
Pattern Recognition 129 (2022) 108704

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

A novel forget-update module for few-shot domain generalization

Minglei Yuan

a , Chunhao Cai a , Tong Lu

a , ∗, Yirui Wu

b , Qian Xu

a , Shijie Zhou

c

a National Key Lab for Novel Software Technology, Nanjing University, Nanjing, China
b College of Computer and Information, Hohai University, Nanjing, China
c Jiangsu Welm Technology Co. Ltd, Nantong, China

a r t i c l e i n f o

Article history:

Received 13 October 2020

Revised 31 March 2022

Accepted 7 April 2022

Available online 12 April 2022

Keywords:

Few-shot classification

Domain adaptation

Few-shot domain generalization

a b s t r a c t

Existing Few-Shot Learning (FSL) methods learn and recognize new classes with the help of prior knowl-

edge. However, they cannot handle this task well in a cross-domain scenario when training and testing

sets are from different domains, since the fact that prior knowledge in different domains often varies

greatly. To solve this problem, in this paper, we propose a few-shot domain generalization method, which

is designed to extract relationship embeddings using Forget-Update Modules named FUM . The relation-

ship embedding considers valuable relational information between samples in a specific task, and the

forget-update module takes into account differences between domains and adjusts the distribution of re-

lational embeddings through forgetting and updating mechanisms based on specific tasks. To evaluate

the few-shot domain generalization ability of FUM, extensive experiments on eight cross-domain sce-

narios and six same-domain scenarios are conducted, and the results show that FUM achieves superior

performances compared to recent few-shot learning methods. Visualization results also show that the dis-

tribution of the relationship embeddings extracted by FUM has stronger few-shot domain generalization

ability than the feature embeddings used in the existing FSL methods.

© 2022 Elsevier Ltd. All rights reserved.

1

s

m

s

s

a

m

c

H

f

[

l

h

r

s

a

f

S

d

d

s

d

t

f

s

s

d

t

p

C

[

I

G

t

s

l

p

e

h

0

. Introduction

Many deep learning models [1–4] have achieved remarkable re-

ults on object recognition tasks. These powerful deep learning

ethods heavily rely on deep neural networks trained with thou-

ands of label instances. However, a large scarcity of labeled in-

tances requires huge manual work, which is a time-consuming

nd annoying task and limits working scenarios of deep learning

ethods. Most of these popular deep learning models will en-

ounter the overfitting problem when the training data is limited.

owever, people can often successfully generalize new concepts

rom just a single example by action, imagination, and explanation

5] . The problem of learning to generalize to new classes with a

imited number of label examples, called few-shot learning (FSL),

as attracted considerable attention in the past few years. Recently,

esearch on FSL begin to appear in many areas, such as image clas-

ification [6–10] , gesture recognition [11] , activity recognition [12] ,

nd logo retrieval [13] .

Many FSL methods have been proposed to learn new trans-

ormable visual concepts with limited samples in recent years.

ome FSL methods are often trained and evaluated on the same
∗ Corresponding author.

E-mail address: lutong@nju.edu.cn (T. Lu) .

c

u

u

m

ttps://doi.org/10.1016/j.patcog.2022.108704

031-3203/© 2022 Elsevier Ltd. All rights reserved.
ataset, where the basic and novel classes are from the same

omain (e.g., generic object recognition tasks). However, in real

cenarios, training and testing sets may not belong to the same

omain, such as the recently proposed evaluation setup [14] that

he training set is from mini Imagenet [6] , while the testing set is

rom CUB [15] . Fig. 1 shows some samples from both datasets. The

ource domain (mini Imagenet) contains pianos, dogs, steamships,

hoes, and pencil-cases, while the target domain (CUB) contains

ifferent species of birds. In this case, the distributions of the

raining set and the testing set are significantly different, and the

rior knowledge learned from mini Imagenet degrades on CUB.

hen et al. [14] reports that the recently proposed FSL methods

6–10,14] fail to deal with such domain generalization problem.

n this paper, we refer to such a problem as Few-shot Domain

eneralization problem . Some research fields are closely related

o few-shot domain generalization. Table 1 introduces the relation-

hip between few-shot domain generalization and some related

earning paradigms.

To solve the few-shot domain generalization problem, we pro-

ose to infer categories of samples by extracting the relationship

mbedding with Forget-Update Module (FUM), which includes a

hannel vector sequence construction module and several forget-

pdate modules. Channel vector sequence construction module is

sed to construct the relational information, and the forget-update

odules are used to extract the relationship embeddings of

https://doi.org/10.1016/j.patcog.2022.108704
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108704&domain=pdf
mailto:lutong@nju.edu.cn
https://doi.org/10.1016/j.patcog.2022.108704

M. Yuan, C. Cai, T. Lu et al. Pattern Recognition 129 (2022) 108704

Fig. 1. Illustration for the task setting of few-shot domain generalization.

Table 1

Comparison between few-shot domain generalization and some related learning paradigms. The ”FEW” column indicates whether the learning

paradigm learns a model with few samples. D src and D tar denote the source domain set and the target domain set, while Y src and Y tar denote the

source label set and the target label set. P(·) represents a distribution function.

Learning paradigm Training data Test data FEW Condition

Few-shot domain generalization D src D tar Yes P(D src) � = P(D tar) , Y src � = Y tar

Few-shot learning D src D tar Yes D src and D tar have similar data distribution but disjoint label space

Domain adaptation D src , D tar D tar No P(D src) � = P(D tar) , Y src = Y tar

Domain generalization D src D tar No P(D src) � = P(D tar) , Y src = Y tar

Fig. 2. Visualization of embedded features by t-SNE [16] . We use mini Imagenet to train different models and use these models to classify samples on the CUB dataset.

Fig. 2 (a)–(c) show the visualization of the embedded features generated by the different models on five types of CUB samples with t-SNE [16] . The color of the dots represents

the category, and the distance between the dots represents the similarity.

c

s

F

e

w

c

e

e

a

e

r

m

t

s

c

C

r

s

o

t

d

s

t

m

f

t

u

r

t

e

i

q

q

a

a

m

j

t

a

g

r

p

t

c

T

n

t

m

d

t

t

e

t

t

s

hannel vector sequence. The proposed method classifies few-shot

amples based on the distribution of relationship embeddings.

ig. 2 (b) and (c) show the distributions of feature embedding

xtracted by FEAT [10] and ProtoNet [8] , respectively, from which

e find that there are no clear boundaries between different

ategories. Fig. 2 (a) shows the distribution of the relationship

mbeddings extracted by FUM. It can be seen that the relationship

mbeddings of FUM are more closely distributed within classes

nd more distantly distributed between classes than feature

mbeddings of FEAT and ProtoNet. Therefore, we can say that

elationship embeddings processed by forgetting and updating

echanisms have better few-shot domain generalization ability

han feature embeddings of FEAT and ProtoNet.

In an FSL classification task, the predicted category of a query

ample is affected by samples in the support set. The motivation of

hannel vector sequence is to obtain the relationship embeddings.

hannel vector sequence presents a simple method to exploit the

elated information of the support sample and a query sample by

titching their features in channel order. Relationship embeddings

f a channel vector sequence is then extracted in conjunction with

he forget-update module proposed in §3.3 . Relationship embed-

ings can be used to obtain classification results in cross-domain

cenarios and the same-domain scenarios.

The motivation of the proposed forget-update module is illus-

rated in Fig. 3 . Since some distinguishing features in one task

ay be invalid in another task due to domain shift, the proposed

orget-update module is designed to alleviate domain shifts be-

ween training and test datasets in FSL scenarios by learning to

pdate and forget. In addition, forget-update modules extract the
2
elationship embeddings of channel vector sequence containing

he general relationship of a support set and a query sample. For

ach episode, we first construct a channel vector sequence, which

mplies the related information of the supporting samples and a

uery sample. Then we extract information of channel vector se-

uence using a series of proposed forget-update modules, which

re designed to improve the discrimination by learning to forget

nd generate new features based on each task. The forget-update

odule takes into account differences between domains and ad-

usts the distribution of relational embeddings through a forget-

ing and updating mechanism based on specified tasks. In detail,

 forget-update module is a task-based module that contains for-

etting parts and updating parts. The forgetting part calculates the

etaining ratios for the input features via the forgetting block. The

artially retained features are concatenated with the newly ex-

racted features obtained by the updating part. Finally, the con-

atenated result is used as input for the next forget-update step.

his circular process realizes the forgetting and updating of chan-

el vector sequence in the feature extraction process. Through con-

inuously forgetting domain-unrelated information with the forget

odule and introducing domain-specific information with the up-

ate module, we finally generalize the model from base domains

o novel domains, which has better few-shot domain generaliza-

ion performance.

To validate the effectiveness of the proposed method, extensive

xperiments are conducted in both the cross-domain scenarios and

he same-domain scenarios, which evaluates the learning ability of

he proposed method in the cross-domain and the same-domain

cenarios. The experimental results in Tables 2–9 show the supe-

M. Yuan, C. Cai, T. Lu et al. Pattern Recognition 129 (2022) 108704

Fig. 3. A toy example illustrates the motivation of forget-update module. This is the 5-way 1-shot few-shot classification example. The support set includes five classes

(i, ii, iii, iv, v), and the query set includes one sample. (Fig. 3 (a)) Each class includes four features. The distances between the query sample and each supporting sample are

4, 2, 2, 3, 2. Under this condition, we cannot distinguish the category of the query sample. (Fig. 3 (b)) Each sample includes six features, which include forgotten features and

updated features.

Table 2

5-way 1-shot and 5-way 5-shot classification accuracies on mini Imagenet. The ex-

perimental results on the left were obtained without data augmentation, while those

on the right with data augmentation. The experimental results marked with ♦ are

from Chen et al. [14] , while the experimental results marked with ♥ are from Zhang

et al. [42] . The unit is a percentage. The best results are marked in bold , and the

second-best results are marked in underline .

Model No Data Augmentation Data Augmentation

1-shot 5-shot 1-shot 5-shot

MAML [7] 47.91 ±0.81 62.51 ±0.72 46.47 ±0 . 82 ♦ 62.71 ±0 . 71 ♦

MatchingNet [6] 50.53 ±0.83 63.77 ±0.67 48.14 ±0 . 78 ♦ 63.48 ±0 . 66 ♦

ProtoNet [8] 48.58 ±0.82 64.18 ±0.69 44.42 ±0 . 84 ♦ 64.24 ±0 . 72 ♦

RelationNet [9] 50.43 ±0.78 66.30 ±0.70 49.31 ±0.85 ♦ 66.60 ±0.69 ♦

Baseline [14] 36.43 ±0.61 55.41 ±0.66 42.11 ±0 . 71 ♦ 62.53 ±0 . 69 ♦

Baseline + [14] 38.26 ±0.55 55.86 ±0.65 48.24 ±0.75 ♦ 66.43 ±0.63 ♦

FEAT [10] 46.11 ±0.74 62.76 ±0.67 47.25 ±0.79 61.92 ±0.71

SS [42] 46.9 ——♥ 64.0 ——♥ - -

FUM(2,2) 51.87 ±0.75 67.92 ±0.67 47.21 ±0.81 65.47 ±0.63

FUM(2,2,2) 50.33 ±0.82 66.94 ±0.66 47.17 ±0.79 64.62 ±0.67

Table 3

5-way 1-shot and 5-way 5-shot classification accuracies on CUB. The experimental results

on the left were obtained without data augmentation, while those on the right with data

augmentation. The experimental results marked with ♦ are from Chen et al. [14] , while the

experimental results marked with ♥ are from Zhang et al. [42] . The unit is a percentage.

The best results are marked in bold , and the second-best results are marked in underline .

Model No Data Augmentation Data Augmentation

1-shot 5-shot 1-shot 5-shot

MAML [7] 56.07 ±0.94 73.28 ±0.69 55.92 ±0 . 95 ♦ 72.09 ±0 . 76 ♦

MatchingNet [6] 60.51 ±0.89 72.88 ±0.67 61.16 ±0 . 89 ♦ 72.86 ±0 . 70 ♦

ProtoNet [8] 49.39 ±0.88 66.21 ±0.72 51.31 ±0 . 91 ♦ 70.77 ±0 . 69 ♦

RelationNet [9] 60.83 ±0.92 73.82 ±0.67 62.45 ±0 . 98 ♦ 76.11 ±0 . 69 ♦

Baseline [14] 31.95 ±0.58 52.90 ±0.67 47.12 ±0 . 74 ♦ 64.16 ±0 . 71 ♦

Baseline + [14] 43.58 ±0.76 60.82 ±0.76 60.53 ±0 . 83 ♦ 79.34 ±0 . 61 ♦

FEAT [10] 52.43 ±0.92 66.85 ±0.76 63.16 ±0.89 81.54 ±0.64

SS [42] 44.1 ——♥ 59.7 ——♥ - -

FUM(2,2) 62.35 ±0.99 74.26 ±0.67 65.40 ±0.95 78.75 ±0.67

FUM(2,2, 2) 62.49 ±0.98 75.66 ±0.69 64.51 ±0.98 82.11 ±0.62

Table 4

5-way 1-shot and 5-way 5-shot classification accuracies on CUB and mini Ima-

genet → CUB. The experimental results marked with † are from Li et al. [43] . The unit is

a percentage. The best results are marked in bold , and the second-best results are marked

in underline .

Model CUB mini Imagenet → CUB

1-shot 5-shot 1-shot 5-shot

MAML [7] 56.07 ±0.94 73.28 ±0.69 36.03 ±0.68 51.65 ±0.75

MatchingNet [6] 60.51 ±0.89 72.88 ±0.67 38.16 ±0.67 51.18 ±0.71

ProtoNet [8] 49.39 ±0.88 66.21 ±0.72 34.16 ±0.60 53.05 ±0.74

RelationNet [9] 60.83 ±0.92 73.82 ±0.67 38.14 ±0.67 53.90 ±0.70

Baseline [14] 31.95 ±0.58 52.90 ±0.67 33.78 ±0.58 51.56 ±0.67

Baseline + [14] 43.58 ±0.76 60.82 ±0.76 38.17 ±0.63 55.12 ±0.69

FEAT [10] 52.43 ±0.92 66.85 ±0.76 38.42 ±0.72 55.29 ±0.74

RML [43] - - 40.16 ±0 . 68 † 56.96 ±0.65 †

FUM(2,2) 62.35 ±0.99 74.26 ±0.67 44.57 ±0.75 56.45 ±0.80

FUM(2,2,2) 62.49 ±0.98 75.66 ±0.69 44.37 ±0.73 60.56 ±0.74

3

M. Yuan, C. Cai, T. Lu et al. Pattern Recognition 129 (2022) 108704

Table 5

5-way 1-shot and 5-way 5-shot classification accuracies on Real and mini Ima-

genet → Real. The unit is a percentage. The best results are marked in bold , and the

second-best results are marked in underline .

Model Real mini Imagenet → Real

1-shot 5-shot 1-shot 5-shot

MAML [7] 55.40 ±0.93 72.94 ±0.72 33.97 ±0.71 44.57 ±0.76

MatchingNet [6] 55.32 ±0.85 74.74 ±0.66 50.01 ±0.93 64.72 ±0.81

ProtoNet [8] 52.81 ±0.88 73.70 ±0.67 48.13 ±0.90 65.01 ±0.81

RelationNet [9] 54.61 ±0.88 75.18 ±0.67 48.14 ±0.91 63.27 ±0.82

Baseline [14] 42.61 ±0.67 65.41 ±0.66 41.68 ±0.71 61.72 ±0.75

Baseline + [14] 46.67 ±0.78 69.37 ±0.67 41.04 ±0.68 60.24 ±0.74

FEAT [10] 51.20 ±0.86 70.76 ±0.72 47.32 ±0.93 63.52 ±0.88

FUM(2,2) 57.44 ±0.90 76.69 ±0.65 52.13 ±0.91 68.24 ±0.81

FUM(2,2,2) 56.27 ±0.89 76.31 ±0.67 51.52 ±0.97 68.33 ±0.78

Table 6

5-way 1-shot and 5-way 5-shot classification accuracies on Painting and mini

Imagenet → Painting. The unit is a percentage. The best results are marked in bold ,

and the second-best results are marked in underline .

Model Painting mini Imagenet → Painting

1-shot 5-shot 1-shot 5-shot

MAML [7] 39.48 ±0.78 53.15 ±0.75 27.34 ±0.55 33.38 ±0.57

MatchingNet [6] 38.05 ±0.78 51.55 ±0.70 35.19 ±0.72 46.93 ±0.75

ProtoNet [8] 35.80 ±0.70 49.10 ±0.68 34.63 ±0.71 46.70 ±0.72

RelationNet [9] 38.44 ±0.76 52.39 ±0.72 35.41 ±0.70 49.10 ±0.77

Baseline [14] 30.97 ±0.54 44.97 ±0.63 31.70 ±0.57 45.68 ±0.64

Baseline + [14] 31.88 ±0.56 46.98 ±0.63 31.23 ±0.59 44.13 ±0.72

FEAT [10] 35.21 ±0.72 48.71 ±0.74 33.14 ±0.66 45.82 ±0.71

FUM(2,2) 42.85 ±0.82 58.90 ±0.71 37.32 ±0.72 50.14 ±0.77

FUM(2,2,2) 40.92 ±0.77 58.73 ±0.68 37.23 ±0.74 50.87 ±0.71

Table 7

5-way 1-shot and 5-way 5-shot classification accuracies on Infograph and mini

Imagenet → Infograph. The unit is a percentage. The best results are marked in

bold , and the second-best results are marked in underline .

Model Infograph mini Imagenet → Infograph

1-shot 5-shot 1-shot 5-shot

MAML [7] 26.45 ±0.62 33.53 ±0.62 23.22 ±0.47 26.22 ±0.49

MatchingNet [6] 26.78 ±0.56 32.66 ±0.56 26.81 ±0.54 32.81 ±0.58

ProtoNet [8] 26.41 ±0.53 31.36 ±0.56 26.85 ±0.54 33.45 ±0.60

RelationNet [9] 27.10 ±0.63 32.39 ±0.59 26.94 ±0.59 34.33 ±0.60

Baseline [14] 23.30 ±0.43 27.77 ±0.46 24.65 ±0.46 32.28 ±0.57

Baseline + [14] 23.05 ±0.44 27.80 ±0.50 24.40 ±0.46 30.18 ±0.55

FEAT [10] 25.28 ±0.53 30.86 ±0.55 26.18 ±0.53 32.55 ±0.59

FUM(2,2) 28.24 ±0.63 34.12 ±0.63 28.46 ±0.56 33.02 ±0.61

FUM(2,2,2) 28.78 ±0.64 34.35 ±0.62 28.04 ±0.57 35.15 ±0.62

r

s

T

t

i

t

i

b

m

b

9

d

p

c

I

a

p

Table 8

5-way 1-shot and 5-way 5-shot classification accuracies on Clipart and mini Im-

agenet → Clipart. The unit is a percentage. The best results are marked in bold , and

the second-best results are marked in underline .

Model Clipart mini Imagenet → Clipart

1-shot 5-shot 1-shot 5-shot

MAML [7] 46.47 ±0.83 65.51 ±0.72 29.49 ±0.57 38.54 ±0.64

MatchingNet [6] 47.23 ±0.82 64.24 ±0.69 35.10 ±0.69 47.66 ±0.69

ProtoNet [8] 44.39 ±0.79 62.13 ±0.67 34.76 ±0.71 48.18 ±0.71

RelationNet [9] 48.10 ±0.82 67.70 ±0.71 36.54 ±0.72 50.37 ±0.77

Baseline [14] 39.93 ±0.64 60.26 ±0.66 34.69 ±0.64 51.96 ±0.69

Baseline + [14] 43.45 ±0.71 63.80 ±0.69 34.06 ±0.62 48.87 ±0.68

FEAT [10] 40.50 ±0.77 58.66 ±0.74 31.08 ±0.66 44.61 ±0.69

FUM(2,2) 50.00 ±0.79 71.00 ±0.63 37.81 ±0.72 48.46 ±0.77

FUM(2,2,2) 50.65 ±0.80 72.27 ±0.63 37.72 ±0.72 51.03 ±0.76

2

2

[

f

m

t

b

a

w

l

F

m

t

t

i

t

l

e

s

t

v

r

t

t

t

m

c

b

m

o

iority of our method. Tables 2 and 3 give the experimental re-

ults on the same-domain scenarios. It is worth mentioning that in

able 2 , in the case of no data augmentation, FUM(2, 2) achieves

he best performance, that is, 1.34% higher than the best compar-

son method in the 5-way 1-shot paradigm and 1.62% higher than

he comparison method in the 5-way 5-shot paradigm. In Table 3 ,

n the case of no data augmentation, FUM(2, 2, 2) also achieves the

est performance, that is, 1.66% higher than the best comparison

ethod in the 5-way 1-shot paradigm and 1.84% higher than the

est comparison method in the 5-way 5-shot paradigm. Tables 4–

 give the experimental results in the same-domain and the cross-

omain scenarios. Specifically, the FUM method obtains the best

rediction results in almost all the cross-domain scenarios, indi-

ating that FUM has a good few-shot domain generalization ability.

n addition, the experimental results in the same-domain scenarios

lso show that the FUM method has an excellent few-shot learning

erformance.

The main contributions of this paper are shown as follows.
4

• This work is the first effort to perform domain generalization

on few-shot learning scenarios;
• The proposed FUM presents a novel method to mitigate the

bias of FSL domains and can improve the few-shot domain gen-

eralization ability by forgetting and generating features accord-

ing to specific tasks;
• The proposed channel vector sequence construction module

gives a new method to construct the related information for FSL

scenarios by stitching channel information of samples;
• We proposed to extract relational embedding of each scenario,

which considers valuable relational information between sam-

ples in a scenario. Visualization results in Fig. 2 also show that

relational embedding is more discriminating than feature em-

bedding.

. Related work

.1. Few-shot classification methods

In the recent years, a large number of FSL methods

7–9,17–23] have been proposed. They can be divided into the

ollowing categories: metric-based methods, meta-learning-based

ethods, and classifier-learning-based methods.

[8–10,17,21–23] are metric-based methods. These methods aim

o make the samples from the same category closer in the em-

edding space, while those from different categories are further

part. For instance, Siamese Network [17] employs a siamese net-

ork to extract feature vectors from a pair of samples and calcu-

ates the similarity relationship between them. ProtoNet [8] and

EAT [10] are based on euclidean distance metrics and uses the

ean of embeddings from the same category as the prototype of

hat category. Relation Network [9] is similar to ProtoNet, except

hat it employs a neural network to learn a deep instance metric

nstead of using a fixed one. Some metric-based methods propose

o generate more robust prototypes. LMPNet [21] proposes a novel

ocal descriptor-based multi-prototype network that generates an

mbedding space with multiple prototypes. UDS [22] uses a de-

criptor selection module to locate and select semantic regions in

he feature maps and then maps the selected features into new

ectors via a task-related aggregation module to enhance the rep-

esentations of prototypes. [23] introduces fine-grained visual at-

ributes that enable the meta-learner to learn to complete proto-

ypes. Our work is related to these metric-based approaches, with

he difference that we propose a few-shot domain generalization

ethod to extract domain-adaptive relationship embedding, which

onsiders the differences between domains and adjusts the distri-

ution of relational embeddings by the proposed FUM.

Some meta-learner-based methods propose to construct a

eta-learner that learns to make updates to the parameters

f a meta-learner designed for a scenario, such as [7,18,19] .

M. Yuan, C. Cai, T. Lu et al. Pattern Recognition 129 (2022) 108704

Table 9

5-way 1-shot and 5-way 5-shot classification accuracies on mini Imagenet → Cars, mini Imagenet → Dogs and

mini Imagenet → Flowers. The unit is a percentage. The best results are marked in bold , and the second-best re-

sults are marked in underline .

Model mini Imagenet → Cars mini Imagenet → Dogs mini Imagenet → Flowers

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML [7] 25.32 ±0.49 30.29 ±0.50 25.16 ±0.45 28.70 ±0.46 23.21 ±0.45 25.26 ±0.41

MatchingNet [6] 28.69 ±0.59 38.57 ±0.65 31.29 ±0.58 44.51 ±0.72 38.37 ±0.84 54.67 ±0.82

ProtoNet [8] 27.93 ±0.55 37.50 ±0.64 31.44 ±0.61 45.13 ±0.72 39.19 ±0.84 52.32 ±0.92

RelationNet [9] 28.17 ±0.59 36.70 ±0.61 31.39 ±0.63 44.29 ±0.69 39.94 ±0.84 52.10 ±0.84

Baseline [14] 27.32 ±0.49 39.78 ±0.59 28.11 ±0.50 39.26 ±0.60 37.14 ±0.67 55.20 ±0.78

Baseline + [14] 27.06 ±0.51 37.21 ±0.56 30.54 ±0.55 41.82 ±0.64 37.42 ±0.68 53.56 ±0.80

FEAT [10] 27.17 ±0.56 35.09 ±0.63 28.96 ±0.57 42.85 ±0.64 36.20 ±0.74 49.20 ±0.86

FUM(2,2) 30.76 ±0.61 39.49 ±0.65 35.24 ±0.70 47.50 ±0.70 42.93 ±0.90 53.94 ±0.86

FUM(2,2,2) 30.57 ±0.63 41.00 ±0.67 33.05 ±0.66 47.04 ±0.70 42.46 ±0.87 55.90 ±0.85

M

t

w

g

t

f

t

w

c

p

m

T

i

p

p

i

a

2

I

s

t

t

a

m

b

t

b

t

r

a

r

R

a

e

k

c

s

S

e

p

a

s

o

t

m

b

s

t

o

3

n

d

F

n

T

m

f

t

c

(

n

p

b

c

a

c

3

c

m

f

f

t

[

S

g

s

p

u

m

T

w

a

t

s

c

AML [7] provides a method to initialize the parameters of the

raditional learner in such a way that a few gradient descent steps

ith a small amount of training data from a new task will lead to

ood generalization performance on that task [18] . proposes to use

he embedding vectors of newly seen samples to imprint weights

or the new classes on the rear of the base network. The tradi-

ional learner used in [19] is a convolutional-network-based net-

ork. This method learns to update the parameters of the last fully

onnected layer of the traditional learner on the newly seen sam-

les.

The last type is the classifier-learning-based method. Some FSL

ethods are implemented by learning a classifier, such as [14,24] .

hese methods use a large number of sampled tasks in the train-

ng set to train a feature extractor and a classifier in the training

hase, then fix parameters of the feature extractor and refine the

arameters of the classifier with a few labeled samples in the test-

ng phase. Finally, the feature extractor and the refined classifier

re used to make predictions on unlabeled samples.

.2. Domain adaptation

Domain adaptation is a particular case of transfer learning.

n domain adaptation, the source and target domains are in the

ame feature space, but with different distributions. Domain adap-

ation aims to adapt the model trained in the source domain to

he target domain. It has been successfully used in tasks such

s style transfer and object recognition. Recently, multiple do-

ain adaptation methods have been proposed to minimize distri-

ution discrepancy. These include divergence-based domain adap-

ation, adversarial-based domain adaptation, and reconstruction-

ased domain adaptation. Some divergence-based domain adap-

ation methods [25,26] propose to minimize divergence crite-

ion between the source and target data distributions. Some

dversarial-based domain adaptation methods [27,28] propose to

educe the gap between distributions by using adversarial training.

econstruction-based domain adaptation methods [29,30] use an

uxiliary reconstruction task to create a shared representation for

ach domain.

These domain adaptation methods allow us to transfer the

nowledge learned on source tasks to target tasks within the same

ategory. However, they are not suitable for the FSL cross-domain

cenario, where the training and testing sets have different classes.

pecifically, the training and testing sets contain general object cat-

gories and different bird species, respectively. Besides, [14] re-

orts that recently proposed transfer-learning-based FSL methods

re also severely degraded in this condition. In this paper, we de-

ign forget-update modules to extract the relationship embeddings

f channel vector sequence containing the general relationship be-

ween support samples and a query sample. The forget-update

odules can also align the distribution of relationship embeddings
5
y forgetting and generating feature information of channel vector

equence. The extensive experiments in Tables 4–9 demonstrate

hat the proposed FUM can significantly improve the performance

f FSL in cross-domain scenarios.

. Methodology

In this section, the preliminaries are given first; then the chan-

el vector sequence is described; finally, forget-update module is

etailed.

The overall framework of the proposed method is shown in

ig. 4 , which consists of four parts: feature extractor ϕ(·) , chan-

el connector C(·) , forget-update module and prediction module.

he feature extractor ϕ(·) first converts each image into c feature

aps, and then converts each feature map into a 1-dimensional

eature vector m , m ∈ R d . Channel connector C(·) is used to stitch

he feature vector of a query sample with feature vector of each

lass in support set, then obtain N channel vector sequence x̃

 ̃

 x ∈ R c×(2 ×d)), N is the number of class in support set. These chan-

el vector sequences are then put into forget-update modules. The

roposed forget-update module is constructed with forget-update

locks, which is used to extract the relationship embedding of each

hannel vector sequence. The prediction module infers the class of

 query sample from the relationship embedding. Finally, we cal-

ulate the mean square error loss and do backward propagation.

.1. Preliminary

The general settings and symbols of cross-domain few-shot

lassification used in this paper are detailed in this section.

The purpose of few-shot domain generalization is to build a

odel �(·) , where the training set D a and testing set D b are

rom different domains. For example, the training set uses data

rom mini ImageNet [6] that is mainly generic objects while the

esting set uses data from Caltech-UCSD Birds-200-2011 (CUB)

15] , Oxford-Flowers-102 (Flowers) [31] , Stanford-dogs (Dogs) [32] ,

tanfords-cars (Cars) [33] or four datasets (Real, Painting, Info-

raph, Clipart) from DomainNet Dataset [34] .

An effective way to utilize the training set is to mimic the few-

hot learning setting proposed in [6] . Concretely, in the training

hase, data is randomly sampled from the training set D a to sim-

late a test scenario that is called a task (or episode) T . The FSL

odel �(·) is trained with randomly sampled tasks. Each FSL task

 contains a support set S , a query set Q , and an output set Y ,

hich satisfy that the elements of S and Q do not intersect but

re sampled from the same categories. Besides, each element in

he support set S has label information, while those in the query

et Q do not. The element of the output set Y is the label of the

orresponding element in the query set Q . In the testing phase,

M. Yuan, C. Cai, T. Lu et al. Pattern Recognition 129 (2022) 108704

Fig. 4. The overall framework of the proposed method.

m

u

m

n

p

p

c

b

i

T

m

S
l

Q

Y

w

c

s

b

θ

w

t

o

L

3

c

f

s

o

p

c

t

Q
l

a

c

t

p

Table 10

Ablation experiments on mini Imagenet → CUB and CUB. The unit is a per-

centage and the best results are highlighted .

Model mini Imagenet → CUB CUB

1-shot 5-shot 1-shot 5-shot

+ forget 43.56 ±0.19 54.45 ±0.19 59.94 ±0.23 72.25 ±0.18

+ update 43.76 ±0.19 58.20 ±0.18 61.73 ±0.23 74.56 ±0.17

FUM(2,2,2) 44.30 ±0.19 60.44 ±0.18

61.97 ±0.23 75.51 ±0.17

s

x

q

a

a

r

t

x

t

x̃

w

m

a

c

s

d

ỹ

w

c

3

s

o

I

t

m

u

f

c

t

f

d

any tasks are randomly sampled from the dataset D b , and eval-

ated on the model �(·) . The average prediction accuracy of the

odel is used to measure the learning ability in cross-domain sce-

arios.

In this paper, the N-way K-shot few-shot classification

aradigm is only considered unless otherwise specified. In such a

aradigm, every support set S contains exactly N classes, and each

lass has K samples, while the query set Q contains some unla-

eled samples that belong to the classes in S . The output set Y
ncludes the corresponding labels of elements in the query set Q .

he support set S , the query set Q and the output set Y are for-

alized as shown in Eqs. (1) , (2) and (3) .

 = { (x 11 , l 1) , · · · , (x i j , l i) , · · · , (x NK , l N) ;
 i ∈ { 1 , · · · , N}} , (1)

 = { ̇ x 1 , · · · , ˙ x q } , (2)

 = (y 1 , · · · , y q) ∈ { 1 , · · · , N} q , (3)

here N is the number of classes, K is the number of samples per

lass in the support set S , and q is the size of the query set. The

ubscripts of x i j indicate that x i j is the jth sample in the i th class.

Meta-learner �(·) is trained to fit few-shot classification tasks

y minimizing the prediction loss on query set Q as in Eq. (4) .

∗ = argmin

θ

E T

[∑

˙ x i ∈Q ,y i ∈Y
L (y i , �θ (̇ x i , S))

]

, (4)

here �(·) indicates the meta-learner and L (·) is the loss func-

ion. The meta-learner �(·) is required to train with thousands

f randomly sampled tasks under the constraint of a loss function

 (·) .

.2. Channel vector sequence construction module

In this paper, channel vector sequence is proposed, which is

onstructed to collect the related information of each class-level

eature map and a query sample feature in a task. Channel vector

equence can be combined with some sequence prediction meth-

ds, such as TCN, to predict the similarity between the query sam-

le and each supported class based on a specific task.

This part introduces how to convert samples in a task T to a

hannel vector sequence ̃ x p . First, the feature extractor ϕ(·) is used

o extract feature maps of samples in support set S and query set

 . The feature extractor can be implemented using a deep convo-

utional neural network. It yields a feature map tensor which has

 dimension of (c, h , w), where c, h and w indicate dimensions of

hannel, height and width. Class-level feature maps are then ob-

ained by averaging the feature maps of the same class in the sup-

ort set S . The class-level feature map for the i th class in support
6
et S is formulated as follows:

 i =

1

K

K ∑

j=1

(ϕ(x i j)) . (5)

Next, each class-level feature map x and feature map of each

uery sample ϕ(̇ x) are converted to feature vector x
′

and ˙ x
′

with

 dimension of (c, h × w). After that, the dimensions of x
′

and ˙ x
′

re changed to (c, d) using a mapping function. We refer to the

esults in Table 12 to choose d and the mapping function. Finally,

he channel connector C(·) splices the i th class-level feature vector

′
i with the feature vector of the pth query sample ˙ x

′
p according to

he channel order to form channel vector sequence ̃ x , as Eq. (6) .

 ip = C(x

′
i , ˙ x

′
p) . (6)

here C(·) is the channel connector function, p indicates pth ele-

ent in query set Q . ˜ x ip ∈ R

c×(2 ×d) , c is the number of channels,

nd d is the feature dimension of each reduced instance. ̃ x is called

hannel vector sequence in this paper.

Then, the few-shot classification problem is transformed into a

equence prediction problem on channel vector sequence. The pre-

iction model is formalized as Eq. (7) .

 p = f (̃ x 1 p , · · · , ̃ x Np) , (7)

here p indicates pth element in query set Q , N is the number of

lasses in a support set and f (·) is a prediction model.

.3. Forget-Update module

Most state-of-the-art FSL methods do not consider the domain

hift problem between the training and testing sets. These meth-

ds may degrade when there is a domain shift between them.

n this section, forget-update module is proposed for improving

he discrimination in the scenario of domain shift. Forget-update

odule consists of stacked forget-update blocks, and each forget-

pdate block consists of forgetting block and updating block. The

orgetting block is designed to learn the forgetting rate based on

ontext, while the updating block learn to generate new informa-

ion according to context. By training on numerous scenarios, the

orget-update module learns how to forget noisy information that

oes not fit the context and generate new information based on

M. Yuan, C. Cai, T. Lu et al. Pattern Recognition 129 (2022) 108704

Fig. 5. Forget-update block. The forget-update block includes two parts. The dashed boxes from left to right represent the forgetting block and updating block, respectively.

� indicates element-wise multiplication.

t

t

h

s

t

i

u

f

m

A

�

c

v

R

b

C

c

v

i

d

[

l

i

w

i

v

c

r

d

w

l

r

p

w

d

m

r

o

c

g

t

e

w

x

w

s

t

e

a

a

f

a

t

t

e

x̃

r

l

w

i

x

w

f

4

t

i

c

he context. With the help of forget-update module, we can extract

he relationship embeddings from channel vector sequence, which

elps to make the distribution of the training and testing sets con-

istent. As can be seen in Fig. 2 , the distribution based on rela-

ionship embeddings (Fig. 2 (a)) is more distinguishable than the

nstance-embedding-based distribution (Fig. 2 (b) and (c)). Forget-

pdate module can bring similar samples closer together and dif-

erent categories further apart. The overall flow of forget-update

odule described in Algorithm 1 and the detail of forget-update

lgorithm 1 Forget-update module. σ (·) is the sigmoid function,

denotes element-wise multiplication operator, and C(·) is the

hannel concatenate function, Causal(·) is the causal dilated con-

olutional function.

equire: ˜ x : channel vector sequence

k : kernel size

c: the length of channel sequence

1: ˜ x (0) = ̃ x

2: � = 	 log k c

3: i = 0

4: while i < � do

5: d = k i

6: ˜ x (i +1) = ForgetUpdateBlock (̃ x i , d, k)

7: i = i + 1

8: end while

9: return

˜ x (� −1)

lock illustrated in Fig. 5 .

Causal dilated convolution is the basis of forget-update block.

ausal dilated convolution is a special case of standard dilated

onvolution. It is first applied as a special one-dimensional con-

olution in Wavenet [35] , which can be implemented by shift-

ng the output of a normal convolution by a few steps. For two-

imensional data, the equivalent of causal convolution is PixelCNN

36] . When combining the casual convolution with dilated convo-

ution, the network can produce outputs of the same length as the

nputs. It can obtain features as data leakage-free with few net-

ork layers. It can be formalized as Eq. (8) . Dilated convolution

s adopted to improve the range of receptive field on the channel

ector sequence. The dilation factor d increases exponentially and

an be formalized as Eq. (9) .

 = Causal(̃ x , d, k) , (8)

 = k � , (9)
7
here ̃ x is the input of causal dilated convolution, d indicates di-

ated rate, k denotes kernel size, and � indicates the � th layer.

The proposed forgetting block learns how to forget low-

ecognition features based on the context. In the meta-training

rocess, the feature extractor gathers critical training experiences,

hile the forgetting block is designed to discard redundant and

eprecated information and concentrates our attention upon the

ost relevant and critical pieces of information by calculating the

etaining ratio of the input features. Specifically, the initial context

f forgetting block is channel vector sequence, and all subsequent

ontexts are the output of the previous forget-update block. For-

etting block implements the forgetting mechanism by calculating

he forgetting rate of the input sequence. The forgetting block gen-

rates data x f orget (x f orget ∈ R

c×d in) of the same size as the input,

hich can be formalized as Eq. (10) .

 f orget = σ (Causal(̃ x

(i) , d, k)) �˜ x

(i) , (10)

here Causal(·) is causal dilated convolutional function, σ (·) is a

igmoid function, d is dilated rate, k is kernel size, ̃ x (i) is the input

o the i th forget-update block in forget-update module, � indicates

lement-wise multiplication.

The proposed updating block is designed to learn and gener-

te information from the combination feature of a query instance

nd support instances in the meta-training process, where the in-

ormation are extracted from multiple instances and can be used

s a complement to the feature information extracted by the fea-

ure extractor ϕ(·) . In addition, each forget-update module con-

ains multiple update blocks that can generate a number of differ-

nt levels of information. Specifically, the channel vector sequence

 is used as the initial context of the first updating block, and the

est of the contextual information is the output from the previous

ayer. Updating block generates data x update (x update ∈ R

c× f ilter _ size)

ith the same sequence length as the input, which can be formal-

zed as Eq. (11) .

 update = tanh (Causal(̃ x

(i) , d, k))) � σ (Causal(̃ x

(i) , d, k))) , (11)

here tanh (·) is hyperbolic tangent activation function.

Finally, the stitched x f orget and x update are used as the output of

orget-update block.

. Experiments

The validity of the proposed method is evaluated in this sec-

ion. For the sake of fairness of the experiments, a uniform exper-

mental platform provided by Chen et al. [14] is used to conduct

omparison experiments.

M. Yuan, C. Cai, T. Lu et al. Pattern Recognition 129 (2022) 108704

4

A

l

v

m

5

o

t

o

p

4

i

a

d

f

a

s

t

[

S

g

p

c

c

t

s

t

m

m

m

m

4

(

a

8

a

m

fi

s

T

n

r

c

4

p

w

l

n

f

f

r

4

c

s

a

T

p

w

4

t

b

m

m

c

t

s

.1. Experimental setups

All methods are trained from scratch unless otherwise specified.

dam [37] is used as the optimizer.

The optimizer takes an initial learning rate of 0.001, and the

earning rate is reduced by 10% when the accuracy verified on the

alidation set stagnates in seven consecutive training steps. The

ost common FSL classification settings, 5-way 1-shot and 5-way

-shot classification, have experimented on all the datasets. Unless

therwise noted, all results are averaged over 600 episodes from

he testing set with a 95% confidence interval. The detailed setup

f scenarios, network architecture, training schema, and evaluation

rotocols are as follows.

.1.1. Scenarios

Two experimental settings are selected for testing. The first one

s the same-domain scenario, where the training and testing sets

re all selected from the same-domain. The second one is a cross-

omain scenario, where the training and testing sets are selected

rom mini Imagenet [6] and other domains, respectively.

For the same-domain scenario, the training set, validation set

nd test set are from the same domain. These same-domain

cenarios are mainly used to test few-shot learning ability. In

his paper, mini Imagenet [6] , Caltech-UCSD Birds-200-2011 (CUB)

15] , Oxford-Flowers-102 (Flowers) [31] , Stanford-dogs (Dogs) [32] ,

tanfords-cars (Cars) [33] and four datasets (Real, Painting, Info-

raph, Clipart) from DomainNet Dataset [34] are used in our ex-

eriments.

For the cross-domain scenario, 64 mini Imagenet training

lasses are used as the training set, 16 mini Imagenet validation

lasses are used as the validation set, and the trained model is

ested on each test set from different domains. Cross-domain

cenarios are mainly used to test few-shot domain generaliza-

ion capabilities. These scenarios include: mini Imagenet → CUB ,

ini Imagenet → Real , mini Imagenet → Paintting ,

ini Imagenet → Inforgraph , mini Imagenet → Clipart ,

ini Imagenet → Cars , mini Imagenet → Dogs and

ini Imagenet → Flowers .

The details of these datasets are as follows:

• mini Imagenet dataset is a subset of Imagenet [38] and consists

of 100 generic object classes, each of which contains 600 im-

ages. Follow the standard protocol [6] that the dataset is split

into 64, 16, and 20 classes for training, validation, and testing,

respectively;
• CUB [15] dataset contains 11,788 images from 200 species of

birds in total, which is commonly used for fine-grained clas-

sification. There is little difference in domains between CUB

categories. Following the commonly used evaluation protocol

[14,39] , the dataset is split into 100, 50, and 50 classes for train-

ing, validation, and testing, respectively;
• DomainNet Dataset [34] is the largest unsupervised domain

adaptation dataset to date, which contains six domains and

about 60 0,0 0 0 images distributed in 345 categories. We report

experimental performance in the following domains: Clipart ,

the collection of clipart images; Infograph , the collection of in-

fographic images with specific object; Painting , the collection

of artistic depictions in the form of painting; Real , images col-

lected in the real world. DomainNet Dataset is used to validate

the few-shot learning ability and the few-shot domain gener-

alization ability of each model in this paper. To evaluate the

few-shot domain generalization ability of each model, we train

and evaluate the model using the training and validation sets

of mini Imagenet, respectively, and calculate the prediction ac-

curacy of the model using the test set of DomainNet Dataset.

To evaluate the few-shot learning ability, we divide each do-
8
main of DomainNet Dataset into three disjoint parts, where the

number of classes in the training set, validation set, and test set

is 300, 15, and 30, respectively.
• Flowers dataset [31] is a collection of 102 species from common

flowers, and each category contains 40 to 258 images. These

images have rich variations in proportions, poses, and lighting.

We test the cross-domain generalization ability of all the mod-

els on the test set, including 102 categories;
• Dogs dataset [32] is constructed using ImageNet images and

annotations, and it contains 20, 580 images of 120 breeds of

dogs from all over the world, which is commonly used for fine-

grained classification. We test the cross-domain generalization

ability of all the models on the test set, including 120 cate-

gories;
• Cars dataset [33] contains 16,185 images from 196 classes of

cars, which is often used for fine-grained classification. We test

the cross-domain generalization ability of all the models on the

test set, including 196 categories.

.1.2. Network architecture

For a fair comparison, a four-layer convolutional backbone

Conv-4) is used, as in [6–9,14] , which consists of four blocks

nd each block outputs 64 channels. The input size of images is

4 × 84.

The proposed model FUM(2,2) and FUM(2,2,2) contains two

nd three forget-update modules, respectively. Each forget-update

odule contains 	 log k c
 (k = 2 , c = 64) forget-update blocks. The

lter_size of forget-update blocks in each forget-update module is

et to 2 according to the sensitivity experiments in §4.4 .

The prediction module is a one-layer fully connected network.

he weights of the prediction model are initialized with [40] and

ormalized with [41] . The prediction module predicts N values

epresenting the similarity between the query sample and the N

lasses in the support set.

.1.3. Training schema

Normalization operation is applied to the input images. The

roposed method is trained with an episodic training strategy [6] ,

hich is considered as a promising direction in handling the chal-

enge of learning transformable visual concepts with limited an-

otations. In each episode, N classes are randomly selected. Then,

or each chosen class, K labeled images are randomly selected to

orm the support set, and 16 images are selected from each of the

emaining samples of these N classes to form the query set.

.1.4. Evaluation protocols

The performance of FSL methods are evaluated on validation

lasses, and only the model which has the best performance is

aved. The 5-way 1-shot and 5-way 5shot settings are performed,

nd 15 query samples are selected from each class in an episode.

he testing accuracy is the average accuracy (%, top-1) of all the

rediction results of 600 episodes sampled from the testing set

ith a 95% confidence interval.

.2. Experimental results

To ensure a fair comparison of all the methods, a unified

estbed is adopted for few-shot classification algorithms provide

y Chen et al. [14] . Tables 2, 3 show the experimental results on

ini Imagenet and CUB, respectively. Tables 4–8 show the experi-

ental results for different datasets under the same scenarios and

ross-domain scenarios. Table 9 shows the experimental results in

hree cross-domain scenarios.

The experimental results in Tables 4–8 show that the domain

hift between the training and testing set can significantly affect

M. Yuan, C. Cai, T. Lu et al. Pattern Recognition 129 (2022) 108704

Fig. 6. 5-way 1-shot (left) and 5-way 5-shot (right) accuracy on mini Imagenet without data augmentation .

Fig. 7. 5-way 1-shot (left) and 5-way 5-shot (right) accuracy on CUB without data augmentation.

F

c

M

T

4

fi

t

l

m

f

m

8

i

1

s

s

p

j

a

w

o

a

t

l

d

4

i

m

→
m

→
w

t

c

→
m

F

a

t

S

c

i

b

F

t

SL methods. The experimental results on mini Imagenet → CUB de-

rease significantly compared to CUB. For example, the accuracy of

atchingNet decrease by 26.51% at 1-shot and 37.34% at 5-shot.

he accuracies of other methods also decreases significantly.

.2.1. Experimental results in the same-domain scenarios

To validate the capability of the proposed FUM method in the

eld of few-shot learning, Tables 2, 3 demonstrates the experimen-

al results on mini Imagenet and CUB dataset, respectively, and the

eft part of Tables 5–8 show the experimental results on four do-

ains. In these experiments, the training and testing sets come

rom the same-domain.

Tables 2, 3 show that, without data augmentation, the proposed

ethod can obtain the optimal prediction results. Also in Tables 5–

 , the proposed method achieve the optimal prediction accuracy

n the same-domain scenarios. In particular, FUM(2,2) is 1.34% and

.62% higher in the 1-shot and 5-shot settings compared to the

uboptimal method on mini Imagenet dataset. In Tables 2, 3 , the

ame data augmentation methods are used in the meta-training

hase as in [14] , including random crop, left-right flip, and color

itter. Table 3 shows that FUM(2,2,2) yields SOTA results in 1-shot

nd 5-shot settings.

In addition, Figs. 6 , 7 show how the prediction accuracy varies

ith the training progress on the mini imagenet and CUB with-

ut data augmentation, which also demonstrates that FUM(2,2) can

chieve the best accuracy on mini Imagenet and CUB.
9
Although the training and test sets are in the same domain,

he training and test set categories are disjoint. The learned re-

ationship embeddings by FUM can also benefit the same-domain

atasets.

.2.2. Cross-domain adaptive capacity

To validate the few-shot domain generalization capac-

ty of the proposed FUM, experiments are conducted on

ini Imagenet → CUB, mini Imagenet → Real, mini Imagenet

 Painting, mini Imagenet → Infograph, mini Imagenet → Clipart,

ini Imagenet → Cars, mini Imagenet → Dogs and mini Imagenet

 Flowers in Tables 4–9 , where the training set is mini Imagenet

hile the testing sets are from other domains. Experimen-

al results show that, FUM can achieve better results than all

omparison methods on mini Imagenet → CUB, mini Imagenet

 Real, mini Imagenet → Painting, mini Imagenet → Infograph,

ini Imagenet → Cars, mini Imagenet → Dogs and mini Imagenet →

lowers. On the mini Imagenet → Clipart, the proposed method also

chieves the optimal solution in the 5-way 1-shot paradigm, and

he suboptimal solution is achieved in the 5-way 5-shot paradigm.

pecifically, the proposed model is 2.12% higher than the best

ompare method in the 5-way 1-shot paradigm and 3.32% higher

n the 5-way 5-shot paradigm on mini Imagenet → Real.

Fig. 2 (a) demonstrates the distribution of relationship em-

eddings learned by FUM on mini Imagenet → CUB. Compared to

ig. 2 (b) and (c), the distribution of relationship embeddings ob-

ained by FUM is closer between the same categories and farther

M. Yuan, C. Cai, T. Lu et al. Pattern Recognition 129 (2022) 108704

Fig. 8. The effect of forget and update modules. Fig. 8 (a) and (b) show the distributions of features on CUB and mini Imagenet → CUB. Specifically, the top half shows the

feature distribution of the backbone output, while the bottom half corresponds from left to right to the feature distributions of the forget module and update module outputs.

Fig. 8 (a) and (b) are visualized using t-SNE [16] . Fig. 8 (c) visualizes the effect of the forget module. The first row is the original image. The third row is the visualization of

the forgotten information, where the forgetting information is the result of subtracting the output from the input of the forgetting module. The second row is the result of

fusing the forgotten information with the original image.

b

t

i

b

i

4

4

i

i

o

t

+

t

b

i

i

b

i

i

m

o

m

+

o

t

T

w

4

u

p

[

m

o

s

t

c

b

m

d

o

t

e

t

t

c

t

f

n

f

e

t

m

a
etween the different categories. The relationship embeddings ex-

racted by FUM is more suitable for the FSL classification problem

n cross-domain scenario. This is because FUM can align the distri-

ution of relationship embeddings in different domains by updat-

ng and forgetting mechanisms.

.3. Ablation experiments

.3.1. The effects of forgetting block and updating block

The effects of forgetting block and updating block are evaluated

n this section. The results of the ablation experiments are shown

n Table 10 . The testing accuracy is the average accuracy (%, top-1)

f all the prediction results of 10,0 0 0 episodes sampled from the

esting set with a 95% confidence interval. +update method and

forget method use the same configuration as FUM(2,2,2) method,

he only difference is that +forget method only use the forgetting

lock while +update only use updating block. The forgetting block

s shown in the left dashed box of Fig. 5 while the updating block

s shown in the right. The FUM(2,2,2) method uses forget-update

locks. All these three methods put channel vector sequence as

nput. Table 10 shows that when the forgetting block and updat-

ng block are combined, they can improve the prediction perfor-

ance on mini Imagenet → CUB and CUB. The experimental results

f FUM(2,2,2) are better than using a single module. Specially, our

ethod improves by 5.99% relative to +forget and 2.24% relative to

update on the mini Imagenet → CUB in 5-way 5-shot paradigm, and

ur method improves 3.26% relative to +forget and 0.95% relative

o +update method on the CUB dataset in 5-way 5-shot paradigm.

he prediction results of our method are also improved in the 5-

ay 1-shot paradigm.
10
.3.2. Visualization and analysis of forget module and update module

To analyze the effectiveness of forget module and update mod-

le, Fig. 8 (a) and (b) visualize the feature distribution of the out-

ut of forget module and update module, respectively, using t-SNE

16] . And Fig. 8 (c) visualizes the features forgotten by the forget

odule.

Specifically, the left half of Fig. 8 (a) visualizes the distributions

f features on CUB before and after forget module. Features of the

ame category output by the forget module can be better clus-

ered together, while the distance between features of different

ategories is greater. The left half of Fig. 8 (b) visualizes the distri-

utions of features on mini Imagenet → CUB before and after forget

odule, which also shows that the forget module enables better

iscriminability between different categories of images.

The right half of Fig. 8 (a) visualizes the distribution of features

n CUB before and after the update module, which shows that fea-

ures acquire greater discriminability after using the features gen-

rated by the update module. The right half of Fig. 8 (b) visualizes

he distribution of features on mini Imagenet → CUB before and after

he update module, and the updated features also gain better dis-

riminability. With the above visualization results, we believe that

he forget module and update module can produce more meaning-

ul features for both the same-domain and the cross-domain sce-

arios.

Fig. 8 (c) visualizes the forgotten features. To visualize the ef-

ect of the forget module, only the forget modules are used in this

xperiment. The forgotten features are defined as the input fea-

ures of the first forget module minus the output of the last forget

odule. Then, the forgotten features are converted to a gray im-

ge of a signal channel of size 5 ∗5 and resized to the same size as

M. Yuan, C. Cai, T. Lu et al. Pattern Recognition 129 (2022) 108704

Table 11

Sensitivity analysis of forget-update module number and filter size. The top results are highlighted and the

unit is a percentage.

Model mini Imagenet → CUB CUB mini Imagenet

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

FUM(2) 43.64 ±0.76 56.80 ±0.76 62.40 ±0.92 73.78 ±0.67 51.26 ±0.81 66.01 ±0.67

FUM(4) 43.15 ±0.76 58.15 ±0.72 62.97 ±0.96 74.68 ±0.72 51.53 ±0.81 66.42 ±0.65

FUM(8) 43.69 ±0.79 55.77 ±0.79 62.40 ±0.93 74.67 ±0.74 51.23 ±0.82 67.40 ±0.63

FUM(16) 43.46 ±0.75 52.95 ±0.76 61.50 ±0.98 73.43 ±0.70 50.35 ±0.77 64.88 ±0.64

FUM(32) 45.15 ±0.77 54.62 ±0.81 62.89 ±0.94 74.56 ±0.72 50.39 ±0.79 66.18 ±0.63

FUM(64) 43.79 ±0.78 54.81 ±0.71 60.98 ±0.96 74.22 ±0.71 50.22 ±0.79 64.24 ±0.69

FUM(2,2) 44.57 ±0.75 56.45 ±0.80 62.35 ±0.99 74.26 ±0.67 51.87 ±0.75 67.89 ±0.67

FUM(4,4) 44.48 ±0.75 54.02 ±0.77 61.90 ±0.91 74.18 ±0.72 50.33 ±0.82 66.66 ±0.65

FUM(8,8) 44.45 ±0.75 55.57 ±0.74 62.81 ±0.95 74.56 ±0.69 50.36 ±0.79 66.39 ±0.69

FUM(16,16) 43.81 ±0.76 56.65 ±0.73 63.44 ±0.96 73.76 ±0.73 51.40 ±0.79 65.23 ±0.64

FUM(32,32) 44.88 ±0.75 58.18 ±0.75 61.14 ±0.94 74.09 ±0.76 51.36 ±0.76 65.07 ±0.66

FUM(64,64) 44.72 ±0.77 52.36 ±0.75 61.72 ±0.96 74.81 ±0.70 50.19 ±0.82 65.02 ±0.66

FUM(2,2,2) 44.37 ±0.73 60.56 ±0.74 62.49 ±0.98 75.66 ±0.98 50.33 ±0.82 66.94 ±0.66

FUM(4,4,4) 46.13 ±0.77 56.72 ±0.81 63.42 ±0.93 76.82 ±0.68 50.84 ±0.84 66.16 ±0.66

FUM(8,8,8) 46.64 ±0.75 58.08 ±0.71 64.03 ±0.99 75.86 ±0.67 50.17 ±0.75 66.68 ±0.66

Table 12

Sensitive experiments on the instance dimension d. The top re-

sults are highlighted and the unit is a percentage. 25 ∗ indicates

using the identity mapping function.

d mini Imagenet → CUB

1-shot 5-shot

8 39.25 ±0.73 53.10 ±0.67

16 40.53 ±0.74 56.16 ±0.66

25 41.61 ±0.70 55.23 ±0.69

32 41.92 ±0.75 55.37 ±0.69

64 41.26 ±0.73 52.64 ±0.70

25 ∗ 44.37 ±0.73 60.56 ±0.74

t

r

a

f

t

g

p

t

t

g

r

i

F

4

s

b

I

t

n

i

t

4

C

m

f

2

4

t

s

i

1

t

l

T

o

t

t

p

4

i

i

t

s

C

t

u

t

4

t

m

M

o

T

i

t

h

M

o

f

r

f

o

h

he original image. Specifically, the original images are in the first

ow; the forgotten features are in the third row, where the white

reas represent forgotten features; the second row is the weighted

usion of the original image and the forgotten features. In detail,

he weight of the original image is 0.2, and the weight of the for-

otten features is 0.8. To visualize the forgotten regions, we pre-

rocessed the forgotten features by subtracting the forgotten fea-

ures with 255 so that in the second row, the black area represents

he forgotten part. It can be found that the forget module can for-

et some background information. We think that forget some ir-

elevant background information can help improve features, which

s also supported by the feature distributions of forget module in

ig. 8 (a) and (b).

.4. Sensitivity analysis of forget-update module number and filter

ize

To analyze parameter sensitivity of forget-update module num-

er and filter size, a batch of experiments is organized in Table 11 .

n Table 11 , the numbers in parentheses after FUM correspond to

he filter size in the forget-update module, and the number of

umbers indicates the number of forget-update modules included

n the model. For example, FUM(4,4) indicates that the model con-

ains two forget-update modules, each of which has a filter size of

. Table 11 demonstrates that the optimal results are obtained on

UB and mini Imagenet → CUB when the number of forget-update

odules is equal to 3, and on mini Imagenet when the number of

orget-update modules is equal to 2 and the filter size is equal to

. In this paper, FUM(2,2) and FUM(2,2,2) are chosen in the paper.
11
.5. Sensitive experiments on the instance dimension d

The proposed method adopts four layers convolutional network

o extract feature maps, which converts a 3-channel 84 ∗84 in-

tance to a 64-channel 5 ∗5 feature map. Then each feature map

s transformed into a 25-dimensional vector. We try to apply a

-layer fully connected network or an identity mapping func-

ion to the vector and generate a d dimensional vector. To ana-

yze the effect of different d values on the prediction accuracy,

able 12 shows the prediction accuracy of the proposed method

n mini Imagenet → CUB when different d values are used. We find

hat the best prediction accuracy is obtained when using the iden-

ity mapping function, and this configuration is exploited in all ex-

eriments.

.6. The effective of channel vector sequence

After the channel vector sequence is generated, the rest to do

s to extract the internal relationship of the channels and use such

nformation to perform a few-shot classification. Table 13 shows

hat the combination of TCN with the proposed channel vector

equence can get competitive results on mini Imagenet → CUB and

UB. Moreover, the FUM(2,2,2) approach achieves better results

han TCN at similar model sizes, implying that the forgetting and

pdating mechanism of forget-update module is more suitable for

he proposed channel vector sequence than TCN.

.7. Computational expense analysis

Table 14 shows the computational expense and predic-

ion accuracy of the most commonly used FSL methods on

ini Imagenet → Painting scenario in 5-way 1-shot paradigm, where

AC represents Memory Access Cost, Params represents the size

f model parameters, Accs represents the prediction accuracy, and

ime represents the time used to predict an episode. All exper-

ments were conducted using an NVIDIA GeForce GTX 1080Ti to

est. For MAC values, MatchingNet, ProtoNet, FEAT, and our method

ave similar MAC, Baseline, and Baseline++ methods have lower

AC, and RealtionNet method has much higher MAC. In terms

f the number of parameters, ProtoNet, Baseline, and FEAT have

ewer parameters, while RelationNet and Baseline++ use more pa-

ameters than the proposed methods. Baseline and Baseline++ are

aster, while the rest of the methods are relatively close in terms

f execution time. In terms of prediction accuracy, our method

as a more obvious advantage. Comparing the proposed FUM(2,2)

M. Yuan, C. Cai, T. Lu et al. Pattern Recognition 129 (2022) 108704

Table 13

The prediction results of the TCN and FUM network. The unit is a percentage, and the

best results are highlighted.

Model Model Size mini Imagenet → CUB CUB

1-shot 5-shot 1-shot 5-shot

TCN [44] 1170K 39.95 ±0.74 55.36 ±0.73 60.42 ±0.96 74.59 ±0.74

FUM(2,2,2) 1190K 44.37 ±0.73 60.56 ±0.74 62.49 ±0.98 75.66 ±0.98

Table 14

The computational expense and accuracy on mini Imagenet → Painting scenario with 5-

way 1-shot paradigm .

Model MAC Params Accs Time

MatchingNet [6] 33.667G 342.400K 35.19 ±0.72% 0.37s

ProtoNet [8]

33.647G 226.176K 33.99 ±0.68% 0.37s

RelationNet [9] 68.966G 452.753K 35.41 ±0.70% 0.15s

Baseline [14] 6.334G 226.176K 31.70 ±0.57% 0.05s

Baseline + [14] 6.339G 546.376K 31.23 ±0.59% 0.06s

FEAT [10] 33.647G 242.624K 33.14 ±0.66% 0.28s

FUM(2,2) 36.581G 324.192K 37.32 ±0.72% 0.21s

FUM(2,2,2) 38.971G 404.036K 37.23 ±0.74% 0.46s

Table 15

Compare causal dilation convolution with fixed dilation rate convolution (named Fixed-d).

The unit is a percentage. The best results are highlighted.

Model mini Imagenet → CUB mini Imagenet

1-shot 5-shot 1-shot 5-shot

Fixed-d 42.67 ±0.74 57.40 ±0.74 49.82 ±0.82 65.24 ±0.68

FUM(4) 43.15 ±0.76 58.15 ±0.72 51.26 ±0.81 66.01 ±0.67

Table 16

Impact of pre-trained model on few-shot domain generalization tasks. FUM(4,4,4) and FUM(4,4,4)_fix use

the same configuration, except that the backbone network of FUM(4,4,4)_fix uses the parameters pre-trained on

the training set of mini Imagenet and fixed these parameters.

Model mini Imagenet mini Imagenet → Real mini Imagenet → Painting

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

FUM(2,2,2) 50.33 ±0.82 66.94 ±0.66 51.52 ±0.97 68.33 ±0.78 37.23 ±0.74 50.87 ±0.71

FUM(2,2,2)_fix 53.38 ±0.78 65.08 ±0.67 52.96 ±0.92 64.82 ±0.80 38.31 ±0.74 48.49 ±0.78

m

d

a

t

C

h

m

4

c

c

T

f

t

l

a

m

e

l

m

F

4

g

s

t

F

(

i

s

t

d

t

s

s

m

n

5

m

t

ethod with the two comparison methods with the highest pre-

iction accuracy, it is found that the proposed FUM(2,2) has higher

ccuracy when the MAC and Params metrics are close to or smaller

han the two comparison methods, RealtionNet and MatchingNet.

ompared with Baseline and Baseline++, the proposed method is

igher in MAC, Params, and Time. However, the advantage of our

ethod in prediction accuracy is more obvious.

.8. Compare causal dilation convolution with fixed dilation rate

onvolution

Table 15 analyzes the difference between using causal dilation

onvolution (FUM(4)) and fixed dilation rate convolution (Fixed-d).

he two methods use the same configuration, except for a dif-

erence in the size of the dilation rate. Causal dilation convolu-

ion using dilation rate described in the Eq. (9) , while fixed di-

ation rate using a fixed dilation rate 2. It is found that FUM(4)

chieves a more significant advantage on both mini Imagenet and

ini Imagenet → CUB. This is because casual dilated convolution can

xtract all features of the channel vector sequence using fewer

evels. In comparison, the fixed dilation rate convolution requires

ore levels. When Fixed-d and FUM(4) use the same layers,

UM(4) can utilize more information and obtain better accuracy.
12
.9. The impact of pre-trained model on few-shot domain

eneralization tasks

We analyze the impact of the pre-trained model on the few-

hot domain generalization task in Table 16 . FUM(2,2,2)_fix use

he same configuration as FUM(2,2,2), except that the backbone of

UM(2,2,2)_fix is pre-trained with the training set of mini Imagenet

64 classes) and the parameters of the pre-trained backbone

s fixed in the meta-training process. The experimental results

how that using the pre-trained backbone improves the predic-

ion results in the 5-way 1-shot paradigm. However, there is a

ecrease in the 5-way 5-shot paradigm. We supposed that al-

hough the backbone network pre-trained with the full training

et of mini Imagenet has good discriminative power, the training

trategy biases the backbone network towards the classes of the

ini Imagenet training set and makes it difficult to generalize to

ew domains.

. Conclusion

In this paper, we move forward to handle the challenge of do-

ain shifts in the context of FSL. This paper designed channel vec-

or sequence containing relational information, which implies re-

M. Yuan, C. Cai, T. Lu et al. Pattern Recognition 129 (2022) 108704

l

T

u

t

s

u

p

p

t

f

t

D

c

i

A

G

t

T

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

ated information and helps infer the category of the query sample.

he proposed forget-update module composed of stacked of forget-

pdate blocks. The forgetting block retains useful information, and

he updating block generates new features according to a specific

cenario. The combination of channel vector sequence and forget-

pdate module can generate relationship embeddings, which im-

lies a similar relationship between a query sample and the sup-

ort samples. Visualization experiments show that /fum can adjust

he distribution of relational embedding across domains through

orgetting and updating mechanisms. In the future, we will study

he effectiveness of the FUM on Real-life scenarios.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

cknowledgment

This work is supported by the Scientific Foundation of State

rid Corporation of China (Research on Ice-wind Disaster Fea-

ure Recognition and Prediction by Few-shot Machine Learning in

ransmission Lines).

eferences

[1] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale

image recognition, in: Y. Bengio, Y. LeCun (Eds.), ICLR, 2015 .
[2] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,

in: CVPR, 2016, pp. 770–778 .

[3] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception
architecture for computer vision, in: CVPR, 2016, pp. 2818–2826 .

[4] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: CVPR, 2018,
pp. 7132–7141 .

[5] B.M. Lake, R. Salakhutdinov, J.B. Tenenbaum, Human-level concept learn-
ing through probabilistic program induction, Science 350 (6266) (2015)

1332–1338 .

[6] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., Matching networks for
one shot learning, in: NIPS, 2016, pp. 3630–3638 .

[7] C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation
of deep networks, in: ICML, 2017, pp. 1126–1135 .

[8] J. Snell, K. Swersky, R.S. Zemel, Prototypical networks for few-shot learning, in:
NIPS, 2017, pp. 4077–4087 .

[9] F. Sung, Y. Yang, L. Zhang, T. Xiang, P.H.S. Torr, T.M. Hospedales, Learn-

ing to compare: relation network for few-shot learning, in: CVPR, 2018,
pp. 1199–1208 .

[10] H.-J. Ye, H. Hu, D.-C. Zhan, F. Sha, Few-shot learning via embedding adaptation
with set-to-set functions, in: CVPR, 2020, pp. 8808–8817 .

[11] R. Krishnan, S. Sarkar, Conditional distance based matching for one-shot ges-
ture recognition, Pattern Recognit. 48 (4) (2015) 1302–1314 .

[12] L. Zhang, X. Chang, J. Liu, M. Luo, M. Prakash, A.G. Hauptmann, Few-shot ac-

tivity recognition with cross-modal memory network, Pattern Recognit. 108
(2020) 107348 .

[13] A .K. Bhunia, A .K. Bhunia, S. Ghose, A . Das, P.P. Roy, U. Pal, A deep one-shot
network for query-based logo retrieval, Pattern Recognit. 96 (2019) .

[14] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C.F. Wang, J.-B. Huang, A closer look at few-shot
classification, ICLR, 2019 .

[15] C. Wah, S. Branson, P. Welinder, P. Perona, S. Belongie, The Caltech-UCSD Birds-

200-2011 dataset(2011).
[16] M.L. van der, G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res. 9

(11) (2008) 2579–2605 .
[17] G. Koch, R. Zemel, R. Salakhutdinov, Siamese neural networks for one-shot im-

age recognition, ICML Deep Learning Workshop, vol. 2, 2015 .
[18] H. Qi, M. Brown, D.G. Lowe, Low-shot learning with imprinted weights, in:

CVPR, 2018, pp. 5822–5830 .

[19] S. Qiao, C. Liu, W. Shen, A.L. Yuille, Few-shot image recognition by predicting
parameters from activations, in: CVPR, 2018, pp. 7229–7238 .

20] N. Mishra, M. Rohaninejad, X. Chen, P. Abbeel, A simple neural attentive
meta-learner, ICLR, 2018 .

[21] H. Huang, Z. Wu, W. Li, J. Huo, Y. Gao, Local descriptor-based multi-prototype
network for few-shot learning, Pattern Recognit. 116 (2021) 107935 .
13
22] Z. Hu, Z. Li, X. Wang, S. Zheng, Unsupervised descriptor selection based
meta-learning networks for few-shot classification, Pattern Recognit. 122

(2022) 108304 .
23] B. Zhang, X. Li, Y. Ye, Z. Huang, L. Zhang, Prototype completion with primitive

knowledge for few-shot learning, in: CVPR, 2021, pp. 3754–3762 .
24] S. Qiao, C. Liu, W. Shen, A.L. Yuille, Few-shot image recognition by predicting

parameters from activations, in: CVPR, 2018, pp. 7229–7238 .
25] A. Rozantsev, M. Salzmann, P. Fua, Beyond sharing weights for deep domain

adaptation, IEEE TPAMI 41 (4) (2019) 801–814 .

26] B. Sun, J. Feng, K. Saenko, Return of frustratingly easy domain adaptation, in:
D. Schuurmans, M.P. Wellman (Eds.), AAAI, 2016, pp. 2058–2065 .

27] M.-Y. Liu, O. Tuzel, Coupled generative adversarial networks, in: D.D. Lee,
M. Sugiyama, U. von Luxburg, I. Guyon, R. Garnett (Eds.), NIPS, 2016,

pp. 469–477 .
28] D. Yoo, N. Kim, S. Park, A.S. Paek, I.-S. Kweon, Pixel-level domain transfer, in:

ECCV, vol. 9912, 2016, pp. 517–532 .

29] M. Ghifary, W.B. Kleijn, M. Zhang, D. Balduzzi, W. Li, Deep reconstruction–
classification networks for unsupervised domain adaptation, in: ECCV, 2016,

pp. 597–613 .
30] J.-Y. Zhu, T. Park, P. Isola, A .A . Efros, Unpaired image-to-image translation using

cycle-consistent adversarial networks, in: ICCV, 2017, pp. 2242–2251 .
[31] M.-E. Nilsback, A. Zisserman, Automated flower classification over a large num-

ber of classes, in: Indian Conference on Computer Vision, Graphics and Image

Processing, 2008 .
32] A. Khosla, N. Jayadevaprakash, B. Yao, L. Fei-Fei, Novel dataset for fine-grained

image categorization, CVPR Workshop, Colorado Springs, CO, 2011 .
33] J. Krause, M. Stark, J. Deng, L. Fei-Fei, 3D object representations for fine-grained

categorization, 3dRR-13, Sydney, Australia, 2013 .
34] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, B. Wang, Moment matching for

multi-source domain adaptation, in: ICCV, 2019, pp. 1406–1415 .

35] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A.W. Senior, K. Kavukcuoglu, WaveNet: a generative model

for raw audio, CoRR (2016) arXiv preprint arXiv: 1609.03499 .
36] A. Van Oord, N. Kalchbrenner, K. Kavukcuoglu, Pixel recurrent neural networks,

in: ICML, PMLR, 2016, pp. 1747–1756 .
37] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, ICLR, 2015 .

38] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, F.-F. Li, ImageNet: a large-scale hier-

archical image database, in: CVPR, 2009, pp. 248–255 .
39] N. Hilliard, L. Phillips, S. Howland, A. Yankov, C.D. Corley, N.O. Hodas, Few-

shot learning with metric-agnostic conditional embeddings, CoRR (2018) arXiv
preprint arXiv: 1802.04376 .

40] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification, in: ICCV, 2015,

pp. 1026–1034 .

[41] T. Salimans, D.P. Kingma, Weight normalization: a simple reparameterization
to accelerate training of deep neural networks, in: NIPS, 2016, p. 901 .

42] L. Zhang, J. Liu, M. Luo, X. Chang, Q. Zheng, A.G. Hauptmann, Scheduled sam-
pling for one-shot learning via matching network, Pattern Recognit. 96 (2019) .

43] X. Li, L. Yu, C.-W. Fu, M. Fang, P.-A. Heng, Revisiting metric learning for
few-shot image classification, Neurocomputing 406 (2020) 49–58 .

44] S. Bai, J.Z. Kolter, V. Koltun, An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling, CoRR (2018) arXiv preprint

arXiv: 1803.01271 .

Minglei Yuan is currently pursuing the PhD degree in the

Department of Computer Science and Technology, Nanjing
University. He received BS Degree from University of Sci-

ence and Technology of China in 2012. His current inter-
ests are in the areas of few-shot learning, computer vi-

sion, and pattern recognition algorithms.

Chunhao Cai is currently pursuing the BS degree in the
Department of Computer Science and Technology, Nanjing

University. His current interests are in the areas of few-
shot learning, and pattern recognition algorithms.

http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0001
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0002
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0003
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0004
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0005
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0006
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0007
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0008
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0009
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0010
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0011
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0012
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0013
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0014
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0016
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0017
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0018
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0019
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0020
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0021
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0022
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0023
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0024
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0025
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0026
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0027
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0028
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0029
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0030
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0031
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0032
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0033
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0034
http://arxiv.org/abs/1609.03499
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0036
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0037
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0038
http://arxiv.org/abs/1802.04376
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0040
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0041
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0042
http://refhub.elsevier.com/S0031-3203(22)00185-6/sbref0043
http://arxiv.org/abs/1803.01271

M. Yuan, C. Cai, T. Lu et al. Pattern Recognition 129 (2022) 108704

c

n

n

o
g

H

1
Y

2

Tong Lu received the PhD degree in computer science
from Nanjing University in 2005. He served as Associate

Professor and Assistant Professor in the Department of
Computer Science and Technology at Nanjing University

from 2007 and 2005. He is now a full Professor at the

same university. He also has served as Visiting Scholar at
National University of Singapore and Department of Com-

puter Science and Engineering, Hong Kong University of
Science and Technology, respectively. He is also a member

of the National Key Laboratory of Novel Software Technol-
ogy in China. He has published over 130 papers and au-

thored 2 books in his area of interest, and issued more

than 20 international or Chinese invention patents. His
urrent interests are in the areas of multimedia, computer vision and pattern recog-

ition algorithms/systems. Dr. Tong Lu was a member of ACM, IAPR, ISAI and a se-
ior member of China Computer Federation (CCF). He is the Youth Associate Editor

f Journal on Frontiers of Computer Science (FCS), and has served as the Secretary-
eneral of CAD&CG Committee of Jiangsu Computer Federation in China since 2008.

e has been member of the program committee or session chair of more than

0 international scientific conferences, and the Chair of Organization Committee of
outh Scholar Forum of State Key Laboratory for Novel Software Technology since

010.

Yirui Wu is currently an Associate Professor at Hohai

University and working in Hydrology Big Data Group. Be-
fore coming to Hohai, I obtained my PhD degree from

Nanjing University in 2016. I received my BS Degree from

Nanjing University in 2011 as well. During my PhD study,

I was with the IMAGE Lab under the supervision of Prof.
Tong Lu and worked closely with Dr. Shivakumara Pala-

iahnakote.
14
Qian Xu is currently pursuing the BS degree in the De-

partment of Computer Science and Technology, Nanjing
University. Her current interests are in the areas of few-

shot learning, and Image classification algorithms.

Shijie Zhou is the research leader of Jiangsu Welm Tech-
nology. He received his MSc and BSc from University of

Sydney, and Jiangsu University of Science and Technology,
respectively. His current interests are in the areas of pat-

tern recognition and artificial intelligence applications.

	A novel forget-update module for few-shot domain generalization
	1 Introduction
	2 Related work
	2.1 Few-shot classification methods
	2.2 Domain adaptation

	3 Methodology
	3.1 Preliminary
	3.2 Channel vector sequence construction module
	3.3 Forget-Update module

	4 Experiments
	4.1 Experimental setups
	4.1.1 Scenarios
	4.1.2 Network architecture
	4.1.3 Training schema
	4.1.4 Evaluation protocols

	4.2 Experimental results
	4.2.1 Experimental results in the same-domain scenarios
	4.2.2 Cross-domain adaptive capacity

	4.3 Ablation experiments
	4.3.1 The effects of forgetting block and updating block
	4.3.2 Visualization and analysis of forget module and update module

	4.4 Sensitivity analysis of forget-update module number and filter size
	4.5 Sensitive experiments on the instance dimension
	4.6 The effective of channel vector sequence
	4.7 Computational expense analysis
	4.8 Compare causal dilation convolution with fixed dilation rate convolution
	4.9 The impact of pre-trained model on few-shot domain generalization tasks

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	References

