis 0.8630 0.4855 0.5094 0.5005 0.6136 0.4960 0.4816 0.5050 0.6076 0.4990 0.4802 0.5297 

Card iomegaly 0.4822 0.8980 0.4836 0.5063 0.5062 0.6610 0.4968 0.4758 0.5067 0.7048 0.5183 0.4864 

Effusion 0.4893 0.5061 0.9269 0.5229 0.5153 0.5038 0.6688 0.5099 0.4884 0.4985 0.7444 0.5292 

Infiltration 0.4986 0.4900 0.4985 0.8653 0.4863 0.5230 0.5315 0.5910 0.4996 0.4955 0.4911 0.6332 

Background 0.4983 0.5200 0.4926 0.4926 - - - - 0.5045 0.5029 0.5087 0.4887 

Table 2 

Comparison Experiments. AUROC of Thoracic Pathologic Prediction by Different 

Methods on ChestXray-14 and ChestXpert. For each label approach, the highest AU- 

ROC scores are boldfaced. ‘-’ means that the method is not evaluated on the data 

set. 

ChestXray-14 ChestXpert 

Atel Card Effu Infi Effu Edema Card 

GDRL 0.8630 0.8980 0.9269 0.8653 0.9 0.9023 0.8871 

Rajpurkar et al. [4] 0.8094 0.9248 0.8638 0.7345 - - - 

Yao et al. [19] 0.772 0.904 0.859 0.695 - - - 

Wang et al. [14] 0.716 0.807 0.784 0.609 - - - 

Ye et al. [20] - - - - 0.9166 0.9436 0.8703 

Pham et al. [21] - - - - 0.964 0.958 0.910 

Table 3 

Ablation and Division Experiments. AUROC of Thoracic Pathologic Prediction by 

GDRL with different structure on ChestXray-14. 

Atel Card Effu Infi

GDRL 0.8630 0.8980 0.9269 0.8653 

L ls + L gs + L pm 0.5780 0.6455 0.7122 0.6047 

L ls + L pm 0.6076 0.7048 0.7444 0.6332 

L ls + L gs + L gcs 0.5065 0.4711 0.5032 0.5289 

Less Background 0.8497 0.8749 0.9013 0.8633 

More Background 0.8263 0.9048 0.8883 0.8445 
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hestXray-14, where performance is listed in Table. As shown in 

able 3 , the AUROC will decrease by a large percentage without 

he help of L csr module, since group-cycle-swap implies that swap- 

ing one attribute does not destroy latent information for other at- 

ributes. If we continue to remove the L sr module, the model will 

egenerate to AutoEncoder+PM, the AUROC increases a little bit in- 

tead, it shows that AE+PM only need to focus on prediction task, 

ut the entangled latent space still leads to poor prediction results. 

If only L p is removed, the AUROC of our model for the binary 

lassification task is close to 50%, which is equivalent to not work- 

ng. In a word, all these characteristics of the proposed method 

hus lead to being more accurate. 

Parameter Setting Experiment As shown in the last two lines 

f Table. 3 , considering that these thoracic pathologies are inde- 

endent of each other, we distribute their corresponding latent 

ubspace with same size. It’s noted that less background of GDRL 

epresents g i = 22 , i = 1 , 2 , 3 , 4 and b = 12 , and more background

epresents g i = 15 , i = 1 , 2 , 3 , 4 and b = 40 . 

As we allocate less (as 12 in our paper) dimensions of latent 

pace to represent background, the AUROC decreases by 1.33%, 

.31%, 2.56% and 0.2% for each pathology. If more (as 40 in our 

aper) latent space are used for background, the AUROC change by 

 percentage of -6.37%, +0.68%, -3.86% and -2.08%. Note that the 

hange of Cardiomegaly is different from other pathologies. After 

xploring the data set, we found that this pathology had a seri- 

us imbalance in the data set, resulting in higher performance than 

sual. To summarize, this experiment shows that equally division 

s the most effective for this task. 
159 
.4. Implement details 

All our experiments were conducted on a server with two Intel 

eon E5-2620 v4 (@2.1GHz) CPUs and 4 NVIDIA GTX1080Ti graphic 

ards. Our experimental codes are mainly based on the PyTorch 

ramework. Our initial learning rate is set as 0.0 0 01, weight decay 

s 0.0 0 01 and the momentum is 0.9. Due to the linear warm up

echanism, the learning rate increases from 1/30 to 0.01 in the 

rst 500 iterations. 

By default, both scalar coefficients λgsm 

and λpm 

are set to 1. All 

he proposed modules are added, and the latent space is equally 

ivided, e.g., if d = 100 , then d i = 20 , i = 1 , 2 , 3 , 4 , and b = 20 . For

omparison purposes, the start positions for concepts are evenly 

istributed, i.e., l 1 = 0 , l 2 = 20 , l 3 = 40 , and l 4 = 60 . 

. Conclusion 

This paper proposes a Group-Disentangled Representation 

earning (GDRL) framework, which completely extracts group- 

isentangled pathology concept representations with fine-grained 

nd non-overlapping features, thus promoting both interpretabil- 

ty and prediction accuracy. GDRL makes the model truly under- 

tand the semantic information of the data. With clinical knowl- 

dge on two samples sharing the identical concept values, an im- 

licit group-swap structure is introduced, which seeks to link low- 

evel visual features with high-level pathology concepts in the la- 

ent space, thus laying an pathology interpretable basis in feature 

xtraction process. According to the experimental results, the fea- 

ure disentangling effect of the model can be improved by intro- 

ucing more constraints to force the information to be retained in 

he corresponding feature groups. In addition, it is worth think- 

ng about how to balance interpretability with the performance of 

ownstream tasks. 
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