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a b s t r a c t 

With the significant power of deep learning architectures, researchers have made much progress on ef- 

fectiveness and efficiency of text detection in the past few years. However, due to the lack of considera- 

tion of unique characteristics of text components, directly applying deep learning models to perform text 

detection task is prone to result in low accuracy, especially producing false positive detection results. To 

ease this problem, we propose a lightweight and context-aware deep convolutional neural network (CNN) 

named as CE-Text, which appropriately encodes multi-level channel attention information to construct 

discriminative feature map for accurate and efficient text detection. To fit with low computation resource 

of embedded systems, we further transform CE-Text into a lighter version with a frequency based deep 

CNN compression method, which expands applicable scenarios of CE-Text into variant embedded systems. 

Experiments on several popular datasets show that CE-Text not only has achieved accurate text detection 

results in scene images, but also could run with fast performance in embedded systems. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Due to the large variations in text and complex backgrounds, 

any deep learning based techniques have been proposed to im- 

rove the accuracy and robustness of text detection. However, 

hese methods greatly suffer from slow optimization and detection 

peed, since each individual component must be trained and pa- 

ameter tuning separately. There exists a trend in directly predict- 

ng word bounding boxes through an lightweight and single neural 

etwork. For example, [1] uses a single fully-convolutional network 

oping with bounding boxes of extreme aspect ratios to perform 

ast text detection [2] . However, such methods generally regard 

ext as one class of objects without involving unique text charac- 

eristics for higher accuracy. Moreover, their proposed method are 

nly deployed and tested on systems with Nvidia Titan GPUs, due 

o their high requirement for computation resource. 

With this context, we build a context-aware and embedded text 

etector named as CE-Text to help detect text in natural scene im- 

ges with high accuracy and efficiency. Fig. 1 shows the workflow 

f CE-Text, where step (a) inputs a natural scene image, step (b) 

epresents a hierarchical channel-wise attention scheme to gener- 

te text context-aware feature map for higher detection accuracy, a 
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E-mail address: shwanhust@zuel.edu.cn (S. Wan) . 

c

s

a

ttps://doi.org/10.1016/j.patrec.2022.05.004 

167-8655/© 2022 Elsevier B.V. All rights reserved. 
ightweight convolutional neural network builded on feature map 

s proposed in (c) to predict multiple bounding boxes and corre- 

ponding text existence probabilities, step (d) presents an embed- 

ed version of text detector constructed by a frequency-based CNN 

ompressing method, and step (e) obtains text detection results 

ith bounding boxes and associated probabilities. Our motivations 

o involve techniques mainly rely on the following two considera- 

ions: 

1) To overcome factors for wrong predictions, it’s essential to 

onstruct highly discriminative features for accurate detection. By 

tacking different layers, a CNN extracts image features through 

 hierarchical representation of visual abstractions. Therefore, fea- 

ures extracted from CNN structure are essentially channel-wise 

nd multi-layer. However, not all the features are equally impor- 

ant and informative for detection of text components. Therefore, 

e propose a hierarchical attention scheme to encode text context- 

ware information, which automatically focuses on text-related 

haracteristics and discriminative feature channels for accurate text 

etection. 

2) The main difficulty to shift deep neural networks to embed- 

ed systems lies in their high request for computational and stor- 

ge intensity. For example, original YOLO is over 230MB in size, 

ontaining 30 layers and 6 . 74 ∗ 10 8 parameters. Running YOLO with 

uch a tremendous number of parameters consumes large storage 

nd computational resources. Due to the nature of local pixel cor- 

https://doi.org/10.1016/j.patrec.2022.05.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2022.05.004&domain=pdf
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Fig. 1. Workflow of the proposed CE-Text. 
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elation in images, i.e. , spatial locality, parameters of channel filters 

n the proposed text detectors or other visual content analysis sys- 

ems tend to be smooth. Therefore, we convert parameters matrix 

nto frequency domain and only utilize their low-frequency parts. 

he embedded version of CE-Text is thus appropriate to apply in 

mbedding systems with low storage and memory size. 

The contributions of this paper are three-fold: 

• We propose a novel deep and context-aware CNN structure for 

text detection, in which a task-specified hierarchical attention 

scheme is adopted to enhance feature representative ability on 

the basis of multi-level and channel-wise context information. 
• A hierarchically channel-wise attention scheme is carefully de- 

signed with channel-wise and multi-layer features, involving 

inherent and unique context characteristics of text components 

for better detection results. 
• CE-Text adopts a novel frequency-based deep compression 

method to build a lightweight and embedded text detector, 

which have properties of highly-representative feature map, fast 

computing speed and small storage size. 

. Related work 

.1. Text detection methods 

We generally category recent methods on text detection as re- 

ression based and segmentation based text detection [3] . Scene 

ext detection have been greatly affected by the thought of directly 

redicting location without proposals and post-processing steps. 

AST [4] propose a simple yet powerful pipeline that yields fast 

nd accurate text detection for words or text lines of arbitrary ori- 

ntations with a single neural network. SegLink [5] first predicts 

ext segments and then links text segments to form text boxes by 

 single and SSD-style network, which has archived impressive re- 

ults on long oriented text in natural scene. 

Inspired by recent progress of fine-level image segmentation, 

ome methods cast text detection as a semantic segmentation 

roblem. For example, [6] adopt a modified FCN to produce mul- 

iple heatmaps corresponding to various properties of text, such 

s text region and orientation. To better separate adjacent text in- 

tances, [7] distinguish each pixel by deep neural networks into 

hree categories: non-text, text border and text [8,9] . Textsnake 

10] further describe a text instance as a sequence of ordered, over- 

apping disks centered at symmetric axes, each of which is asso- 

iated with potentially variable radius and orientation and such 

eometry attributes are estimated via a Fully Convolutional Net- 

ork (FCN) model. Most recently, [11] combine the ideas of the 
78
wo types of methods, i.e. , regression and segmentation based text 

etection, while avoiding their shortcomings [12] . The idea of con- 

tructing natural scene graph is inspired by several works [13] , 

hich are designed to help object detection by bringing knowledge 

bout scene layout or context information. 

.2. Deep compression methods 

Deep neural networks have demonstrated the state-of-the-art 

ower to complete classification or regression tasks. Based on com- 

ression time, we generally category deep compression methods 

nto two groups: compressing during and after training. Compress- 

ng during training methods usually try to compress weights, ac- 

ivations and gradients during training, in order to obtain smaller 

nd faster network. For example, [14] train binarized neural net- 

orks (BNNs) with binary weights and activations at run-time, 

hich achieves a high compression result on multiple datasets. 

Compressing after training methods focuses on the compressing 

ork of already trained network. For example, [15] use low-rank 

ecomposition of the weight matrix to reduce the number of pa- 

ameters. Recently, [16] introduce a three-stage pipeline including 

runing, trained quantization and Huffman coding, to reduce the 

torage requirement of networks without affecting their accuracy. 

ost relevantly, [17] introduce DCT and low-cost hash function to 

andomly group frequency parameters into hash buckets. Due to 

he lack of analysis of sparse property, compression results of this 

pproach could be improved. 

. The proposed method 

In this section, we describe CE-Text by lightweight CNN struc- 

ure design, hierarchical attention scheme and embedded version 

esign with deep compression. 

.1. Lightweight CNN structure design 

Network design of the proposed method is presented in Fig. 2 . 

pecifically, CE-Text would predict locations of N bounding boxes 

representing different text components) inside each grid and the 

orresponding confidence about text existence c. Specifically, we 

efine locations of bounding boxes as B = { x, y, w, h } , where x and

 represent center positions of each box relative to grid boundary, 

nd w and h refer to the predicted width and height of bound- 

ng box relative to the whole input image. Moreover, text existence 

onfidence c is defined as 

 = P (T ) ∗ area (B ) ∩ area (G ) 

area (B ) ∪ area (G ) 
(1) 
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Fig. 2. Network architecture of the proposed CE-Text. 

Fig. 3. Structure of the proposed channel-wise attention module. 
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Table 1 

Construction details for the network of CE-Text, where values of Type, such as 

Block 1, 2 and so on, can be found correspondences in Fig. 3 . 

Name Type Kernel No. Kernel Size Stride Output Size 

Block1 Conv 64 7 ∗7 2 160 ∗160 ∗64 

Pooling 2 ∗2 2 80 ∗80 ∗64 

Conv 192 3 ∗3 1 80 ∗80 ∗192 

Pooling 2 ∗2 2 40 ∗40 ∗192 

Block2 Conv 128 1 ∗1 1 40 ∗40 ∗128 

Conv 256 3 ∗3 1 40 ∗40 ∗256 

Conv 256 1 ∗1 1 40 ∗40 ∗256 

Conv 512 3 ∗3 1 40 ∗40 ∗512 

Pooling 2 ∗4 2,4 20 ∗20 ∗512 

Block3 Conv 256 1 ∗1 1 20 ∗20 ∗256 

Conv 512 3 ∗3 1 20 ∗20 ∗512 

Conv 256 1 ∗1 1 20 ∗20 ∗256 

Conv 512 3 ∗3 1 20 ∗20 ∗512 

Conv 256 1 ∗1 1 20 ∗20 ∗256 

Conv 512 3 ∗3 1 20 ∗20 ∗512 

Conv 256 1 ∗1 1 20 ∗20 ∗256 

Conv 512 3 ∗3 1 20 ∗20 ∗512 

Conv 512 1 ∗1 1 20 ∗20 ∗512 

Conv 1024 3 ∗3 1 20 ∗20 ∗1024 

Pooling 1 ∗2 1,2 20 ∗10 ∗1024 

Block4 Conv 512 1 ∗1 1 20 ∗10 ∗512 

Conv 1024 3 ∗3 1 20 ∗10 ∗1024 

Conv 512 1 ∗1 1 20 ∗10 ∗512 

Conv 1024 3 ∗3 1 20 ∗10 ∗1024 

Conv 1024 3 ∗3 1 20 ∗10 ∗1024 

Conv 1024 3 ∗3 2 10 ∗5 ∗1024 

Conv 1024 3 ∗3 1 10 ∗5 ∗1024 

Conv 1024 3 ∗3 1 10 ∗5 ∗1024 

FC-layer FC 4096 ∗1 ∗1 

FC 10 ∗5 ∗10 
here function area () help calculate areas of predicted bounding 

ox B or ground-truth bounding box G . With such regression strat- 

gy of dividing input images into grids, regression results about 

ext components can be encoded as a W ∗ H ∗ (N ∗ 5) tensor, where 

e set W = 10 , H = 5 and N = 2 by experiments and 5 refers to the

umber of bounding box related elements, i.e., { x, y, w, h, c} . 
To accurately perform regression task for locations and exis- 

ences of text components, we build the proposed lightweight CNN 

tructure on the basis of YOLOv2, which could perform task of ac- 

urate and fast object detection with low computation resource. 

oreover, we try to involve characteristics of text components for 

igher accuracy in text detection.We show construction details of 

he proposed lightweight CNN structure in Table 1 , which consists 

f 24 convolutional layers and 2 fully connected layers. Following 

he block splitting rule represented in VGG16 network, we divide 

onvolutional and pooling layers into four blocks for the purpose 

f constructing hierarchical attention scheme. 

Specifically, we use a reduction layer with 1 ∗1 kernel size to 

ntegrate information of different channels followed by a convo- 

utional layer with 3 ∗3 kernel size to extract feature, rather than 

dopting inception modules used by GoogLeNet. The reason for 

uch design lies in the fact that it could reduce computation cost 

nd keep high capability to extract variety of features during train- 

ng. It’s noted that we adopt two pooling layer with 2 ∗4 and 1 ∗2

ernel size at the end of Block2 and Block3, which originates from 

he fact that text components generally have a large value in ratio 

etween width and height. Therefore, such pooling kernels could 

elp expand receptive field of the proposed CNN network in hori- 

ontal direction, which promotes for accurate detection of relative 

ong text components. We utilize LeakReLU as activation function, 
79 
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hich helps prevent information of output to be eliminated, effi- 

iently updating parameters of neurons. 

.2. Hierarchical attention scheme 

In this subsection, we introduce a channel-wise attention mod- 

le as a lightweight gating mechanism, and it will be further uti- 

ized in a local and global manner to construct the hierarchal at- 

ention model. 

We show the structure of proposed channel-wise attention 

odule in Fig. 3 . Specifically, let’s suppose an input feature map 

 = [ u i ; i = 1 , . . . , c] , where u i represents the i th channel of U and

is the total number of feature channels. Since each of the learned 

onvolutional filters operate with a local receptive field to compute 

eatures and couldn’t exploit contextual information outside of this 

egion, we propose to utilize mean pooling operator to collect the 

ontextual information into a channel descriptor, which could be 

epresented as 

 i = 

1 

W × H 

W ∑ 

j=1 

H ∑ 

k =1 

u i ( j, k ) , (2) 

here W and H are width and height of u i . M consists of m i and

s defined as the channel descriptor. 

As shown in Fig. 3 , the proposed channel-wise attention mod- 

le is composed of two fully-connected layers and two correspond- 

ng nonlinear activation functions: 

 i = Nor(sig(W 2 η(W 1 m i + b 1 ) + b 2 )) , (3) 

here function sig() , Nor() and η() refer to sigmoid, normalization 

nd ReLU functions respectively, W 1 and W 2 are the learnable pa- 

ameter matric, and b 1 and b 2 are the bias vectors. The reason to 

dopt such structure for module constructing lies in two facts, i.e. , 

rstly the designed structure must be capable of learning a highly 

onlinear interaction between channels, and secondly, it must al- 

ow multiple channels to be emphasised opposed to one-hot acti- 

ation. The resulting weight vector { G = g i ; i = 1 , . . . , c } thus leads 

o the attention on informative channel features, where Fig. 3 ex- 

lains how the channel-wise attention module works with 

˜ 
 i = u i � g i (4) 

here � represents the element-wise multiplication. 

To further involve distinguish characteristics of text, we con- 

truct a hierarchical attention scheme, which encodes text context- 

ware information into feature map by building channel-wise at- 

ention modules in both local and global sense. The reason to de- 

ign hierarchical attention scheme lies in the fact that low-level 

nd middle-level visual features could be more informative than 

igh-level visual features for some cases of ambiguous text de- 

ection. Take one of typical low-level features, i.e., texture, as an 

xample, similarity of texture between training and testing text 

omponents could be the most dominated and informative feature 

hannel to accurately locate blur text components. However, the 

ecay effect of gradients and semantic abstraction of higher layers 

n neural network may ignore low-level or middle-level visual fea- 

ures to a certain extent. We thus construct a hierarchical attention 

cheme to emphasize low-level and middle-level visual features to 

utput text context-aware feature map for accurate text detection. 

Specifically, we build local channel-wise attention modules at 

he end of blocks, which could utilize the channel-wise property of 

NN features to automatically focuses on discriminative and repre- 

entative features for text detection in a local sense. Local channel- 

ise attention weights are thus computed based on the lth chan- 

el feature U k,l : 

˜ 
 k,l = U k,l � �(U k,l ) (5) 
80 
here k is the index of block, � represents channel-wise attention 

odule, and � is element-wise multiplication. 

After representing local attention, we first concatenate features 
˜ 
 k,l output by local attention modules and then utilize a channel- 

ise attention module to weight multi-layer CNN features, which 

ould be written as : 

˜ U k = [ ˜ U k,l ] , l = 1 , . . . , c 
ˆ U k = 

˜ U k � �( ˜ U k ) 
(6) 

here function [ ·] represents operation of transforming and con- 

atenating different size of matric into a single vector. Essentially, 

uch global channel-wise attention module utilizes the multi-layer 

roperty of CNN features, in order to emphasize the representa- 

ive ability of low and middle layers of visual cues. Based on text 

ontext-aware feature map, we finally apply average pooling oper- 

tion and fully-connected layers to obtain predictions on text loca- 

ion and existence. 

In inference process, non-maximum suppression is adopted to 

ocate bounding box with the highest text existence confidence, 

hus eliminating other redundant bounding boxes. Widely used in 

dge detection, face detection and so on, non-maximum suppres- 

ion algorithm could solve the problem of a large number of can- 

idates centered at the same target position. 

.3. Embedded version design with deep compression 

In this subsection, we aim to design a novel frequency-based 

NN compression method, which could be applied on CE-Text to 

uild a light scale version for deployment on embedded systems. 

he workflow of the proposed deep compression method is shown 

n Fig. 4 , where (a) refers to the input parameter matrix, (b) use 

CT to transform input matrix into frequency domain, (c) prune 

requency matrix and save it for inference. 

CE-Text network are composed of convolutional layers (COV), 

atch normalization layers (BN) and max-pooling layers (MP). It’s 

oted that parameters in COVs and BNs require training. There- 

ore, the proposed compressing method constructs parameter ma- 

rix based on parameters of COVs and BNs. For each COV, we thus 

perate them by blocks determined as 15 ∗15 by experiments. Since 

ach BN has three parameters, there are only 3 ∗22 = 66 parameters 

n total for all the BNs. We thus use one 15 ∗15 matrix to store the

arameters of BNs. There would be blanks when transforming pa- 

ameters of filters to blocks. We use the mean value of blocks to fill 

p these blanks, since the mean value won’t change the frequency 

istribution. After separating and filling blanks, we could get a pa- 

ameter matrix for each COV and BN by concatenating blocks. The 

arameter matrix is represented as N l , where l represents the in- 

ex of layers varying from 0 to 22. Note that index 0 represents 

he parameter matrix constructed based on parameters of BNs. 

In our compressing method, DCT also suitable to compress ex- 

racted parameter matrix, since the weights in parameter matrices 

re typically smooth and low-frequency caused by the property of 

patial locality of image pixels. Given an input matrix N, the cor- 

esponding frequency matrix M after DCT transforming could be 

ritten as follows: 

 = ANA 

T , where A (i, j) = c(i ) cos [ 
( j + 0 . 5) π

d 
i ] (7)

here d is defined as the length of input matrix N, i and j are 

he row and column index respectively, c(i ) = 

√ 

1 
d 

when i = 0 and

(i ) = 

√ 

2 
d 

when i � = 0 . 

We prune frequency matrices to help save computation and 

torage cost. Essentially, network pruning has been widely stud- 

ed to compress CNN models. The proposed method build on top 

f these approaches. Fig. 4 (a) and (b) show examples of frequency 
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Fig. 4. Workflow of the proposed frequency-based compression method. 
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Table 2 

Performance comparison with comparative text localization 

methods running on embedded systems for ICDAR 2011 

dataset. 

Methods P R F T(s) FPS 

[1] 0.86 0.74 0.80 0.110 9.09 

[18] 0.81 0.61 0.70 0.137 7.30 

[19] 0.76 0.65 0.70 0.148 6.76 

[20] 0.75 0.63 0.68 0.447 2.24 

[21] 0.81 0.66 0.73 3.812 0.26 

[22] 0.86 0.76 0.81 1.502 0.67 

[23] 0.87 0.79 0.83 2.207 0.45 

CE-Text(woA) 0.73 0.72 0.73 0.063 15.87 

CE-Text(wA) 0.76 0.75 0.76 0.065 15.38 

Table 3 

Performance comparison with comparative text localization 

methods running on PC platform for ICDAR 2013 dataset. 

Methods P R F T(s) FPS 

[24] 0.48 0.47 0.47 0.136 7.35 

[1] 0.86 0.74 0.80 0.113 8.85 

[18] 0.80 0.60 0.68 0.132 7.58 

[19] 0.74 0.65 0.69 0.169 5.92 

[20] 0.76 0.62 0.68 0.434 2.30 

[21] 0.81 0.66 0.73 3.705 0.27 

[22] 0.85 0.76 0.80 1.489 0.67 

[23] 0.88 0.78 0.83 2.147 0.47 

CE-Text(woA) 0.73 0.71 0.72 0.064 15.63 

CE-Text(wA) 0.76 0.74 0.75 0.065 15.38 

Table 4 

Performance comparison with comparative text localization 

methods on PC platform for SVT dataset. 

Methods P R F T(s) FPS 

[24] 0.73 0.60 0.66 0.121 8.26 

[1] 0.82 0.72 0.77 0.127 7.87 

[18] 0.76 0.57 0.65 0.141 7.09 

[19] 0.74 0.65 0.69 0.383 2.61 

[20] 0.74 0.60 0.66 0.542 1.85 

[21] 0.78 0.66 0.72 4.570 0.22 

[22] 0.81 0.74 0.77 1.692 0.59 

[23] 0.84 0.76 0.80 2.151 0.46 

CE-Text(woA) 0.71 0.70 0.70 0.067 14.93 

CE-Text(wA) 0.73 0.73 0.73 0.069 14.49 

m

f

a

p

f

s

c  
atrix in spatial and frequency domain, respectively. In the fre- 

uency domain, the upper left part with small indices (i, j) , known 

s low-frequency components, have larger magnitude values than 

ther parts named as high-frequency components. Based on this 

bservation, we could conclude the energy of frequency matrix is 

ominated by low-frequency part. In other words, the upper left 

requency values are more important than other values in con- 

tructing filters of CE-Text. To decrease storage and computation 

ost and maintain detection results for CE-Text, we should prune 

he high-frequency part and retain the low-frequency part. After 

emoving high frequency components with a threshold α to define 

atio of punning areas, we could get pruned and sparse result as 

hown in Fig. 4 (c). 

. Experimental results 

.1. Implementation details 

Experiments are all carried out on a server, which is con- 

gured with Intel Xeon E5-2630v4 CPU (10cores and each with 

.2GHz), 64G memory and 1 piece of NVIDIA Titan X card. Mean- 

hile, we perform all embedded system related experiments on 

n ARM Cortex-A9 (4 cores @ 1.60GHz) Embedded system with 

G RAM. Training for CE-Text is performed by an Adam optimizer 

ith adaptive learning rate, which is settled with an initial learn- 

ng rate 0.001 and batch size 12. Compared to batch gradient de- 

cent method, Adam optimizer has more parameter setting with 

uantity of hyperparameters. However, it could be trained faster 

ith significant convergence speed, which fits with the goal of the 

roposed method. 

.2. Results and analysis 

The quantitative results of the proposed technique and the ex- 

sting techniques are reported for different datasets, namely ICDAR 

011, ICDAR 2013 and SVT, in Tables 2–4 , respectively. The ICDAR 

013 dataset is similar to the ICDAR 2011 dataset and could be 

egarded as an extended version of ICDAR 2011. It is noted from 

he above standard datasets that characters suffer from low reso- 

ution, low contrast, multi-scripts and complex backgrounds. Also, 

he characters of natural scene data suffer from large font size vari- 

tions. Especially, the characters of SVT suffer from severe complex 

ackgrounds containing greenery, buildings, sky, etc. 

In Tables 2–4 , higher performance of CE-Text with attention, 

epresented as CE-Text(wA), than without attention represented as 

E-Text(woA) proves the efficiency and robustness of the designed 

ttention module. Moreover, highly visual resemblance of text and 

on-text components could utilize low-level features, such as edge, 

exture and so on, to assist accurate detection by the proposed hi- 

rarchical structure. It’s also noted that the hierarchical attention 
81 
odule only slightly increase the computation burden to exchange 

or much higher performance in both precision and recall. Above 

ll, the proposed hierarchial attention model boosts the detection 

erformance, which proves the effectiveness of CE-Text(wA). 

We notice that methods generally achieve almost the same per- 

ormance on ICDAR 2011 and ICDAR 2013, since both datasets are 

imilar in contents and difficulties. It’s noted that the large in- 

reases of computation time in [19] , [20] and [21] lie in the fact
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Table 5 

Performance comparison with comparative text localization methods run- 

ning on embedded systems for ICDAR 2013 dataset. 

Methods P R F T(s) FPS Size 

[1] fail fail fail fail fail fail 

[18] fail fail fail fail fail fail 

[19] 0.74 0.65 0.69 0.427 2.34 43MB 

[20] fail fail fail fail fail fail 

[21] fail fail fail fail fail fail 

[23] fail fail fail fail fail fail 

CE-Text( α = 0 . 3 ) 0.75 0.73 0.74 0.531 1.88 147MB 

CE-Text( α = 0 . 4 ) 0.74 0.73 0.73 0.529 1.89 127MB 

CE-Text( α = 0 . 5 ) 0.74 0.72 0.73 0.524 1.91 106MB 

CE-Text( α = 0 . 6 ) 0.68 0.64 0.66 0.521 1.92 86MB 
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hat they are MSER or ER based algorithms to generate text can- 

idates. Complex background streetview images in SVT thus leads 

o a large amount of candidates to classify the existence of text, 

hich increases the computation burden. CE-Text(wA) has almost 

onstant performance on three different datasets to prove its ro- 

ustness to deal with different types of inputting images. 

It can be observed from all tables that Zhang et al. [23] is the

est at both precision and recall compared to the other techniques. 

he same reason for the second best results achieved by Tian et al. 

22] , which utilizes min-cost cut to help accurately locate texts. 

owever, the running time for both methods is much higher than 

egression-based methods, such as TextBox(S), CE-Text etc. The low 

ps speed of Zhang et al. [23] is second smallest among all meth- 

ds, only slightly better than [21] . Such methods are not suitable 

or fast purpose due to high computation time [21] . apply multiple 

rocessing stages to perform text detection task, which is difficult 

n optimization and leads to the largest running time. Compared 

ith these three methods, CE-Text(wA) achieve the highest fps val- 

es and acceptable detections results, which makes it suitable to 

pply for fast applications. 

Among comparative methods, Wang et al. [19] and Li et al. 

20] utilize manually-design features to locate text, which achieve 

horter running time than most of deep neural network based 

ethods. However, they achieve lower performance in precision 

nd recall, due to the lack of powerful and discriminative features 

or detection. Compared with the proposed method, CE-Text(wA) 

utperforms these two methods not only in accuracy, but also in 

unning time, which owes to the high performance of Cuda archi- 

ecture and Titan hardware adopted by CE-Text(wA), complex and 

ndividual steps of Wang et al. [19] and Li et al. [20] with high

ifficulty to optimize, and implementations with Matlab making 

20] difficult to achieve high runtime performance. 

We could notice that Liu et al. [18] and Liao et al. [1] share

he idea of directly utilizing regression for text location with CE- 

ext and have advantages of low computation cost as well. Spe- 

ially, we can notice [18] and [1] have almost the same com- 

utation time, since Textbox(S) is designed on the basis of SSD. 

owever, SSD aims to solve problems of common object detec- 

ion, which achieves lower performance than Textbox(S) and CE- 

ext(wA), due to ignoring special characteristics of texts. Textbox(s) 

chieves higher performance than CE-Text(wA) in precision. Recall 

hat Textbox(s) involves the recognition of words in dictionary to 

elp correct detections, we think it’s fair for CE-Text(wA) to get 

 lower performance. However, Textbox(s) suffers from low recall 

erformance and almost two times larger running time than CE- 

ext(wA). By reducing a large amount of parameters, CE-Text(wA) 

s lighter in size and much faster in speed than Textbox(s), which 

akes it quite suitable to be applied in tasks with high require- 

ents for fast performance. Above all, we could draw a conclusion 

hat under restrictions or scenarios of fast computing, CE-Text(wA) 

s appropriate to be adopted for task of text detection in scene 

mage, since it keeps a reasonable balance between accuracy and 

omputation cost. 

Since the goal of the proposed method is to process each in- 

ut image with real-time feedback, we design the proposed net- 

ork with simple but effective structure. Under such design princi- 

le, we achieve worse performance on SVT dataset on PC platform, 

hich guarantees sufficient computing resources for text detection 

ask. However, the proposed network achieves successful imple- 

entation in embedded system. Meanwhile, most of the compar- 

tive and deep learning based methods fail to be successfully im- 

lemented due to limited computation resource, especially enough 

emory. All these facts can be proved by the results in Table 5 .

xamples of qualitative results of the proposed technique for dif- 

erent datasets are shown in Fig. 5 , where it can be seen that texts

re detected from video, scene images and street view images suc- 
82
essfully. This shows that the proposed technique helps in achiev- 

ng good text detection results. 

.3. Results and analysis with embedded version 

Since ICDAR 2011 and ICDAR 2013 are similar in content and 

VT contains only street view images, we choose ICDAR 2013 to 

erform embedded system experiments, which could reflect the 

erformance of text detection on focused scene and street view 

mages. Table. 5 gives the detailed statics of CE-Text and other 

omparative methods on ICDAR 2013 dataset, where measurement 

ize represents deployment storage size, α refers to the prune ra- 

io and we choose the compression version of CE-Text(wA) as the 

ompared CE-Text. It’s noted that we come across many failure 

ases when transforming comparative methods from Intel version 

o Arm version. However, fail reasons are different from case to 

ase, where Textbox(S) [1] fails due to its publish code is short of 

everal key parts for running on Arm-based system, implementa- 

ions of SSD [1] , Wu et al. [21] and FCN [23] come across the prob-

em of out of memory due to its high request for memory to store 

arameters, and Li et al. [20] fails since its code version is matlab 

hat we can’t transform it to run on Arm-based system success- 

ully. We must point out there are CPU version of SSD to run. To 

eep version same for fairness of comparative studies, we use the 

riginal version of SSD for experiments in Table. 5. 

From Table. 5, we can see Wang et al. [19] keeps almost con- 

tant performance on both GPU and embedded systems, where the 

ncrease in running time can be explained as the difference of CPU 

lock speed of these systems. The reason of Wang et al. [19] to 

etain constance lies in the fact that it simply utilizes one distin- 

uish feature for detection and its procedures are designed with 

ow computation cost for fast purpose. Compared with CE-Text, it 

till suffers from slightly lower performance and the fact, that up- 

er bounder of Wang et al. [19] can’t be easily improved by utiliz- 

ng GPUs or high performance CPUs due to its complex and indi- 

idual steps with high difficulty to optimize. It’s clear from Table. 5 

hat our method suffers from the transformation from GPU to CPU 

rchitecture as well, which results in much higher computing time. 

owever, the proposed method get almost the same running per- 

ormance with Wang et al. [19] due to the compression of CE-Text 

o make it smaller in both storage and memory size. 

It’s noted that we could get different performance, especially 

recision, recall, f-measure and storage size, with different set- 

ings of prune ratio α. Generally speaking, high value of α leads 

o smaller storage size and lower performance of CE-Text. We thus 

eed keep a balance between storage size and runtime perfor- 

ance. Specifically, we could find that CE-Text gets stable per- 

ormance when α increases from 0.3 to 0.5. The performance of 

E-Text drops greatly when α increases from 0.5 to 0.6. The in- 

onsistent performance of CE-Text could be explained by the fact 

hat performance would drop greatly if the proposed compression 

ethod prunes relatively low-frequency part of parameter matrix. 
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Fig. 5. Samples of text detection results achieved by CE-Text on ICDAR 2011, 2013 and SVT datasets. 
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herefore, we settle α = 0 . 5 with 106MB deployment storage size 

or embedded version, which can perform text detection task on 

mbedded systems with high accuracy and running speed. 

. Conclusion and future work 

In this work, we propose a lightweight and context-aware 

eep convolutional neural network (CNN) for text detection. The 

roposed method proposes a hierarchical text attention scheme, 

hich captures context information by constructing multi-level 

hannel attention modules. To fit with low computation resource 

f embedded systems, we further transform CE-Text into a lighter 

ersion with a frequency based deep CNN compression method. 

xperimental results on both workstations and embedded systems 

emonstrate the effectiveness and robustness of CE-Text for text 

ocalization task. 
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