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a b s t r a c t 

Existing Few-Shot Learning ( FSL ) methods learn and recognize new classes with the help of prior knowl- 

edge. However, they cannot handle this task well in a cross-domain scenario when training and testing 

sets are from different domains, since the fact that prior knowledge in different domains often varies 

greatly. To solve this problem, in this paper, we propose a few-shot domain generalization method, which 

is designed to extract relationship embeddings using Forget-Update Modules named FUM . The relation- 

ship embedding considers valuable relational information between samples in a specific task, and the 

forget-update module takes into account differences between domains and adjusts the distribution of re- 

lational embeddings through forgetting and updating mechanisms based on specific tasks. To evaluate 

the few-shot domain generalization ability of FUM, extensive experiments on eight cross-domain sce- 

narios and six same-domain scenarios are conducted, and the results show that FUM achieves superior 

performances compared to recent few-shot learning methods. Visualization results also show that the dis- 

tribution of the relationship embeddings extracted by FUM has stronger few-shot domain generalization 

ability than the feature embeddings used in the existing FSL methods. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Many deep learning models [1–4] have achieved remarkable re- 

ults on object recognition tasks. These powerful deep learning 

ethods heavily rely on deep neural networks trained with thou- 

ands of label instances. However, a large scarcity of labeled in- 

tances requires huge manual work, which is a time-consuming 

nd annoying task and limits working scenarios of deep learning 

ethods. Most of these popular deep learning models will en- 

ounter the overfitting problem when the training data is limited. 

owever, people can often successfully generalize new concepts 

rom just a single example by action, imagination, and explanation 

5] . The problem of learning to generalize to new classes with a 

imited number of label examples, called few-shot learning ( FSL ), 

as attracted considerable attention in the past few years. Recently, 

esearch on FSL begin to appear in many areas, such as image clas- 

ification [6–10] , gesture recognition [11] , activity recognition [12] , 

nd logo retrieval [13] . 

Many FSL methods have been proposed to learn new trans- 

ormable visual concepts with limited samples in recent years. 

ome FSL methods are often trained and evaluated on the same 
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ataset, where the basic and novel classes are from the same 

omain (e.g., generic object recognition tasks). However, in real 

cenarios, training and testing sets may not belong to the same 

omain, such as the recently proposed evaluation setup [14] that 

he training set is from mini Imagenet [6] , while the testing set is 

rom CUB [15] . Fig. 1 shows some samples from both datasets. The 

ource domain ( mini Imagenet) contains pianos, dogs, steamships, 

hoes, and pencil-cases, while the target domain (CUB) contains 

ifferent species of birds. In this case, the distributions of the 

raining set and the testing set are significantly different, and the 

rior knowledge learned from mini Imagenet degrades on CUB. 

hen et al. [14] reports that the recently proposed FSL methods 

6–10,14] fail to deal with such domain generalization problem. 

n this paper, we refer to such a problem as Few-shot Domain 

eneralization problem . Some research fields are closely related 

o few-shot domain generalization. Table 1 introduces the relation- 

hip between few-shot domain generalization and some related 

earning paradigms. 

To solve the few-shot domain generalization problem, we pro- 

ose to infer categories of samples by extracting the relationship 

mbedding with Forget-Update Module ( FUM ), which includes a 

hannel vector sequence construction module and several forget- 

pdate modules. Channel vector sequence construction module is 

sed to construct the relational information, and the forget-update 

odules are used to extract the relationship embeddings of 

https://doi.org/10.1016/j.patcog.2022.108704
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108704&domain=pdf
mailto:lutong@nju.edu.cn
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Fig. 1. Illustration for the task setting of few-shot domain generalization. 

Table 1 

Comparison between few-shot domain generalization and some related learning paradigms. The ”FEW” column indicates whether the learning 

paradigm learns a model with few samples. D src and D tar denote the source domain set and the target domain set, while Y src and Y tar denote the 

source label set and the target label set. P(·) represents a distribution function. 

Learning paradigm Training data Test data FEW Condition 

Few-shot domain generalization D src D tar Yes P(D src ) � = P(D tar ) , Y src � = Y tar 

Few-shot learning D src D tar Yes D src and D tar have similar data distribution but disjoint label space 

Domain adaptation D src , D tar D tar No P(D src ) � = P(D tar ) , Y src = Y tar 

Domain generalization D src D tar No P(D src ) � = P(D tar ) , Y src = Y tar 

Fig. 2. Visualization of embedded features by t-SNE [16] . We use mini Imagenet to train different models and use these models to classify samples on the CUB dataset. 

Fig. 2 (a)–(c) show the visualization of the embedded features generated by the different models on five types of CUB samples with t-SNE [16] . The color of the dots represents 

the category, and the distance between the dots represents the similarity. 
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hannel vector sequence. The proposed method classifies few-shot 

amples based on the distribution of relationship embeddings. 

ig. 2 (b) and (c) show the distributions of feature embedding 

xtracted by FEAT [10] and ProtoNet [8] , respectively, from which 

e find that there are no clear boundaries between different 

ategories. Fig. 2 (a) shows the distribution of the relationship 

mbeddings extracted by FUM. It can be seen that the relationship 

mbeddings of FUM are more closely distributed within classes 

nd more distantly distributed between classes than feature 

mbeddings of FEAT and ProtoNet. Therefore, we can say that 

elationship embeddings processed by forgetting and updating 

echanisms have better few-shot domain generalization ability 

han feature embeddings of FEAT and ProtoNet. 

In an FSL classification task, the predicted category of a query 

ample is affected by samples in the support set. The motivation of 

hannel vector sequence is to obtain the relationship embeddings. 

hannel vector sequence presents a simple method to exploit the 

elated information of the support sample and a query sample by 

titching their features in channel order. Relationship embeddings 

f a channel vector sequence is then extracted in conjunction with 

he forget-update module proposed in §3.3 . Relationship embed- 

ings can be used to obtain classification results in cross-domain 

cenarios and the same-domain scenarios. 

The motivation of the proposed forget-update module is illus- 

rated in Fig. 3 . Since some distinguishing features in one task 

ay be invalid in another task due to domain shift, the proposed 

orget-update module is designed to alleviate domain shifts be- 

ween training and test datasets in FSL scenarios by learning to 

pdate and forget. In addition, forget-update modules extract the 
2 
elationship embeddings of channel vector sequence containing 

he general relationship of a support set and a query sample. For 

ach episode, we first construct a channel vector sequence, which 

mplies the related information of the supporting samples and a 

uery sample. Then we extract information of channel vector se- 

uence using a series of proposed forget-update modules, which 

re designed to improve the discrimination by learning to forget 

nd generate new features based on each task. The forget-update 

odule takes into account differences between domains and ad- 

usts the distribution of relational embeddings through a forget- 

ing and updating mechanism based on specified tasks. In detail, 

 forget-update module is a task-based module that contains for- 

etting parts and updating parts. The forgetting part calculates the 

etaining ratios for the input features via the forgetting block. The 

artially retained features are concatenated with the newly ex- 

racted features obtained by the updating part. Finally, the con- 

atenated result is used as input for the next forget-update step. 

his circular process realizes the forgetting and updating of chan- 

el vector sequence in the feature extraction process. Through con- 

inuously forgetting domain-unrelated information with the forget 

odule and introducing domain-specific information with the up- 

ate module, we finally generalize the model from base domains 

o novel domains, which has better few-shot domain generaliza- 

ion performance. 

To validate the effectiveness of the proposed method, extensive 

xperiments are conducted in both the cross-domain scenarios and 

he same-domain scenarios, which evaluates the learning ability of 

he proposed method in the cross-domain and the same-domain 

cenarios. The experimental results in Tables 2–9 show the supe- 
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Fig. 3. A toy example illustrates the motivation of forget-update module. This is the 5-way 1-shot few-shot classification example. The support set includes five classes 

(i, ii, iii, iv, v), and the query set includes one sample. ( Fig. 3 (a)) Each class includes four features. The distances between the query sample and each supporting sample are 

4, 2, 2, 3, 2. Under this condition, we cannot distinguish the category of the query sample. ( Fig. 3 (b)) Each sample includes six features, which include forgotten features and 

updated features. 

Table 2 

5-way 1-shot and 5-way 5-shot classification accuracies on mini Imagenet. The ex- 

perimental results on the left were obtained without data augmentation, while those 

on the right with data augmentation. The experimental results marked with ♦ are 

from Chen et al. [14] , while the experimental results marked with ♥ are from Zhang 

et al. [42] . The unit is a percentage. The best results are marked in bold , and the 

second-best results are marked in underline . 

Model No Data Augmentation Data Augmentation 

1-shot 5-shot 1-shot 5-shot 

MAML [7] 47.91 ±0.81 62.51 ±0.72 46.47 ±0 . 82 ♦ 62.71 ±0 . 71 ♦ 

MatchingNet [6] 50.53 ±0.83 63.77 ±0.67 48.14 ±0 . 78 ♦ 63.48 ±0 . 66 ♦ 

ProtoNet [8] 48.58 ±0.82 64.18 ±0.69 44.42 ±0 . 84 ♦ 64.24 ±0 . 72 ♦ 

RelationNet [9] 50.43 ±0.78 66.30 ±0.70 49.31 ±0.85 ♦ 66.60 ±0.69 ♦ 

Baseline [14] 36.43 ±0.61 55.41 ±0.66 42.11 ±0 . 71 ♦ 62.53 ±0 . 69 ♦ 

Baseline + [14] 38.26 ±0.55 55.86 ±0.65 48.24 ±0.75 ♦ 66.43 ±0.63 ♦ 

FEAT [10] 46.11 ±0.74 62.76 ±0.67 47.25 ±0.79 61.92 ±0.71 

SS [42] 46.9 ——♥ 64.0 ——♥ - - 

FUM(2,2) 51.87 ±0.75 67.92 ±0.67 47.21 ±0.81 65.47 ±0.63 

FUM(2,2,2) 50.33 ±0.82 66.94 ±0.66 47.17 ±0.79 64.62 ±0.67 

Table 3 

5-way 1-shot and 5-way 5-shot classification accuracies on CUB. The experimental results 

on the left were obtained without data augmentation, while those on the right with data 

augmentation. The experimental results marked with ♦ are from Chen et al. [14] , while the 

experimental results marked with ♥ are from Zhang et al. [42] . The unit is a percentage. 

The best results are marked in bold , and the second-best results are marked in underline . 

Model No Data Augmentation Data Augmentation 

1-shot 5-shot 1-shot 5-shot 

MAML [7] 56.07 ±0.94 73.28 ±0.69 55.92 ±0 . 95 ♦ 72.09 ±0 . 76 ♦ 

MatchingNet [6] 60.51 ±0.89 72.88 ±0.67 61.16 ±0 . 89 ♦ 72.86 ±0 . 70 ♦ 

ProtoNet [8] 49.39 ±0.88 66.21 ±0.72 51.31 ±0 . 91 ♦ 70.77 ±0 . 69 ♦ 

RelationNet [9] 60.83 ±0.92 73.82 ±0.67 62.45 ±0 . 98 ♦ 76.11 ±0 . 69 ♦ 

Baseline [14] 31.95 ±0.58 52.90 ±0.67 47.12 ±0 . 74 ♦ 64.16 ±0 . 71 ♦ 

Baseline + [14] 43.58 ±0.76 60.82 ±0.76 60.53 ±0 . 83 ♦ 79.34 ±0 . 61 ♦ 

FEAT [10] 52.43 ±0.92 66.85 ±0.76 63.16 ±0.89 81.54 ±0.64 

SS [42] 44.1 ——♥ 59.7 ——♥ - - 

FUM(2,2) 62.35 ±0.99 74.26 ±0.67 65.40 ±0.95 78.75 ±0.67 

FUM(2,2, 2) 62.49 ±0.98 75.66 ±0.69 64.51 ±0.98 82.11 ±0.62 

Table 4 

5-way 1-shot and 5-way 5-shot classification accuracies on CUB and mini Ima- 

genet → CUB. The experimental results marked with † are from Li et al. [43] . The unit is 

a percentage. The best results are marked in bold , and the second-best results are marked 

in underline . 

Model CUB mini Imagenet → CUB 

1-shot 5-shot 1-shot 5-shot 

MAML [7] 56.07 ±0.94 73.28 ±0.69 36.03 ±0.68 51.65 ±0.75 

MatchingNet [6] 60.51 ±0.89 72.88 ±0.67 38.16 ±0.67 51.18 ±0.71 

ProtoNet [8] 49.39 ±0.88 66.21 ±0.72 34.16 ±0.60 53.05 ±0.74 

RelationNet [9] 60.83 ±0.92 73.82 ±0.67 38.14 ±0.67 53.90 ±0.70 

Baseline [14] 31.95 ±0.58 52.90 ±0.67 33.78 ±0.58 51.56 ±0.67 

Baseline + [14] 43.58 ±0.76 60.82 ±0.76 38.17 ±0.63 55.12 ±0.69 

FEAT [10] 52.43 ±0.92 66.85 ±0.76 38.42 ±0.72 55.29 ±0.74 

RML [43] - - 40.16 ±0 . 68 † 56.96 ±0.65 † 

FUM(2,2) 62.35 ±0.99 74.26 ±0.67 44.57 ±0.75 56.45 ±0.80 

FUM(2,2,2) 62.49 ±0.98 75.66 ±0.69 44.37 ±0.73 60.56 ±0.74 

3
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Table 5 

5-way 1-shot and 5-way 5-shot classification accuracies on Real and mini Ima- 

genet → Real. The unit is a percentage. The best results are marked in bold , and the 

second-best results are marked in underline . 

Model Real mini Imagenet → Real 

1-shot 5-shot 1-shot 5-shot 

MAML [7] 55.40 ±0.93 72.94 ±0.72 33.97 ±0.71 44.57 ±0.76 

MatchingNet [6] 55.32 ±0.85 74.74 ±0.66 50.01 ±0.93 64.72 ±0.81 

ProtoNet [8] 52.81 ±0.88 73.70 ±0.67 48.13 ±0.90 65.01 ±0.81 

RelationNet [9] 54.61 ±0.88 75.18 ±0.67 48.14 ±0.91 63.27 ±0.82 

Baseline [14] 42.61 ±0.67 65.41 ±0.66 41.68 ±0.71 61.72 ±0.75 

Baseline + [14] 46.67 ±0.78 69.37 ±0.67 41.04 ±0.68 60.24 ±0.74 

FEAT [10] 51.20 ±0.86 70.76 ±0.72 47.32 ±0.93 63.52 ±0.88 

FUM(2,2) 57.44 ±0.90 76.69 ±0.65 52.13 ±0.91 68.24 ±0.81 

FUM(2,2,2) 56.27 ±0.89 76.31 ±0.67 51.52 ±0.97 68.33 ±0.78 

Table 6 

5-way 1-shot and 5-way 5-shot classification accuracies on Painting and mini 

Imagenet → Painting. The unit is a percentage. The best results are marked in bold , 

and the second-best results are marked in underline . 

Model Painting mini Imagenet → Painting 

1-shot 5-shot 1-shot 5-shot 

MAML [7] 39.48 ±0.78 53.15 ±0.75 27.34 ±0.55 33.38 ±0.57 

MatchingNet [6] 38.05 ±0.78 51.55 ±0.70 35.19 ±0.72 46.93 ±0.75 

ProtoNet [8] 35.80 ±0.70 49.10 ±0.68 34.63 ±0.71 46.70 ±0.72 

RelationNet [9] 38.44 ±0.76 52.39 ±0.72 35.41 ±0.70 49.10 ±0.77 

Baseline [14] 30.97 ±0.54 44.97 ±0.63 31.70 ±0.57 45.68 ±0.64 

Baseline + [14] 31.88 ±0.56 46.98 ±0.63 31.23 ±0.59 44.13 ±0.72 

FEAT [10] 35.21 ±0.72 48.71 ±0.74 33.14 ±0.66 45.82 ±0.71 

FUM(2,2) 42.85 ±0.82 58.90 ±0.71 37.32 ±0.72 50.14 ±0.77 

FUM(2,2,2) 40.92 ±0.77 58.73 ±0.68 37.23 ±0.74 50.87 ±0.71 

Table 7 

5-way 1-shot and 5-way 5-shot classification accuracies on Infograph and mini 

Imagenet → Infograph. The unit is a percentage. The best results are marked in 

bold , and the second-best results are marked in underline . 

Model Infograph mini Imagenet → Infograph 

1-shot 5-shot 1-shot 5-shot 

MAML [7] 26.45 ±0.62 33.53 ±0.62 23.22 ±0.47 26.22 ±0.49 

MatchingNet [6] 26.78 ±0.56 32.66 ±0.56 26.81 ±0.54 32.81 ±0.58 

ProtoNet [8] 26.41 ±0.53 31.36 ±0.56 26.85 ±0.54 33.45 ±0.60 

RelationNet [9] 27.10 ±0.63 32.39 ±0.59 26.94 ±0.59 34.33 ±0.60 

Baseline [14] 23.30 ±0.43 27.77 ±0.46 24.65 ±0.46 32.28 ±0.57 

Baseline + [14] 23.05 ±0.44 27.80 ±0.50 24.40 ±0.46 30.18 ±0.55 

FEAT [10] 25.28 ±0.53 30.86 ±0.55 26.18 ±0.53 32.55 ±0.59 

FUM(2,2) 28.24 ±0.63 34.12 ±0.63 28.46 ±0.56 33.02 ±0.61 

FUM(2,2,2) 28.78 ±0.64 34.35 ±0.62 28.04 ±0.57 35.15 ±0.62 
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Table 8 

5-way 1-shot and 5-way 5-shot classification accuracies on Clipart and mini Im- 

agenet → Clipart. The unit is a percentage. The best results are marked in bold , and 

the second-best results are marked in underline . 

Model Clipart mini Imagenet → Clipart 

1-shot 5-shot 1-shot 5-shot 

MAML [7] 46.47 ±0.83 65.51 ±0.72 29.49 ±0.57 38.54 ±0.64 

MatchingNet [6] 47.23 ±0.82 64.24 ±0.69 35.10 ±0.69 47.66 ±0.69 

ProtoNet [8] 44.39 ±0.79 62.13 ±0.67 34.76 ±0.71 48.18 ±0.71 

RelationNet [9] 48.10 ±0.82 67.70 ±0.71 36.54 ±0.72 50.37 ±0.77 

Baseline [14] 39.93 ±0.64 60.26 ±0.66 34.69 ±0.64 51.96 ±0.69 

Baseline + [14] 43.45 ±0.71 63.80 ±0.69 34.06 ±0.62 48.87 ±0.68 

FEAT [10] 40.50 ±0.77 58.66 ±0.74 31.08 ±0.66 44.61 ±0.69 

FUM(2,2) 50.00 ±0.79 71.00 ±0.63 37.81 ±0.72 48.46 ±0.77 

FUM(2,2,2) 50.65 ±0.80 72.27 ±0.63 37.72 ±0.72 51.03 ±0.76 
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iority of our method. Tables 2 and 3 give the experimental re- 

ults on the same-domain scenarios. It is worth mentioning that in 

able 2 , in the case of no data augmentation, FUM(2, 2) achieves 

he best performance, that is, 1.34% higher than the best compar- 

son method in the 5-way 1-shot paradigm and 1.62% higher than 

he comparison method in the 5-way 5-shot paradigm. In Table 3 , 

n the case of no data augmentation, FUM(2, 2, 2) also achieves the 

est performance, that is, 1.66% higher than the best comparison 

ethod in the 5-way 1-shot paradigm and 1.84% higher than the 

est comparison method in the 5-way 5-shot paradigm. Tables 4–

 give the experimental results in the same-domain and the cross- 

omain scenarios. Specifically, the FUM method obtains the best 

rediction results in almost all the cross-domain scenarios, indi- 

ating that FUM has a good few-shot domain generalization ability. 

n addition, the experimental results in the same-domain scenarios 

lso show that the FUM method has an excellent few-shot learning 

erformance. 

The main contributions of this paper are shown as follows. 
4

• This work is the first effort to perform domain generalization 

on few-shot learning scenarios; 
• The proposed FUM presents a novel method to mitigate the 

bias of FSL domains and can improve the few-shot domain gen- 

eralization ability by forgetting and generating features accord- 

ing to specific tasks; 
• The proposed channel vector sequence construction module 

gives a new method to construct the related information for FSL 

scenarios by stitching channel information of samples; 
• We proposed to extract relational embedding of each scenario, 

which considers valuable relational information between sam- 

ples in a scenario. Visualization results in Fig. 2 also show that 

relational embedding is more discriminating than feature em- 

bedding. 

. Related work 

.1. Few-shot classification methods 

In the recent years, a large number of FSL methods 

7–9,17–23] have been proposed. They can be divided into the 

ollowing categories: metric-based methods, meta-learning-based 

ethods, and classifier-learning-based methods. 

[8–10,17,21–23] are metric-based methods. These methods aim 

o make the samples from the same category closer in the em- 

edding space, while those from different categories are further 

part. For instance, Siamese Network [17] employs a siamese net- 

ork to extract feature vectors from a pair of samples and calcu- 

ates the similarity relationship between them. ProtoNet [8] and 

EAT [10] are based on euclidean distance metrics and uses the 

ean of embeddings from the same category as the prototype of 

hat category. Relation Network [9] is similar to ProtoNet, except 

hat it employs a neural network to learn a deep instance metric 

nstead of using a fixed one. Some metric-based methods propose 

o generate more robust prototypes. LMPNet [21] proposes a novel 

ocal descriptor-based multi-prototype network that generates an 

mbedding space with multiple prototypes. UDS [22] uses a de- 

criptor selection module to locate and select semantic regions in 

he feature maps and then maps the selected features into new 

ectors via a task-related aggregation module to enhance the rep- 

esentations of prototypes. [23] introduces fine-grained visual at- 

ributes that enable the meta-learner to learn to complete proto- 

ypes. Our work is related to these metric-based approaches, with 

he difference that we propose a few-shot domain generalization 

ethod to extract domain-adaptive relationship embedding, which 

onsiders the differences between domains and adjusts the distri- 

ution of relational embeddings by the proposed FUM. 

Some meta-learner-based methods propose to construct a 

eta-learner that learns to make updates to the parameters 

f a meta-learner designed for a scenario, such as [7,18,19] . 
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Table 9 

5-way 1-shot and 5-way 5-shot classification accuracies on mini Imagenet → Cars, mini Imagenet → Dogs and 

mini Imagenet → Flowers. The unit is a percentage. The best results are marked in bold , and the second-best re- 

sults are marked in underline . 

Model mini Imagenet → Cars mini Imagenet → Dogs mini Imagenet → Flowers 

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 

MAML [7] 25.32 ±0.49 30.29 ±0.50 25.16 ±0.45 28.70 ±0.46 23.21 ±0.45 25.26 ±0.41 

MatchingNet [6] 28.69 ±0.59 38.57 ±0.65 31.29 ±0.58 44.51 ±0.72 38.37 ±0.84 54.67 ±0.82 

ProtoNet [8] 27.93 ±0.55 37.50 ±0.64 31.44 ±0.61 45.13 ±0.72 39.19 ±0.84 52.32 ±0.92 

RelationNet [9] 28.17 ±0.59 36.70 ±0.61 31.39 ±0.63 44.29 ±0.69 39.94 ±0.84 52.10 ±0.84 

Baseline [14] 27.32 ±0.49 39.78 ±0.59 28.11 ±0.50 39.26 ±0.60 37.14 ±0.67 55.20 ±0.78 

Baseline + [14] 27.06 ±0.51 37.21 ±0.56 30.54 ±0.55 41.82 ±0.64 37.42 ±0.68 53.56 ±0.80 

FEAT [10] 27.17 ±0.56 35.09 ±0.63 28.96 ±0.57 42.85 ±0.64 36.20 ±0.74 49.20 ±0.86 

FUM(2,2) 30.76 ±0.61 39.49 ±0.65 35.24 ±0.70 47.50 ±0.70 42.93 ±0.90 53.94 ±0.86 

FUM(2,2,2) 30.57 ±0.63 41.00 ±0.67 33.05 ±0.66 47.04 ±0.70 42.46 ±0.87 55.90 ±0.85 
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AML [7] provides a method to initialize the parameters of the 

raditional learner in such a way that a few gradient descent steps 

ith a small amount of training data from a new task will lead to 

ood generalization performance on that task [18] . proposes to use 

he embedding vectors of newly seen samples to imprint weights 

or the new classes on the rear of the base network. The tradi- 

ional learner used in [19] is a convolutional-network-based net- 

ork. This method learns to update the parameters of the last fully 

onnected layer of the traditional learner on the newly seen sam- 

les. 

The last type is the classifier-learning-based method. Some FSL 

ethods are implemented by learning a classifier, such as [14,24] . 

hese methods use a large number of sampled tasks in the train- 

ng set to train a feature extractor and a classifier in the training 

hase, then fix parameters of the feature extractor and refine the 

arameters of the classifier with a few labeled samples in the test- 

ng phase. Finally, the feature extractor and the refined classifier 

re used to make predictions on unlabeled samples. 

.2. Domain adaptation 

Domain adaptation is a particular case of transfer learning. 

n domain adaptation, the source and target domains are in the 

ame feature space, but with different distributions. Domain adap- 

ation aims to adapt the model trained in the source domain to 

he target domain. It has been successfully used in tasks such 

s style transfer and object recognition. Recently, multiple do- 

ain adaptation methods have been proposed to minimize distri- 

ution discrepancy. These include divergence-based domain adap- 

ation, adversarial-based domain adaptation, and reconstruction- 

ased domain adaptation. Some divergence-based domain adap- 

ation methods [25,26] propose to minimize divergence crite- 

ion between the source and target data distributions. Some 

dversarial-based domain adaptation methods [27,28] propose to 

educe the gap between distributions by using adversarial training. 

econstruction-based domain adaptation methods [29,30] use an 

uxiliary reconstruction task to create a shared representation for 

ach domain. 

These domain adaptation methods allow us to transfer the 

nowledge learned on source tasks to target tasks within the same 

ategory. However, they are not suitable for the FSL cross-domain 

cenario, where the training and testing sets have different classes. 

pecifically, the training and testing sets contain general object cat- 

gories and different bird species, respectively. Besides, [14] re- 

orts that recently proposed transfer-learning-based FSL methods 

re also severely degraded in this condition. In this paper, we de- 

ign forget-update modules to extract the relationship embeddings 

f channel vector sequence containing the general relationship be- 

ween support samples and a query sample. The forget-update 

odules can also align the distribution of relationship embeddings 
5 
y forgetting and generating feature information of channel vector 

equence. The extensive experiments in Tables 4–9 demonstrate 

hat the proposed FUM can significantly improve the performance 

f FSL in cross-domain scenarios. 

. Methodology 

In this section, the preliminaries are given first; then the chan- 

el vector sequence is described; finally, forget-update module is 

etailed. 

The overall framework of the proposed method is shown in 

ig. 4 , which consists of four parts: feature extractor ϕ(·) , chan- 

el connector C(·) , forget-update module and prediction module. 

he feature extractor ϕ(·) first converts each image into c feature 

aps, and then converts each feature map into a 1-dimensional 

eature vector m , m ∈ R d . Channel connector C(·) is used to stitch 

he feature vector of a query sample with feature vector of each 

lass in support set, then obtain N channel vector sequence x̃ 

 ̃

 x ∈ R c×(2 ×d) ), N is the number of class in support set. These chan-

el vector sequences are then put into forget-update modules. The 

roposed forget-update module is constructed with forget-update 

locks, which is used to extract the relationship embedding of each 

hannel vector sequence. The prediction module infers the class of 

 query sample from the relationship embedding. Finally, we cal- 

ulate the mean square error loss and do backward propagation. 

.1. Preliminary 

The general settings and symbols of cross-domain few-shot 

lassification used in this paper are detailed in this section. 

The purpose of few-shot domain generalization is to build a 

odel �(·) , where the training set D a and testing set D b are 

rom different domains. For example, the training set uses data 

rom mini ImageNet [6] that is mainly generic objects while the 

esting set uses data from Caltech-UCSD Birds-200-2011 ( CUB ) 

15] , Oxford-Flowers-102 ( Flowers ) [31] , Stanford-dogs ( Dogs ) [32] ,

tanfords-cars ( Cars ) [33] or four datasets ( Real, Painting, Info- 

raph, Clipart ) from DomainNet Dataset [34] . 

An effective way to utilize the training set is to mimic the few- 

hot learning setting proposed in [6] . Concretely, in the training 

hase, data is randomly sampled from the training set D a to sim- 

late a test scenario that is called a task (or episode) T . The FSL

odel �(·) is trained with randomly sampled tasks. Each FSL task 

 contains a support set S , a query set Q , and an output set Y ,

hich satisfy that the elements of S and Q do not intersect but 

re sampled from the same categories. Besides, each element in 

he support set S has label information, while those in the query 

et Q do not. The element of the output set Y is the label of the

orresponding element in the query set Q . In the testing phase, 
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Fig. 4. The overall framework of the proposed method. 
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Table 10 

Ablation experiments on mini Imagenet → CUB and CUB. The unit is a per- 

centage and the best results are highlighted . 

Model mini Imagenet → CUB CUB 

1-shot 5-shot 1-shot 5-shot 

+ forget 43.56 ±0.19 54.45 ±0.19 59.94 ±0.23 72.25 ±0.18 

+ update 43.76 ±0.19 58.20 ±0.18 61.73 ±0.23 74.56 ±0.17 

FUM(2,2,2) 44.30 ±0.19 60.44 ±0.18 

61.97 ±0.23 75.51 ±0.17 
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any tasks are randomly sampled from the dataset D b , and eval- 

ated on the model �(·) . The average prediction accuracy of the 

odel is used to measure the learning ability in cross-domain sce- 

arios. 

In this paper, the N-way K-shot few-shot classification 

aradigm is only considered unless otherwise specified. In such a 

aradigm, every support set S contains exactly N classes, and each 

lass has K samples, while the query set Q contains some unla- 

eled samples that belong to the classes in S . The output set Y
ncludes the corresponding labels of elements in the query set Q . 

he support set S , the query set Q and the output set Y are for-

alized as shown in Eqs. (1) , (2) and (3) . 

 = { (x 11 , l 1 ) , · · · , (x i j , l i ) , · · · , (x NK , l N ) ;
 i ∈ { 1 , · · · , N}} , (1) 

 = { ̇ x 1 , · · · , ˙ x q } , (2) 

 = (y 1 , · · · , y q ) ∈ { 1 , · · · , N} q , (3)

here N is the number of classes, K is the number of samples per 

lass in the support set S , and q is the size of the query set. The

ubscripts of x i j indicate that x i j is the jth sample in the i th class. 

Meta-learner �(·) is trained to fit few-shot classification tasks 

y minimizing the prediction loss on query set Q as in Eq. (4) . 

∗ = argmin 

θ

E T 

[ ∑ 

˙ x i ∈Q ,y i ∈Y 
L (y i , �θ ( ̇ x i , S)) 

] 

, (4) 

here �(·) indicates the meta-learner and L (·) is the loss func- 

ion. The meta-learner �(·) is required to train with thousands 

f randomly sampled tasks under the constraint of a loss function 

 (·) . 

.2. Channel vector sequence construction module 

In this paper, channel vector sequence is proposed, which is 

onstructed to collect the related information of each class-level 

eature map and a query sample feature in a task. Channel vector 

equence can be combined with some sequence prediction meth- 

ds, such as TCN, to predict the similarity between the query sam- 

le and each supported class based on a specific task. 

This part introduces how to convert samples in a task T to a 

hannel vector sequence ̃  x p . First, the feature extractor ϕ(·) is used 

o extract feature maps of samples in support set S and query set 

 . The feature extractor can be implemented using a deep convo- 

utional neural network. It yields a feature map tensor which has 

 dimension of ( c, h , w ), where c, h and w indicate dimensions of

hannel, height and width. Class-level feature maps are then ob- 

ained by averaging the feature maps of the same class in the sup- 

ort set S . The class-level feature map for the i th class in support
6 
et S is formulated as follows: 

 i = 

1 

K 

K ∑ 

j=1 

(ϕ(x i j )) . (5) 

Next, each class-level feature map x and feature map of each 

uery sample ϕ( ̇ x ) are converted to feature vector x 
′ 

and ˙ x 
′ 

with 

 dimension of ( c, h × w ). After that, the dimensions of x 
′ 

and ˙ x 
′ 

re changed to ( c, d) using a mapping function. We refer to the 

esults in Table 12 to choose d and the mapping function. Finally, 

he channel connector C(·) splices the i th class-level feature vector 

 

′ 
i with the feature vector of the pth query sample ˙ x 

′ 
p according to 

he channel order to form channel vector sequence ̃  x , as Eq. (6) . 

 

 ip = C( x 

′ 
i , ˙ x 

′ 
p ) . (6) 

here C(·) is the channel connector function, p indicates pth ele- 

ent in query set Q . ˜ x ip ∈ R 

c×(2 ×d) , c is the number of channels,

nd d is the feature dimension of each reduced instance. ̃  x is called 

hannel vector sequence in this paper. 

Then, the few-shot classification problem is transformed into a 

equence prediction problem on channel vector sequence. The pre- 

iction model is formalized as Eq. (7) . 

 

 p = f ( ̃  x 1 p , · · · , ̃  x Np ) , (7) 

here p indicates pth element in query set Q , N is the number of 

lasses in a support set and f (·) is a prediction model. 

.3. Forget-Update module 

Most state-of-the-art FSL methods do not consider the domain 

hift problem between the training and testing sets. These meth- 

ds may degrade when there is a domain shift between them. 

n this section, forget-update module is proposed for improving 

he discrimination in the scenario of domain shift. Forget-update 

odule consists of stacked forget-update blocks, and each forget- 

pdate block consists of forgetting block and updating block. The 

orgetting block is designed to learn the forgetting rate based on 

ontext, while the updating block learn to generate new informa- 

ion according to context. By training on numerous scenarios, the 

orget-update module learns how to forget noisy information that 

oes not fit the context and generate new information based on 
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Fig. 5. Forget-update block. The forget-update block includes two parts. The dashed boxes from left to right represent the forgetting block and updating block, respectively. 

� indicates element-wise multiplication. 
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he context. With the help of forget-update module, we can extract 

he relationship embeddings from channel vector sequence, which 

elps to make the distribution of the training and testing sets con- 

istent. As can be seen in Fig. 2 , the distribution based on rela-

ionship embeddings ( Fig. 2 (a)) is more distinguishable than the 

nstance-embedding-based distribution ( Fig. 2 (b) and (c)). Forget- 

pdate module can bring similar samples closer together and dif- 

erent categories further apart. The overall flow of forget-update 

odule described in Algorithm 1 and the detail of forget-update 

lgorithm 1 Forget-update module. σ (·) is the sigmoid function, 

denotes element-wise multiplication operator, and C(·) is the 

hannel concatenate function, Causal(·) is the causal dilated con- 

olutional function. 

equire: ˜ x : channel vector sequence 

k : kernel size 

c: the length of channel sequence 

1: ˜ x (0) = ̃  x 

2: � = 	 log k c
 
3: i = 0 

4: while i < � do 

5: d = k i 

6: ˜ x (i +1) = ForgetUpdateBlock ( ̃  x i , d, k ) 

7: i = i + 1 

8: end while 

9: return 

˜ x (� −1) 

lock illustrated in Fig. 5 . 

Causal dilated convolution is the basis of forget-update block. 

ausal dilated convolution is a special case of standard dilated 

onvolution. It is first applied as a special one-dimensional con- 

olution in Wavenet [35] , which can be implemented by shift- 

ng the output of a normal convolution by a few steps. For two- 

imensional data, the equivalent of causal convolution is PixelCNN 

36] . When combining the casual convolution with dilated convo- 

ution, the network can produce outputs of the same length as the 

nputs. It can obtain features as data leakage-free with few net- 

ork layers. It can be formalized as Eq. (8) . Dilated convolution 

s adopted to improve the range of receptive field on the channel 

ector sequence. The dilation factor d increases exponentially and 

an be formalized as Eq. (9) . 

 = Causal( ̃  x , d, k ) , (8) 

 = k � , (9) 
7 
here ̃  x is the input of causal dilated convolution, d indicates di- 

ated rate, k denotes kernel size, and � indicates the � th layer. 

The proposed forgetting block learns how to forget low- 

ecognition features based on the context. In the meta-training 

rocess, the feature extractor gathers critical training experiences, 

hile the forgetting block is designed to discard redundant and 

eprecated information and concentrates our attention upon the 

ost relevant and critical pieces of information by calculating the 

etaining ratio of the input features. Specifically, the initial context 

f forgetting block is channel vector sequence, and all subsequent 

ontexts are the output of the previous forget-update block. For- 

etting block implements the forgetting mechanism by calculating 

he forgetting rate of the input sequence. The forgetting block gen- 

rates data x f orget (x f orget ∈ R 

c×d in ) of the same size as the input, 

hich can be formalized as Eq. (10) . 

 f orget = σ (Causal( ̃  x 

(i ) , d, k )) �˜ x 

(i ) , (10) 

here Causal(·) is causal dilated convolutional function, σ (·) is a 

igmoid function, d is dilated rate, k is kernel size, ̃  x (i ) is the input 

o the i th forget-update block in forget-update module, � indicates 

lement-wise multiplication. 

The proposed updating block is designed to learn and gener- 

te information from the combination feature of a query instance 

nd support instances in the meta-training process, where the in- 

ormation are extracted from multiple instances and can be used 

s a complement to the feature information extracted by the fea- 

ure extractor ϕ(·) . In addition, each forget-update module con- 

ains multiple update blocks that can generate a number of differ- 

nt levels of information. Specifically, the channel vector sequence 
 

 is used as the initial context of the first updating block, and the 

est of the contextual information is the output from the previous 

ayer. Updating block generates data x update (x update ∈ R 

c× f ilter _ size ) 

ith the same sequence length as the input, which can be formal- 

zed as Eq. (11) . 

 update = tanh ( Causal( ̃  x 

(i ) , d, k )) ) � σ (Causal( ̃  x 

(i ) , d, k ))) , (11) 

here tanh (·) is hyperbolic tangent activation function. 

Finally, the stitched x f orget and x update are used as the output of 

orget-update block. 

. Experiments 

The validity of the proposed method is evaluated in this sec- 

ion. For the sake of fairness of the experiments, a uniform exper- 

mental platform provided by Chen et al. [14] is used to conduct 

omparison experiments. 
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.1. Experimental setups 

All methods are trained from scratch unless otherwise specified. 

dam [37] is used as the optimizer. 

The optimizer takes an initial learning rate of 0.001, and the 

earning rate is reduced by 10% when the accuracy verified on the 

alidation set stagnates in seven consecutive training steps. The 

ost common FSL classification settings, 5-way 1-shot and 5-way 

-shot classification, have experimented on all the datasets. Unless 

therwise noted, all results are averaged over 600 episodes from 

he testing set with a 95% confidence interval. The detailed setup 

f scenarios, network architecture, training schema, and evaluation 

rotocols are as follows. 

.1.1. Scenarios 

Two experimental settings are selected for testing. The first one 

s the same-domain scenario, where the training and testing sets 

re all selected from the same-domain. The second one is a cross- 

omain scenario, where the training and testing sets are selected 

rom mini Imagenet [6] and other domains, respectively. 

For the same-domain scenario, the training set, validation set 

nd test set are from the same domain. These same-domain 

cenarios are mainly used to test few-shot learning ability. In 

his paper, mini Imagenet [6] , Caltech-UCSD Birds-200-2011 ( CUB ) 

15] , Oxford-Flowers-102 ( Flowers ) [31] , Stanford-dogs ( Dogs ) [32] ,

tanfords-cars ( Cars ) [33] and four datasets ( Real, Painting, Info- 

raph, Clipart ) from DomainNet Dataset [34] are used in our ex- 

eriments. 

For the cross-domain scenario, 64 mini Imagenet training 

lasses are used as the training set, 16 mini Imagenet validation 

lasses are used as the validation set, and the trained model is 

ested on each test set from different domains. Cross-domain 

cenarios are mainly used to test few-shot domain generaliza- 

ion capabilities. These scenarios include: mini Imagenet → CUB , 

ini Imagenet → Real , mini Imagenet → Paintting , 

ini Imagenet → Inforgraph , mini Imagenet → Clipart , 

ini Imagenet → Cars , mini Imagenet → Dogs and 

ini Imagenet → Flowers . 

The details of these datasets are as follows: 

• mini Imagenet dataset is a subset of Imagenet [38] and consists 

of 100 generic object classes, each of which contains 600 im- 

ages. Follow the standard protocol [6] that the dataset is split 

into 64, 16, and 20 classes for training, validation, and testing, 

respectively; 
• CUB [15] dataset contains 11,788 images from 200 species of 

birds in total, which is commonly used for fine-grained clas- 

sification. There is little difference in domains between CUB 

categories. Following the commonly used evaluation protocol 

[14,39] , the dataset is split into 100, 50, and 50 classes for train-

ing, validation, and testing, respectively; 
• DomainNet Dataset [34] is the largest unsupervised domain 

adaptation dataset to date, which contains six domains and 

about 60 0,0 0 0 images distributed in 345 categories. We report 

experimental performance in the following domains: Clipart , 

the collection of clipart images; Infograph , the collection of in- 

fographic images with specific object; Painting , the collection 

of artistic depictions in the form of painting; Real , images col- 

lected in the real world. DomainNet Dataset is used to validate 

the few-shot learning ability and the few-shot domain gener- 

alization ability of each model in this paper. To evaluate the 

few-shot domain generalization ability of each model, we train 

and evaluate the model using the training and validation sets 

of mini Imagenet, respectively, and calculate the prediction ac- 

curacy of the model using the test set of DomainNet Dataset. 

To evaluate the few-shot learning ability, we divide each do- 
8 
main of DomainNet Dataset into three disjoint parts, where the 

number of classes in the training set, validation set, and test set 

is 300, 15, and 30, respectively. 
• Flowers dataset [31] is a collection of 102 species from common 

flowers, and each category contains 40 to 258 images. These 

images have rich variations in proportions, poses, and lighting. 

We test the cross-domain generalization ability of all the mod- 

els on the test set, including 102 categories; 
• Dogs dataset [32] is constructed using ImageNet images and 

annotations, and it contains 20, 580 images of 120 breeds of 

dogs from all over the world, which is commonly used for fine- 

grained classification. We test the cross-domain generalization 

ability of all the models on the test set, including 120 cate- 

gories; 
• Cars dataset [33] contains 16,185 images from 196 classes of 

cars, which is often used for fine-grained classification. We test 

the cross-domain generalization ability of all the models on the 

test set, including 196 categories. 

.1.2. Network architecture 

For a fair comparison, a four-layer convolutional backbone 

Conv-4) is used, as in [6–9,14] , which consists of four blocks 

nd each block outputs 64 channels. The input size of images is 

4 × 84. 

The proposed model FUM(2,2) and FUM(2,2,2) contains two 

nd three forget-update modules, respectively. Each forget-update 

odule contains 	 log k c
 ( k = 2 , c = 64 ) forget-update blocks. The

lter_size of forget-update blocks in each forget-update module is 

et to 2 according to the sensitivity experiments in §4.4 . 

The prediction module is a one-layer fully connected network. 

he weights of the prediction model are initialized with [40] and 

ormalized with [41] . The prediction module predicts N values 

epresenting the similarity between the query sample and the N

lasses in the support set. 

.1.3. Training schema 

Normalization operation is applied to the input images. The 

roposed method is trained with an episodic training strategy [6] , 

hich is considered as a promising direction in handling the chal- 

enge of learning transformable visual concepts with limited an- 

otations. In each episode, N classes are randomly selected. Then, 

or each chosen class, K labeled images are randomly selected to 

orm the support set, and 16 images are selected from each of the 

emaining samples of these N classes to form the query set. 

.1.4. Evaluation protocols 

The performance of FSL methods are evaluated on validation 

lasses, and only the model which has the best performance is 

aved. The 5-way 1-shot and 5-way 5shot settings are performed, 

nd 15 query samples are selected from each class in an episode. 

he testing accuracy is the average accuracy (%, top-1) of all the 

rediction results of 600 episodes sampled from the testing set 

ith a 95% confidence interval. 

.2. Experimental results 

To ensure a fair comparison of all the methods, a unified 

estbed is adopted for few-shot classification algorithms provide 

y Chen et al. [14] . Tables 2, 3 show the experimental results on 

ini Imagenet and CUB, respectively. Tables 4–8 show the experi- 

ental results for different datasets under the same scenarios and 

ross-domain scenarios. Table 9 shows the experimental results in 

hree cross-domain scenarios. 

The experimental results in Tables 4–8 show that the domain 

hift between the training and testing set can significantly affect 
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Fig. 6. 5-way 1-shot (left) and 5-way 5-shot (right) accuracy on mini Imagenet without data augmentation . 

Fig. 7. 5-way 1-shot (left) and 5-way 5-shot (right) accuracy on CUB without data augmentation. 
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SL methods. The experimental results on mini Imagenet → CUB de- 

rease significantly compared to CUB. For example, the accuracy of 

atchingNet decrease by 26.51% at 1-shot and 37.34% at 5-shot. 

he accuracies of other methods also decreases significantly. 

.2.1. Experimental results in the same-domain scenarios 

To validate the capability of the proposed FUM method in the 

eld of few-shot learning, Tables 2, 3 demonstrates the experimen- 

al results on mini Imagenet and CUB dataset, respectively, and the 

eft part of Tables 5–8 show the experimental results on four do- 

ains. In these experiments, the training and testing sets come 

rom the same-domain. 

Tables 2, 3 show that, without data augmentation, the proposed 

ethod can obtain the optimal prediction results. Also in Tables 5–

 , the proposed method achieve the optimal prediction accuracy 

n the same-domain scenarios. In particular, FUM(2,2) is 1.34% and 

.62% higher in the 1-shot and 5-shot settings compared to the 

uboptimal method on mini Imagenet dataset. In Tables 2, 3 , the 

ame data augmentation methods are used in the meta-training 

hase as in [14] , including random crop, left-right flip, and color 

itter. Table 3 shows that FUM(2,2,2) yields SOTA results in 1-shot 

nd 5-shot settings. 

In addition, Figs. 6 , 7 show how the prediction accuracy varies 

ith the training progress on the mini imagenet and CUB with- 

ut data augmentation, which also demonstrates that FUM(2,2) can 

chieve the best accuracy on mini Imagenet and CUB. 
9 
Although the training and test sets are in the same domain, 

he training and test set categories are disjoint. The learned re- 

ationship embeddings by FUM can also benefit the same-domain 

atasets. 

.2.2. Cross-domain adaptive capacity 

To validate the few-shot domain generalization capac- 

ty of the proposed FUM, experiments are conducted on 

ini Imagenet → CUB, mini Imagenet → Real, mini Imagenet 

 Painting, mini Imagenet → Infograph, mini Imagenet → Clipart, 

ini Imagenet → Cars, mini Imagenet → Dogs and mini Imagenet 

 Flowers in Tables 4–9 , where the training set is mini Imagenet 

hile the testing sets are from other domains. Experimen- 

al results show that, FUM can achieve better results than all 

omparison methods on mini Imagenet → CUB, mini Imagenet 

 Real, mini Imagenet → Painting, mini Imagenet → Infograph, 

ini Imagenet → Cars, mini Imagenet → Dogs and mini Imagenet → 

lowers. On the mini Imagenet → Clipart, the proposed method also 

chieves the optimal solution in the 5-way 1-shot paradigm, and 

he suboptimal solution is achieved in the 5-way 5-shot paradigm. 

pecifically, the proposed model is 2.12% higher than the best 

ompare method in the 5-way 1-shot paradigm and 3.32% higher 

n the 5-way 5-shot paradigm on mini Imagenet → Real. 

Fig. 2 (a) demonstrates the distribution of relationship em- 

eddings learned by FUM on mini Imagenet → CUB. Compared to 

ig. 2 (b) and (c), the distribution of relationship embeddings ob- 

ained by FUM is closer between the same categories and farther 
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Fig. 8. The effect of forget and update modules. Fig. 8 (a) and (b) show the distributions of features on CUB and mini Imagenet → CUB. Specifically, the top half shows the 

feature distribution of the backbone output, while the bottom half corresponds from left to right to the feature distributions of the forget module and update module outputs. 

Fig. 8 (a) and (b) are visualized using t-SNE [16] . Fig. 8 (c) visualizes the effect of the forget module. The first row is the original image. The third row is the visualization of 

the forgotten information, where the forgetting information is the result of subtracting the output from the input of the forgetting module. The second row is the result of 

fusing the forgotten information with the original image. 
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etween the different categories. The relationship embeddings ex- 

racted by FUM is more suitable for the FSL classification problem 

n cross-domain scenario. This is because FUM can align the distri- 

ution of relationship embeddings in different domains by updat- 

ng and forgetting mechanisms. 

.3. Ablation experiments 

.3.1. The effects of forgetting block and updating block 

The effects of forgetting block and updating block are evaluated 

n this section. The results of the ablation experiments are shown 

n Table 10 . The testing accuracy is the average accuracy (%, top-1) 

f all the prediction results of 10,0 0 0 episodes sampled from the 

esting set with a 95% confidence interval. +update method and 

forget method use the same configuration as FUM(2,2,2) method, 

he only difference is that +forget method only use the forgetting 

lock while +update only use updating block. The forgetting block 

s shown in the left dashed box of Fig. 5 while the updating block

s shown in the right. The FUM(2,2,2) method uses forget-update 

locks. All these three methods put channel vector sequence as 

nput. Table 10 shows that when the forgetting block and updat- 

ng block are combined, they can improve the prediction perfor- 

ance on mini Imagenet → CUB and CUB. The experimental results 

f FUM(2,2,2) are better than using a single module. Specially, our 

ethod improves by 5.99% relative to +forget and 2.24% relative to 

update on the mini Imagenet → CUB in 5-way 5-shot paradigm, and 

ur method improves 3.26% relative to +forget and 0.95% relative 

o +update method on the CUB dataset in 5-way 5-shot paradigm. 

he prediction results of our method are also improved in the 5- 

ay 1-shot paradigm. 
10 
.3.2. Visualization and analysis of forget module and update module 

To analyze the effectiveness of forget module and update mod- 

le, Fig. 8 (a) and (b) visualize the feature distribution of the out- 

ut of forget module and update module, respectively, using t-SNE 

16] . And Fig. 8 (c) visualizes the features forgotten by the forget 

odule. 

Specifically, the left half of Fig. 8 (a) visualizes the distributions 

f features on CUB before and after forget module. Features of the 

ame category output by the forget module can be better clus- 

ered together, while the distance between features of different 

ategories is greater. The left half of Fig. 8 (b) visualizes the distri- 

utions of features on mini Imagenet → CUB before and after forget 

odule, which also shows that the forget module enables better 

iscriminability between different categories of images. 

The right half of Fig. 8 (a) visualizes the distribution of features 

n CUB before and after the update module, which shows that fea- 

ures acquire greater discriminability after using the features gen- 

rated by the update module. The right half of Fig. 8 (b) visualizes 

he distribution of features on mini Imagenet → CUB before and after 

he update module, and the updated features also gain better dis- 

riminability. With the above visualization results, we believe that 

he forget module and update module can produce more meaning- 

ul features for both the same-domain and the cross-domain sce- 

arios. 

Fig. 8 (c) visualizes the forgotten features. To visualize the ef- 

ect of the forget module, only the forget modules are used in this 

xperiment. The forgotten features are defined as the input fea- 

ures of the first forget module minus the output of the last forget 

odule. Then, the forgotten features are converted to a gray im- 

ge of a signal channel of size 5 ∗5 and resized to the same size as
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Table 11 

Sensitivity analysis of forget-update module number and filter size. The top results are highlighted and the 

unit is a percentage. 

Model mini Imagenet → CUB CUB mini Imagenet 

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 

FUM(2) 43.64 ±0.76 56.80 ±0.76 62.40 ±0.92 73.78 ±0.67 51.26 ±0.81 66.01 ±0.67 

FUM(4) 43.15 ±0.76 58.15 ±0.72 62.97 ±0.96 74.68 ±0.72 51.53 ±0.81 66.42 ±0.65 

FUM(8) 43.69 ±0.79 55.77 ±0.79 62.40 ±0.93 74.67 ±0.74 51.23 ±0.82 67.40 ±0.63 

FUM(16) 43.46 ±0.75 52.95 ±0.76 61.50 ±0.98 73.43 ±0.70 50.35 ±0.77 64.88 ±0.64 

FUM(32) 45.15 ±0.77 54.62 ±0.81 62.89 ±0.94 74.56 ±0.72 50.39 ±0.79 66.18 ±0.63 

FUM(64) 43.79 ±0.78 54.81 ±0.71 60.98 ±0.96 74.22 ±0.71 50.22 ±0.79 64.24 ±0.69 

FUM(2,2) 44.57 ±0.75 56.45 ±0.80 62.35 ±0.99 74.26 ±0.67 51.87 ±0.75 67.89 ±0.67 

FUM(4,4) 44.48 ±0.75 54.02 ±0.77 61.90 ±0.91 74.18 ±0.72 50.33 ±0.82 66.66 ±0.65 

FUM(8,8) 44.45 ±0.75 55.57 ±0.74 62.81 ±0.95 74.56 ±0.69 50.36 ±0.79 66.39 ±0.69 

FUM(16,16) 43.81 ±0.76 56.65 ±0.73 63.44 ±0.96 73.76 ±0.73 51.40 ±0.79 65.23 ±0.64 

FUM(32,32) 44.88 ±0.75 58.18 ±0.75 61.14 ±0.94 74.09 ±0.76 51.36 ±0.76 65.07 ±0.66 

FUM(64,64) 44.72 ±0.77 52.36 ±0.75 61.72 ±0.96 74.81 ±0.70 50.19 ±0.82 65.02 ±0.66 

FUM(2,2,2) 44.37 ±0.73 60.56 ±0.74 62.49 ±0.98 75.66 ±0.98 50.33 ±0.82 66.94 ±0.66 

FUM(4,4,4) 46.13 ±0.77 56.72 ±0.81 63.42 ±0.93 76.82 ±0.68 50.84 ±0.84 66.16 ±0.66 

FUM(8,8,8) 46.64 ±0.75 58.08 ±0.71 64.03 ±0.99 75.86 ±0.67 50.17 ±0.75 66.68 ±0.66 

Table 12 

Sensitive experiments on the instance dimension d. The top re- 

sults are highlighted and the unit is a percentage. 25 ∗ indicates 

using the identity mapping function. 

d mini Imagenet → CUB 

1-shot 5-shot 

8 39.25 ±0.73 53.10 ±0.67 

16 40.53 ±0.74 56.16 ±0.66 

25 41.61 ±0.70 55.23 ±0.69 

32 41.92 ±0.75 55.37 ±0.69 

64 41.26 ±0.73 52.64 ±0.70 

25 ∗ 44.37 ±0.73 60.56 ±0.74 
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he original image. Specifically, the original images are in the first 

ow; the forgotten features are in the third row, where the white 

reas represent forgotten features; the second row is the weighted 

usion of the original image and the forgotten features. In detail, 

he weight of the original image is 0.2, and the weight of the for- 

otten features is 0.8. To visualize the forgotten regions, we pre- 

rocessed the forgotten features by subtracting the forgotten fea- 

ures with 255 so that in the second row, the black area represents 

he forgotten part. It can be found that the forget module can for- 

et some background information. We think that forget some ir- 

elevant background information can help improve features, which 

s also supported by the feature distributions of forget module in 

ig. 8 (a) and (b). 

.4. Sensitivity analysis of forget-update module number and filter 

ize 

To analyze parameter sensitivity of forget-update module num- 

er and filter size, a batch of experiments is organized in Table 11 .

n Table 11 , the numbers in parentheses after FUM correspond to 

he filter size in the forget-update module, and the number of 

umbers indicates the number of forget-update modules included 

n the model. For example, FUM(4,4) indicates that the model con- 

ains two forget-update modules, each of which has a filter size of 

. Table 11 demonstrates that the optimal results are obtained on 

UB and mini Imagenet → CUB when the number of forget-update 

odules is equal to 3, and on mini Imagenet when the number of 

orget-update modules is equal to 2 and the filter size is equal to 

. In this paper, FUM(2,2) and FUM(2,2,2) are chosen in the paper. 
11 
.5. Sensitive experiments on the instance dimension d

The proposed method adopts four layers convolutional network 

o extract feature maps, which converts a 3-channel 84 ∗84 in- 

tance to a 64-channel 5 ∗5 feature map. Then each feature map 

s transformed into a 25-dimensional vector. We try to apply a 

-layer fully connected network or an identity mapping func- 

ion to the vector and generate a d dimensional vector. To ana- 

yze the effect of different d values on the prediction accuracy, 

able 12 shows the prediction accuracy of the proposed method 

n mini Imagenet → CUB when different d values are used. We find 

hat the best prediction accuracy is obtained when using the iden- 

ity mapping function, and this configuration is exploited in all ex- 

eriments. 

.6. The effective of channel vector sequence 

After the channel vector sequence is generated, the rest to do 

s to extract the internal relationship of the channels and use such 

nformation to perform a few-shot classification. Table 13 shows 

hat the combination of TCN with the proposed channel vector 

equence can get competitive results on mini Imagenet → CUB and 

UB. Moreover, the FUM(2,2,2) approach achieves better results 

han TCN at similar model sizes, implying that the forgetting and 

pdating mechanism of forget-update module is more suitable for 

he proposed channel vector sequence than TCN. 

.7. Computational expense analysis 

Table 14 shows the computational expense and predic- 

ion accuracy of the most commonly used FSL methods on 

ini Imagenet → Painting scenario in 5-way 1-shot paradigm, where 

AC represents Memory Access Cost, Params represents the size 

f model parameters, Accs represents the prediction accuracy, and 

ime represents the time used to predict an episode. All exper- 

ments were conducted using an NVIDIA GeForce GTX 1080Ti to 

est. For MAC values, MatchingNet, ProtoNet, FEAT, and our method 

ave similar MAC, Baseline, and Baseline++ methods have lower 

AC, and RealtionNet method has much higher MAC. In terms 

f the number of parameters, ProtoNet, Baseline, and FEAT have 

ewer parameters, while RelationNet and Baseline++ use more pa- 

ameters than the proposed methods. Baseline and Baseline++ are 

aster, while the rest of the methods are relatively close in terms 

f execution time. In terms of prediction accuracy, our method 

as a more obvious advantage. Comparing the proposed FUM(2,2) 



M. Yuan, C. Cai, T. Lu et al. Pattern Recognition 129 (2022) 108704 

Table 13 

The prediction results of the TCN and FUM network. The unit is a percentage, and the 

best results are highlighted. 

Model Model Size mini Imagenet → CUB CUB 

1-shot 5-shot 1-shot 5-shot 

TCN [44] 1170K 39.95 ±0.74 55.36 ±0.73 60.42 ±0.96 74.59 ±0.74 

FUM(2,2,2) 1190K 44.37 ±0.73 60.56 ±0.74 62.49 ±0.98 75.66 ±0.98 

Table 14 

The computational expense and accuracy on mini Imagenet → Painting scenario with 5- 

way 1-shot paradigm . 

Model MAC Params Accs Time 

MatchingNet [6] 33.667G 342.400K 35.19 ±0.72% 0.37s 

ProtoNet [8] 

33.647G 226.176K 33.99 ±0.68% 0.37s 

RelationNet [9] 68.966G 452.753K 35.41 ±0.70% 0.15s 

Baseline [14] 6.334G 226.176K 31.70 ±0.57% 0.05s 

Baseline + [14] 6.339G 546.376K 31.23 ±0.59% 0.06s 

FEAT [10] 33.647G 242.624K 33.14 ±0.66% 0.28s 

FUM(2,2) 36.581G 324.192K 37.32 ±0.72% 0.21s 

FUM(2,2,2) 38.971G 404.036K 37.23 ±0.74% 0.46s 

Table 15 

Compare causal dilation convolution with fixed dilation rate convolution (named Fixed-d). 

The unit is a percentage. The best results are highlighted. 

Model mini Imagenet → CUB mini Imagenet 

1-shot 5-shot 1-shot 5-shot 

Fixed-d 42.67 ±0.74 57.40 ±0.74 49.82 ±0.82 65.24 ±0.68 

FUM(4) 43.15 ±0.76 58.15 ±0.72 51.26 ±0.81 66.01 ±0.67 

Table 16 

Impact of pre-trained model on few-shot domain generalization tasks. FUM(4,4,4) and FUM(4,4,4)_fix use 

the same configuration, except that the backbone network of FUM(4,4,4)_fix uses the parameters pre-trained on 

the training set of mini Imagenet and fixed these parameters. 

Model mini Imagenet mini Imagenet → Real mini Imagenet → Painting 

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 

FUM(2,2,2) 50.33 ±0.82 66.94 ±0.66 51.52 ±0.97 68.33 ±0.78 37.23 ±0.74 50.87 ±0.71 

FUM(2,2,2)_fix 53.38 ±0.78 65.08 ±0.67 52.96 ±0.92 64.82 ±0.80 38.31 ±0.74 48.49 ±0.78 
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ethod with the two comparison methods with the highest pre- 

iction accuracy, it is found that the proposed FUM(2,2) has higher 

ccuracy when the MAC and Params metrics are close to or smaller 

han the two comparison methods, RealtionNet and MatchingNet. 

ompared with Baseline and Baseline++, the proposed method is 

igher in MAC, Params, and Time. However, the advantage of our 

ethod in prediction accuracy is more obvious. 

.8. Compare causal dilation convolution with fixed dilation rate 

onvolution 

Table 15 analyzes the difference between using causal dilation 

onvolution (FUM(4)) and fixed dilation rate convolution (Fixed-d). 

he two methods use the same configuration, except for a dif- 

erence in the size of the dilation rate. Causal dilation convolu- 

ion using dilation rate described in the Eq. (9) , while fixed di- 

ation rate using a fixed dilation rate 2. It is found that FUM(4) 

chieves a more significant advantage on both mini Imagenet and 

ini Imagenet → CUB. This is because casual dilated convolution can 

xtract all features of the channel vector sequence using fewer 

evels. In comparison, the fixed dilation rate convolution requires 

ore levels. When Fixed-d and FUM(4) use the same layers, 

UM(4) can utilize more information and obtain better accuracy. 
12 
.9. The impact of pre-trained model on few-shot domain 

eneralization tasks 

We analyze the impact of the pre-trained model on the few- 

hot domain generalization task in Table 16 . FUM(2,2,2)_fix use 

he same configuration as FUM(2,2,2), except that the backbone of 

UM(2,2,2)_fix is pre-trained with the training set of mini Imagenet 

64 classes) and the parameters of the pre-trained backbone 

s fixed in the meta-training process. The experimental results 

how that using the pre-trained backbone improves the predic- 

ion results in the 5-way 1-shot paradigm. However, there is a 

ecrease in the 5-way 5-shot paradigm. We supposed that al- 

hough the backbone network pre-trained with the full training 

et of mini Imagenet has good discriminative power, the training 

trategy biases the backbone network towards the classes of the 

ini Imagenet training set and makes it difficult to generalize to 

ew domains. 

. Conclusion 

In this paper, we move forward to handle the challenge of do- 

ain shifts in the context of FSL. This paper designed channel vec- 

or sequence containing relational information, which implies re- 
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ated information and helps infer the category of the query sample. 

he proposed forget-update module composed of stacked of forget- 

pdate blocks. The forgetting block retains useful information, and 

he updating block generates new features according to a specific 

cenario. The combination of channel vector sequence and forget- 

pdate module can generate relationship embeddings, which im- 

lies a similar relationship between a query sample and the sup- 

ort samples. Visualization experiments show that /fum can adjust 

he distribution of relational embedding across domains through 

orgetting and updating mechanisms. In the future, we will study 

he effectiveness of the FUM on Real-life scenarios. 
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