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ABSTRACT

With the significant power of deep learning architectures, researchers have made much progress on ef-
fectiveness and efficiency of text detection in the past few years. However, due to the lack of considera-
tion of unique characteristics of text components, directly applying deep learning models to perform text
detection task is prone to result in low accuracy, especially producing false positive detection results. To
ease this problem, we propose a lightweight and context-aware deep convolutional neural network (CNN)
named as CE-Text, which appropriately encodes multi-level channel attention information to construct
discriminative feature map for accurate and efficient text detection. To fit with low computation resource
of embedded systems, we further transform CE-Text into a lighter version with a frequency based deep
CNN compression method, which expands applicable scenarios of CE-Text into variant embedded systems.
Experiments on several popular datasets show that CE-Text not only has achieved accurate text detection
results in scene images, but also could run with fast performance in embedded systems.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Due to the large variations in text and complex backgrounds,
many deep learning based techniques have been proposed to im-
prove the accuracy and robustness of text detection. However,
these methods greatly suffer from slow optimization and detection
speed, since each individual component must be trained and pa-
rameter tuning separately. There exists a trend in directly predict-
ing word bounding boxes through an lightweight and single neural
network. For example, [1] uses a single fully-convolutional network
coping with bounding boxes of extreme aspect ratios to perform
fast text detection [2]. However, such methods generally regard
text as one class of objects without involving unique text charac-
teristics for higher accuracy. Moreover, their proposed method are
only deployed and tested on systems with Nvidia Titan GPUs, due
to their high requirement for computation resource.

With this context, we build a context-aware and embedded text
detector named as CE-Text to help detect text in natural scene im-
ages with high accuracy and efficiency. Fig. 1 shows the workflow
of CE-Text, where step (a) inputs a natural scene image, step (b)
represents a hierarchical channel-wise attention scheme to gener-
ate text context-aware feature map for higher detection accuracy, a
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lightweight convolutional neural network builded on feature map
is proposed in (c) to predict multiple bounding boxes and corre-
sponding text existence probabilities, step (d) presents an embed-
ded version of text detector constructed by a frequency-based CNN
compressing method, and step (e) obtains text detection results
with bounding boxes and associated probabilities. Our motivations
to involve techniques mainly rely on the following two considera-
tions:

1) To overcome factors for wrong predictions, it’s essential to
construct highly discriminative features for accurate detection. By
stacking different layers, a CNN extracts image features through
a hierarchical representation of visual abstractions. Therefore, fea-
tures extracted from CNN structure are essentially channel-wise
and multi-layer. However, not all the features are equally impor-
tant and informative for detection of text components. Therefore,
we propose a hierarchical attention scheme to encode text context-
aware information, which automatically focuses on text-related
characteristics and discriminative feature channels for accurate text
detection.

2) The main difficulty to shift deep neural networks to embed-
ded systems lies in their high request for computational and stor-
age intensity. For example, original YOLO is over 230MB in size,
containing 30 layers and 6.74 « 108 parameters. Running YOLO with
such a tremendous number of parameters consumes large storage
and computational resources. Due to the nature of local pixel cor-
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Fig. 1. Workflow of the proposed CE-Text.

relation in images, i.e., spatial locality, parameters of channel filters
in the proposed text detectors or other visual content analysis sys-
tems tend to be smooth. Therefore, we convert parameters matrix
into frequency domain and only utilize their low-frequency parts.
The embedded version of CE-Text is thus appropriate to apply in
embedding systems with low storage and memory size.

The contributions of this paper are three-fold:

» We propose a novel deep and context-aware CNN structure for
text detection, in which a task-specified hierarchical attention
scheme is adopted to enhance feature representative ability on
the basis of multi-level and channel-wise context information.
A hierarchically channel-wise attention scheme is carefully de-
signed with channel-wise and multi-layer features, involving
inherent and unique context characteristics of text components
for better detection results.

o CE-Text adopts a novel frequency-based deep compression
method to build a lightweight and embedded text detector,
which have properties of highly-representative feature map, fast
computing speed and small storage size.

2. Related work
2.1. Text detection methods

We generally category recent methods on text detection as re-
gression based and segmentation based text detection [3]. Scene
text detection have been greatly affected by the thought of directly
predicting location without proposals and post-processing steps.
EAST [4] propose a simple yet powerful pipeline that yields fast
and accurate text detection for words or text lines of arbitrary ori-
entations with a single neural network. SegLink [5] first predicts
text segments and then links text segments to form text boxes by
a single and SSD-style network, which has archived impressive re-
sults on long oriented text in natural scene.

Inspired by recent progress of fine-level image segmentation,
some methods cast text detection as a semantic segmentation
problem. For example, [6] adopt a modified FCN to produce mul-
tiple heatmaps corresponding to various properties of text, such
as text region and orientation. To better separate adjacent text in-
stances, [7] distinguish each pixel by deep neural networks into
three categories: non-text, text border and text [8,9]. Textsnake
[10] further describe a text instance as a sequence of ordered, over-
lapping disks centered at symmetric axes, each of which is asso-
ciated with potentially variable radius and orientation and such
geometry attributes are estimated via a Fully Convolutional Net-
work (FCN) model. Most recently, [11] combine the ideas of the
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two types of methods, i.e., regression and segmentation based text
detection, while avoiding their shortcomings [12]. The idea of con-
structing natural scene graph is inspired by several works [13],
which are designed to help object detection by bringing knowledge
about scene layout or context information.

2.2. Deep compression methods

Deep neural networks have demonstrated the state-of-the-art
power to complete classification or regression tasks. Based on com-
pression time, we generally category deep compression methods
into two groups: compressing during and after training. Compress-
ing during training methods usually try to compress weights, ac-
tivations and gradients during training, in order to obtain smaller
and faster network. For example, [14] train binarized neural net-
works (BNNs) with binary weights and activations at run-time,
which achieves a high compression result on multiple datasets.

Compressing after training methods focuses on the compressing
work of already trained network. For example, [15] use low-rank
decomposition of the weight matrix to reduce the number of pa-
rameters. Recently, [16] introduce a three-stage pipeline including
pruning, trained quantization and Huffman coding, to reduce the
storage requirement of networks without affecting their accuracy.
Most relevantly, [17] introduce DCT and low-cost hash function to
randomly group frequency parameters into hash buckets. Due to
the lack of analysis of sparse property, compression results of this
approach could be improved.

3. The proposed method

In this section, we describe CE-Text by lightweight CNN struc-
ture design, hierarchical attention scheme and embedded version
design with deep compression.

3.1. Lightweight CNN structure design

Network design of the proposed method is presented in Fig. 2.
Specifically, CE-Text would predict locations of N bounding boxes
(representing different text components) inside each grid and the
corresponding confidence about text existence c. Specifically, we
define locations of bounding boxes as B = {x,y, w, h}, where x and
y represent center positions of each box relative to grid boundary,
and w and h refer to the predicted width and height of bound-
ing box relative to the whole input image. Moreover, text existence
confidence c is defined as
area(B) N area(G)

=P trea®) Uarea(©)

(1)
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Fig. 2. Network architecture of the proposed CE-Text.
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Fig. 3. Structure of the proposed channel-wise attention module.

where function area() help calculate areas of predicted bounding
box B or ground-truth bounding box G. With such regression strat-
egy of dividing input images into grids, regression results about
text components can be encoded as a W = H x (N = 5) tensor, where

Table 1
Construction details for the network of CE-Text, where values of Type, such as
Block 1, 2 and so on, can be found correspondences in Fig. 3.

we set W = 10, H = 5 and N = 2 by experiments and 5 refers to the Name Type Kernel No.  Kernel Size  Stride  Output Size
number of bounding box related elements, i.e., {x,y, w, h, c}. Block1 Conv 64 77 2 160*160+64
To accurately perform regression task for locations and exis- Pooling 2 2 8078064
tences of text components, we build the proposed lightweight CNN gggl‘;ng 192 ;; ; ig*ig*}gg
structure on the basis of YOLOv2, which could perform task of ac- Block2 Conv 128 141 1 40740128
curate and fast object detection with low computation resource. Conv 256 33 1 40+40%256
Moreover, we try to involve characteristics of text components for Conv 256 11 1 407407256
higher accuracy in text detection.We show construction details of Conv >12 33 ! 407407512
. . . . . Pooling 2*4 2,4 20%20*512
the proposed lightweight CNN structure in Table 1, which consists Block3 Conv 256 141 1 2020256
of 24 convolutional layers and 2 fully connected layers. Following Conv 512 3+3 1 2020*512
the block splitting rule represented in VGG16 network, we divide Conv 256 11 1 20%20%256
convolutional and pooling layers into four blocks for the purpose Conv o512 33 1 20720512
of const.ructing hierarchical atteqtion schemg. . Egﬁz :?g ;; } ;gégé?g
Specifically, we use a reduction layer with 1*1 kernel size to Conv 256 1%1 1 20420256
integrate information of different channels followed by a convo- Conv 512 33 1 20720%512
lutional layer with 3*3 Kernel size to extract feature, rather than Conv 512 11 1 207207512
adopting inception modules used by GoogLeNet. The reason for ISO“IY 1024 ?; }2 ;gi?g:gzj
such design lies in the fact that it could reduce computation cost Block4 Cgﬁ\:ng 512 141 1 2010512
and keep high capability to extract variety of features during train- Conv 1024 3+3 1 204101024
ing. It's noted that we adopt two pooling layer with 2*4 and 1*2 Conv 512 11 1 20710512
kernel size at the end of Block2 and Block3, which originates from Conv 1024 33 1 207101024
the fact that text components generally have a large value in ratio EEEX }ggj 3; ; fg*;?:(])gi‘l
between width and height. Therefore, such pooling kernels could Conv 1024 3+3 1 1051024
help expand receptive field of the proposed CNN network in hori- Conv 1024 3+3 1 10*5*1024
zontal direction, which promotes for accurate detection of relative FC-layer lF:E ‘118956*11(*)1

long text components. We utilize LeakReLU as activation function,
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which helps prevent information of output to be eliminated, effi-
ciently updating parameters of neurons.

3.2. Hierarchical attention scheme

In this subsection, we introduce a channel-wise attention mod-
ule as a lightweight gating mechanism, and it will be further uti-
lized in a local and global manner to construct the hierarchal at-
tention model.

We show the structure of proposed channel-wise attention
module in Fig. 3. Specifically, let's suppose an input feature map
U=[u;i=1,...,c|, where u; represents the ith channel of U and
c is the total number of feature channels. Since each of the learned
convolutional filters operate with a local receptive field to compute
features and couldn’t exploit contextual information outside of this
region, we propose to utilize mean pooling operator to collect the
contextual information into a channel descriptor, which could be
represented as

1 W H
m; = Wx<H Zzui(ja k),

j=1 k=1

(2)

where W and H are width and height of u;. M consists of m; and
is defined as the channel descriptor.

As shown in Fig. 3, the proposed channel-wise attention mod-
ule is composed of two fully-connected layers and two correspond-
ing nonlinear activation functions:

g = Nor(sigWon(Wim; 4+ by) + b)), (3)

where function sig(), Nor() and () refer to sigmoid, normalization
and ReLU functions respectively, W; and W, are the learnable pa-
rameter matric, and b; and b, are the bias vectors. The reason to
adopt such structure for module constructing lies in two facts, i.e.,
firstly the designed structure must be capable of learning a highly
nonlinear interaction between channels, and secondly, it must al-
low multiple channels to be emphasised opposed to one-hot acti-
vation. The resulting weight vector {G=g;;i=1,...,c} thus leads
to the attention on informative channel features, where Fig. 3 ex-
plains how the channel-wise attention module works with

(4)

L=uQ®g

where ® represents the element-wise multiplication.

To further involve distinguish characteristics of text, we con-
struct a hierarchical attention scheme, which encodes text context-
aware information into feature map by building channel-wise at-
tention modules in both local and global sense. The reason to de-
sign hierarchical attention scheme lies in the fact that low-level
and middle-level visual features could be more informative than
high-level visual features for some cases of ambiguous text de-
tection. Take one of typical low-level features, i.e., texture, as an
example, similarity of texture between training and testing text
components could be the most dominated and informative feature
channel to accurately locate blur text components. However, the
decay effect of gradients and semantic abstraction of higher layers
in neural network may ignore low-level or middle-level visual fea-
tures to a certain extent. We thus construct a hierarchical attention
scheme to emphasize low-level and middle-level visual features to
output text context-aware feature map for accurate text detection.

Specifically, we build local channel-wise attention modules at
the end of blocks, which could utilize the channel-wise property of
CNN features to automatically focuses on discriminative and repre-
sentative features for text detection in a local sense. Local channel-
wise attention weights are thus computed based on the [th chan-
nel feature Uy ;:

Uy = Uy ® ®(Uy)) (5)
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where k is the index of block, ® represents channel-wise attention
module, and ® is element-wise multiplication.

After representing local attention, we first concatenate features
UL,, output by local attention modules and then utilize a channel-
wise attention module to weight multi-layer CNN features, which
could be written as :

l{k:[yk’l],lz;l,...,c (6)

U = Uy ® ©(Uy)
where function [-] represents operation of transforming and con-
catenating different size of matric into a single vector. Essentially,
such global channel-wise attention module utilizes the multi-layer
property of CNN features, in order to emphasize the representa-
tive ability of low and middle layers of visual cues. Based on text
context-aware feature map, we finally apply average pooling oper-
ation and fully-connected layers to obtain predictions on text loca-
tion and existence.

In inference process, non-maximum suppression is adopted to
locate bounding box with the highest text existence confidence,
thus eliminating other redundant bounding boxes. Widely used in
edge detection, face detection and so on, non-maximum suppres-
sion algorithm could solve the problem of a large number of can-
didates centered at the same target position.

3.3. Embedded version design with deep compression

In this subsection, we aim to design a novel frequency-based
CNN compression method, which could be applied on CE-Text to
build a light scale version for deployment on embedded systems.
The workflow of the proposed deep compression method is shown
in Fig. 4, where (a) refers to the input parameter matrix, (b) use
DCT to transform input matrix into frequency domain, (c) prune
frequency matrix and save it for inference.

CE-Text network are composed of convolutional layers (COV),
batch normalization layers (BN) and max-pooling layers (MP). It's
noted that parameters in COVs and BNs require training. There-
fore, the proposed compressing method constructs parameter ma-
trix based on parameters of COVs and BNs. For each COV, we thus
sperate them by blocks determined as 15*15 by experiments. Since
each BN has three parameters, there are only 3*22=66 parameters
in total for all the BNs. We thus use one 15*15 matrix to store the
parameters of BNs. There would be blanks when transforming pa-
rameters of filters to blocks. We use the mean value of blocks to fill
up these blanks, since the mean value won'’t change the frequency
distribution. After separating and filling blanks, we could get a pa-
rameter matrix for each COV and BN by concatenating blocks. The
parameter matrix is represented as N;, where | represents the in-
dex of layers varying from O to 22. Note that index O represents
the parameter matrix constructed based on parameters of BNs.

In our compressing method, DCT also suitable to compress ex-
tracted parameter matrix, since the weights in parameter matrices
are typically smooth and low-frequency caused by the property of
spatial locality of image pixels. Given an input matrix N, the cor-
responding frequency matrix M after DCT transforming could be
written as follows:

(j+0.5)r.
Tl] (7

where d is defined as the length of input matrix N, i and j are

M = ANAT, where A(i, j) = c(i) cos|

the row and column index respectively, c(i) = \/g when i = 0 and

c(i) = \/% when i # 0.

We prune frequency matrices to help save computation and
storage cost. Essentially, network pruning has been widely stud-
ied to compress CNN models. The proposed method build on top
of these approaches. Fig. 4 (a) and (b) show examples of frequency
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(a). Input Parameter Matrix

(b). Frequency Matrix

(¢). Pruning

Fig. 4. Workflow of the proposed frequency-based compression method.

matrix in spatial and frequency domain, respectively. In the fre-
quency domain, the upper left part with small indices (i, j), known
as low-frequency components, have larger magnitude values than
other parts named as high-frequency components. Based on this
observation, we could conclude the energy of frequency matrix is
dominated by low-frequency part. In other words, the upper left
frequency values are more important than other values in con-
structing filters of CE-Text. To decrease storage and computation
cost and maintain detection results for CE-Text, we should prune
the high-frequency part and retain the low-frequency part. After
removing high frequency components with a threshold « to define
ratio of punning areas, we could get pruned and sparse result as
shown in Fig. 4 (c).

4. Experimental results
4.1. Implementation details

Experiments are all carried out on a server, which is con-
figured with Intel Xeon E5-2630v4 CPU (10cores and each with
2.2GHz), 64G memory and 1 piece of NVIDIA Titan X card. Mean-
while, we perform all embedded system related experiments on
an ARM Cortex-A9 (4 cores @ 1.60GHz) Embedded system with
2G RAM. Training for CE-Text is performed by an Adam optimizer
with adaptive learning rate, which is settled with an initial learn-
ing rate 0.001 and batch size 12. Compared to batch gradient de-
scent method, Adam optimizer has more parameter setting with
quantity of hyperparameters. However, it could be trained faster
with significant convergence speed, which fits with the goal of the
proposed method.

4.2. Results and analysis

The quantitative results of the proposed technique and the ex-
isting techniques are reported for different datasets, namely ICDAR
2011, ICDAR 2013 and SVT, inTables 2-4, respectively. The ICDAR
2013 dataset is similar to the ICDAR 2011 dataset and could be
regarded as an extended version of ICDAR 2011. It is noted from
the above standard datasets that characters suffer from low reso-
lution, low contrast, multi-scripts and complex backgrounds. Also,
the characters of natural scene data suffer from large font size vari-
ations. Especially, the characters of SVT suffer from severe complex
backgrounds containing greenery, buildings, sky, etc.

In Tables 2-4, higher performance of CE-Text with attention,
represented as CE-Text(wA), than without attention represented as
CE-Text(woA) proves the efficiency and robustness of the designed
attention module. Moreover, highly visual resemblance of text and
non-text components could utilize low-level features, such as edge,
texture and so on, to assist accurate detection by the proposed hi-
erarchical structure. It’s also noted that the hierarchical attention
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Table 2
Performance comparison with comparative text localization
methods running on embedded systems for ICDAR 2011

dataset.

Methods P R F T(s) FPS
[1] 086 074 080 0.110 9.09
[18] 0.81 0.61 070 0137 730
[19] 076 065 070 0.148 6.76
[20] 075 063 068 0447 224
[21] 0.81 066 073 3.812 026
[22] 086 0.76 0.81 1.502 0.67
[23] 087 079 083 2207 045
CE-Text(woA) 073 0.72 0.73 0.063 15.87
CE-Text(wA) 076 075 076 0.065 1538

Table 3
Performance comparison with comparative text localization
methods running on PC platform for ICDAR 2013 dataset.

Methods P R F T(s) FPS
[24] 048 047 047 0.136 735
[1] 086 074 080 0.113 8.85
[18] 080 060 068 0.132 7.8
[19] 074 065 069 0.169 592
[20] 076 062 068 0434 230
[21] 0.81 0.66 073 3.705 0.27
[22] 085 076 0.80 1489 0.67
[23] 0.88 078 083 2147 047
CE-Text(woA) 0.73  0.71 072 0.064 15.63
CE-Text(wA) 076 074 0.75 0.065 15.38

Table 4
Performance comparison with comparative text localization
methods on PC platform for SVT dataset.

Methods P R F T(s) FPS
[24] 073 060 066 0.121 8.26
[1] 0.82 0.72 0.77 0.127 7.87
[18] 0.76 057 0.65 0.141 7.09
[19] 074 065 069 0383 261
[20] 074 060 066 0.542 1.85
[21] 078 066 072 4570 0.22
[22] 0.81 074 077 1.692 059
[23] 084 076 080 2.151 0.46
CE-Text(woA)  0.71 070 070 0.067 14.93
CE-Text(wA) 073 073 073 0.069 14.49

module only slightly increase the computation burden to exchange
for much higher performance in both precision and recall. Above
all, the proposed hierarchial attention model boosts the detection
performance, which proves the effectiveness of CE-Text(wA).

We notice that methods generally achieve almost the same per-
formance on ICDAR 2011 and ICDAR 2013, since both datasets are
similar in contents and difficulties. It’s noted that the large in-
creases of computation time in [19], [20] and [21] lie in the fact
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that they are MSER or ER based algorithms to generate text can-
didates. Complex background streetview images in SVT thus leads
to a large amount of candidates to classify the existence of text,
which increases the computation burden. CE-Text(wA) has almost
constant performance on three different datasets to prove its ro-
bustness to deal with different types of inputting images.

It can be observed from all tables that Zhang et al. [23] is the
best at both precision and recall compared to the other techniques.
The same reason for the second best results achieved by Tian et al.
[22], which utilizes min-cost cut to help accurately locate texts.
However, the running time for both methods is much higher than
regression-based methods, such as TextBox(S), CE-Text etc. The low
fps speed of Zhang et al. [23] is second smallest among all meth-
ods, only slightly better than [21]. Such methods are not suitable
for fast purpose due to high computation time[21]. apply multiple
processing stages to perform text detection task, which is difficult
in optimization and leads to the largest running time. Compared
with these three methods, CE-Text(wA) achieve the highest fps val-
ues and acceptable detections results, which makes it suitable to
apply for fast applications.

Among comparative methods, Wang et al. [19] and Li et al
[20] utilize manually-design features to locate text, which achieve
shorter running time than most of deep neural network based
methods. However, they achieve lower performance in precision
and recall, due to the lack of powerful and discriminative features
for detection. Compared with the proposed method, CE-Text(wA)
outperforms these two methods not only in accuracy, but also in
running time, which owes to the high performance of Cuda archi-
tecture and Titan hardware adopted by CE-Text(wA), complex and
individual steps of Wang et al. [19] and Li et al. [20] with high
difficulty to optimize, and implementations with Matlab making
[20] difficult to achieve high runtime performance.

We could notice that Liu et al. [18] and Liao et al. [1] share
the idea of directly utilizing regression for text location with CE-
Text and have advantages of low computation cost as well. Spe-
cially, we can notice [18] and [1] have almost the same com-
putation time, since Textbox(S) is designed on the basis of SSD.
However, SSD aims to solve problems of common object detec-
tion, which achieves lower performance than Textbox(S) and CE-
Text(wA), due to ignoring special characteristics of texts. Textbox(s)
achieves higher performance than CE-Text(wA) in precision. Recall
that Textbox(s) involves the recognition of words in dictionary to
help correct detections, we think it’s fair for CE-Text(wA) to get
a lower performance. However, Textbox(s) suffers from low recall
performance and almost two times larger running time than CE-
Text(wA). By reducing a large amount of parameters, CE-Text(wA)
is lighter in size and much faster in speed than Textbox(s), which
makes it quite suitable to be applied in tasks with high require-
ments for fast performance. Above all, we could draw a conclusion
that under restrictions or scenarios of fast computing, CE-Text(wA)
is appropriate to be adopted for task of text detection in scene
image, since it keeps a reasonable balance between accuracy and
computation cost.

Since the goal of the proposed method is to process each in-
put image with real-time feedback, we design the proposed net-
work with simple but effective structure. Under such design princi-
ple, we achieve worse performance on SVT dataset on PC platform,
which guarantees sufficient computing resources for text detection
task. However, the proposed network achieves successful imple-
mentation in embedded system. Meanwhile, most of the compar-
ative and deep learning based methods fail to be successfully im-
plemented due to limited computation resource, especially enough
memory. All these facts can be proved by the results in Table 5.
Examples of qualitative results of the proposed technique for dif-
ferent datasets are shown in Fig. 5, where it can be seen that texts
are detected from video, scene images and street view images suc-
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Table 5
Performance comparison with comparative text localization methods run-
ning on embedded systems for I[CDAR 2013 dataset.

Methods P R F T(s) FPS Size
[1] fail fail fail fail fail fail
[18] fail fail fail fail fail fail
[19] 0.74 0.65 0.69 0.427 234 43MB
[20] fail fail fail fail fail fail
[21] fail fail fail fail fail fail
[23] fail fail fail fail fail fail
CE-Text(a = 0.3) 0.75 0.73 0.74 0.531 1.88 147MB
CE-Text(a = 0.4) 0.74 0.73 0.73 0.529 1.89 127MB
CE-Text(a = 0.5) 0.74 0.72 0.73 0.524 1.91 106MB
CE-Text(a = 0.6) 0.68 0.64 0.66 0.521 1.92 86MB

cessfully. This shows that the proposed technique helps in achiev-
ing good text detection results.

4.3. Results and analysis with embedded version

Since ICDAR 2011 and ICDAR 2013 are similar in content and
SVT contains only street view images, we choose ICDAR 2013 to
perform embedded system experiments, which could reflect the
performance of text detection on focused scene and street view
images. Table. 5 gives the detailed statics of CE-Text and other
comparative methods on ICDAR 2013 dataset, where measurement
Size represents deployment storage size, « refers to the prune ra-
tio and we choose the compression version of CE-Text(wA) as the
compared CE-Text. It's noted that we come across many failure
cases when transforming comparative methods from Intel version
to Arm version. However, fail reasons are different from case to
case, where Textbox(S) [1] fails due to its publish code is short of
several key parts for running on Arm-based system, implementa-
tions of SSD [1], Wu et al. [21] and FCN [23] come across the prob-
lem of out of memory due to its high request for memory to store
parameters, and Li et al. [20] fails since its code version is matlab
that we can’t transform it to run on Arm-based system success-
fully. We must point out there are CPU version of SSD to run. To
keep version same for fairness of comparative studies, we use the
original version of SSD for experiments in Table. 5.

From Table. 5, we can see Wang et al. [19] keeps almost con-
stant performance on both GPU and embedded systems, where the
increase in running time can be explained as the difference of CPU
clock speed of these systems. The reason of Wang et al. [19] to
retain constance lies in the fact that it simply utilizes one distin-
guish feature for detection and its procedures are designed with
low computation cost for fast purpose. Compared with CE-Text, it
still suffers from slightly lower performance and the fact, that up-
per bounder of Wang et al. [19] can’t be easily improved by utiliz-
ing GPUs or high performance CPUs due to its complex and indi-
vidual steps with high difficulty to optimize. It's clear from Table. 5
that our method suffers from the transformation from GPU to CPU
architecture as well, which results in much higher computing time.
However, the proposed method get almost the same running per-
formance with Wang et al. [19] due to the compression of CE-Text
to make it smaller in both storage and memory size.

It's noted that we could get different performance, especially
precision, recall, f-measure and storage size, with different set-
tings of prune ratio «. Generally speaking, high value of « leads
to smaller storage size and lower performance of CE-Text. We thus
need keep a balance between storage size and runtime perfor-
mance. Specifically, we could find that CE-Text gets stable per-
formance when o increases from 0.3 to 0.5. The performance of
CE-Text drops greatly when « increases from 0.5 to 0.6. The in-
consistent performance of CE-Text could be explained by the fact
that performance would drop greatly if the proposed compression
method prunes relatively low-frequency part of parameter matrix.
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Fig. 5. Samples of text detection results achieved by CE-Text on ICDAR 2011, 2013 and SVT datasets.

Therefore, we settle « = 0.5 with 106MB deployment storage size
for embedded version, which can perform text detection task on
embedded systems with high accuracy and running speed.

5. Conclusion and future work

In this work, we propose a lightweight and context-aware
deep convolutional neural network (CNN) for text detection. The
proposed method proposes a hierarchical text attention scheme,
which captures context information by constructing multi-level
channel attention modules. To fit with low computation resource
of embedded systems, we further transform CE-Text into a lighter
version with a frequency based deep CNN compression method.
Experimental results on both workstations and embedded systems
demonstrate the effectiveness and robustness of CE-Text for text
localization task.
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