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Abstract. To minimize damages brought by floods, researchers pay spe-
cial attentions to solve the problem of flood prediction. Multiple factors,
including rainfall, soil category, the structure of riverway and so on,
affect the prediction of sequential flow rate values, but factors are not
always informative for flood prediction. Extracting discriminative and
informative features thus plays a key role in predicting flow rates. In
this paper, we propose a context and temporal aware attention model
for flood prediction based on a quantity of collected flood factors. We
build our model on top of Long Short-Term Memory (LSTM) networks,
which selectively focuses on informative factors and pays different levels
of attentions to the outputs of different cells. The proposed CT-LSTM
network assigns time-varying weights to input factors at all the cells of
LSTM network, and allocates temporal-dependent weights to the outputs
of each LSTM cell for boosting prediction performance. Experimental
results on a benchmark flood dataset with several comparative meth-
ods demonstrate the effectiveness of the proposed CT-LSTM network
for flood prediction.
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1 Introduction

Flood, as one of the most common and largely distributed natural diasters, hap-
pens occasionally and brings large damages to life and property. In the past
decades, researchers have proposed a quantity of models for accurate and robust
flood prediction. We generally category them into two types, namely, physi-
cal models [7,9,10] and data-driven models [4,14,16]. Physical models generally
describe the formation of flood by using functions to represent complex hydrol-
ogy processes from clues to results. However, such models are extremely sensitive
to parameters [17], which require large research efforts of experts to adjust. On
the contrary, data-driven models directly explore relations between river flow
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and flood factors from historical observations, without considering physical pro-
cesses. Since the complex mechanism of flood results in large computations of
physical models, data-driven models are more efficient and costless for flood
prediction.

Inspired by the significant performance [8,13] of deep LSTMs, we intend
to utilize such an architecture to discover the inherent relations between flood
factors and flow rates. Due to the development of internet of things, researchers
can gather a large set of relevant flood factors for prediction. However, not all
the collected factors are representative and informative for flood prediction. For
example, the water retained in soil, named as soil tension water, has great effects
on formation of floods in humid areas, while it is irrelevant with flood in places
with sandy soil [9]. This is because soil in humid areas contain a great amount
of water, meanwhile sandy soil is quite low in capacity to contain water. The
informativeness degrees of each flood factor may vary at different time points
during the same flood. Take soil tension water as an example, its value is highly
relevant with flow rate values in humid areas at the beginning of a flood. Once
its value exceeds the maximum water containing capacity of soil in the middle
of the flood, the value of soil tension water no more changes and contributes
little to the variations of flow rate values. Therefore, we propose a context-aware
attention module, which automatically focuses on discriminative factors for flood
prediction. The learned attention to factors are content-dependent and allowed
to vary over time. This selectively focusing mechanism has been demonstrated
to be very effective in various applications, such as speech recognition [3] and
action recognition [11].

Furthermore, we often get predictions on flow rate values under a reason-
able assumption that there exists a trend in historical flow data. We thus pro-
pose a temporal-aware attention module for simulations of the trends embedded
in historical flow data. For a sequence of floods, the proposed temporal-aware
attention module explicitly learns and allocates content-dependent weights to
predicting flow rate values at each time point. In fact, the idea of the proposed
temporal-aware attention module is similar with Holt-Winters double exponen-
tial smoothing [15], which assigns higher weights to the nearby observations for
more convinced predictions. Flow rate predictions at different time points thus
have different degrees of importance and robustness to variations. Moreover,
some flow rate predictions can be unreliable induced by noises of input factors.
Learning weight distribution for flow rate predictions under a trend assumption
can help exclude such unreliable predictions.

In summary, we aim to construct a context and temporal aware atten-
tion LSTM (CT-LSTM) network for accurate and robust flood prediction. The
context-aware attention module learns weight schemes for input factors based
on hidden output of each LSTM cell (representing contextual information [5]
between two nearby cells) in a local sense. Meanwhile, the temporal-aware atten-
tion module learns weight structures for flow rate predictions of each LSTM cell
in a global sense. We have made the following three main contributions in this
work.
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– To the best of our knowledge, this is the first context and temporal aware
attention model designed based on the LSTM architectures for flood predic-
tion.

– A temporal-aware attention module is designed to allocate content-dependent
attention to different predictions under a reasonable trend assumption.

– The proposed method is powerful to discover the inherent patterns between
input factors and flow rates, especially for regions whose flood formation
mechanism is too complex to construct a convinced physical model.

2 Related Work

Considering the relevance to the proposed CT-LSTM network, we introduce the
data-driven model for flood prediction and attention model in this section.

Data-driven Model. Early, Yu et al. [20] utilize the support vector machine
to establish a real-time flood forecasting model, which applies a two-step grid
search method to find the optimal parameters for SVM. Later, Cheng et al.
[2] perform daily runoff forecasting by training artificial neural network with
quantum-behaved particle swarm optimization, which achieves much better fore-
cast accuracy than the basic ANN model. Recently, Wu et al. [16] construct a
hierarchical Bayesian network for flood predictions of small rivers. They establish
entities and connections of Bayesian network to represent variables and physical
processes of the Xinanjiang model, i.e., a famous physical model, which appro-
priately embeds hydrology expert knowledge for high rationality and robustness.

Due to high potentials of discovering distinctive features from data,
researchers try to utilize deep learning architectures for flood prediction. For
example, Zhuang et al. [21] design a novel Spatio-Temporal Convolutional Neu-
ral Network (ST-CNN) to fully utilize spatial and temporal information and
automatically learn underlying patterns from data for extreme flood cluster pre-
diction. Liu et al. [4] propose a deep learning approach by integrating stacked
auto-encoders (SAE) and back propagation neural networks (BPNN) for the
predictions of stream flow, which simultaneously takes advantages of the power-
ful feature representation capability of SAE and superior predicting capacity of
BPNN. Most recently, Wu et al. [14] propose context-aware attention LSTM net-
work to accurately predict sequential flow rate values based on a set of collected
flood factors. The proposed method is built on it and involves the combination
of context and temporal aware attention over all the steps of LSTM network for
higher predicting accuracy.

Attention Model. When observing the real-world, human perception focuses
selectively on parts of a scene to acquire information at specific places and times.
The exploitation of an attention model has attracted increasing interests in var-
ious fields, such as machine translation, image recognition and action recogni-
tion. Their proposed attention models are generally constructed as a dimension
of interpretability into internal representations by selectively focusing on specific
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Fig. 1. Illustration of the proposed context and temporal aware attention LSTM net-
work for flood prediction.

information. We categorize attention models into two classes, i.e. hard attention
[19] and soft attention [1]. Hard attention mechanically chooses parts of the input
data as focuses. For example, Mnit et al. [6] propose a hard attention model for
image recognition, which adaptively selects a sequence of regions and processes
the selected regions as inputs for RNN network.

On the contrary, soft attention takes the entire input into account by weight-
ing each part or step dynamically. The fusion of neighboring frames within a slid-
ing window with learned attention weights is proposed by Yeung et al. [18] to
enhance the performance of dense labeling of actions in RGB videos. Liu et al. [5]
propose a global context-aware attention LSTM for RGB-D action recognition,
which recurrently optimize the global contextual information and further utilizes
it as an informative function to assist accurate action recognition. Song et al. [12]
achieve the goal of action recognition from skeleton data by selectively focusing
on discriminative joints of skeleton within each frame of the inputs and assigning
different levels of attention to the outputs of different frames. By designing con-
text and temporal aware attention model as a soft attention scheme, the proposed
method is reasonable to solve the regression problem of flow rate prediction.

3 LSTM Network with Context and Temporal Aware
Attention Model

Take a typical river, i.e., Changhua, as an example, we show its general informa-
tion in Fig. 2, where we can notice 7 rainfall stations, 1 evaporation station and
1 river gauging station. In our work, we aim to predict the flow rate values at
the river gauging station CH for the next 6 h with the proposed CT-LSTM net-
work. The input set of flood factors consists of real rainfalls observed at rainfall
stations, predicted rainfalls, evaporation observed at evaporation station SS and
former river runoff observed at CH. We also utilize several intermediate vari-
ables such as total surface runoff, total interflow runoff and total groundwater
runoff computed by a famous physical model, namely, the Xinanjiang Model. In
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Fig. 2. Illustration of the Changhua watershed, where (a) is the map for various kinds
of stations and (b) represents catchment areas corresponding to the listed rainfall
stations. Note that we need predict the flow rate values of river gauging station CH
and station SS functions as an evaporation station.

Xinanjiang Model, the outflow of a watershed can be subdivided into three com-
ponents, including surface runoff, interflow runoff and groundwater runoff. Using
these three components for prediction will provide more information about the
watershed, which will be informative about the flood formation that cannot be
precisely measured by sensors. In total, we prefer 7 features for prediction.

We propose an LSTM network with context and temporal aware attention
mechanisms for flood prediction as shown in Fig. 1. We only feed the features
mentioned above and last hidden state to the LSTM cell of our proposed network.
The designed local context-aware attention and global temporal-aware attention
module help automatically select relevant and informative features from the
views of factors and the trend embedded, respectively. After paying different
levels of attention on inputs and outputs of LSTM cells, we concatenate sets of
the hidden outputs of cells {h1, h̃2, ..., h̃t} and generated hydrology factors H as a
novel feature F for prediction. The reason to predict with sets of hidden outputs
lies in the restriction of LSTM in perceiving the global contextual information
with forgetting mechanism. However, the forgotten contextual information is
important for the global regression problem.

3.1 Context-Aware Attention Module

Inspired by [6] which considers the attention problem as the sequential decision
process of how an agent interact with a visual environment, the “interaction
level” for the proposed context-aware attention module is essentially described
by weights assigned to each feature. The context-aware attention module thus
recurrently defines the corresponding weight vector αt for input factors It as

αt = Nor(sig(Wc,t−1ht−1 + bc,t−1)) (1)

where Wc,t−1 is the learnable parameter matrix, bc,t−1 is the bias vector, ht−1 is
the hidden output for each cell representing context information, function sig()
and Nor() represent sigmoid function and normalization function, respectively.
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Note that the proposed context-aware attention module determines the impor-
tance of input flood factors based on the hidden variables from an LSTM layer.
In our work, the context-aware attention subnetwork actually composes of a fully
connected layer and a normalization unit as suggested by Eq. 1.

Fig. 3. Illustration of how context-aware attention weight α, temporal-aware attention
weight β and objective function influence the CT-LSTM network.

The resulting weight vector αt leads to the attention on informative factors,
where Fig. 3 explains how the context-aware attention module works by a local
way. We can find that the sequential input features {I1, ..., It} are separatively
fed to all cells of CT-LSTM as the original time-varying description of flood
factors. With the feature-wise weight vector αt, the input of the informative
flood factors gt for each cell can be represented as:

gt = It
⊗

αt (2)

where
⊗

represents the element-wise multiplication.

3.2 Temporal-Aware Attention Module

Holt-Winters double exponential smoothing filter considers there exists a trend
behind a time-varying variable and utilizes a updating weight scheme to describe
how prediction interacts with former observations. It has been successfully
applied on smoothing of skeleton action data [15]. Follow the idea of Holt-Winters
double exponential smoothing filter, we propose to use temporal-aware attention
module to simulate the trend by globally assigning different levels of weights βt

to output of all the cells ht as shown in Fig. 3. In fact, the hidden variable ht

contains information of past time points, benefiting from the merit of LSTM
which is capable of exploring temporal long range dynamics. The weight vector
βt computed by temporal-aware attention module thus can adjust the input for
the next cell h̃t based on information from a temporal long range:

h̃t = ht

⊗
βt. (3)
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As shown in Fig. 1, the temporal-aware attention module is composed of a
fully connected layer and a ReLU nonlinear unit. The temporal weight vector βt

thus can be computed as

βt = sig(Wm,t−1It−1 + Wm,tIt + bm,t) (4)

which depends on the former and current input flood factors It−1 and It, respec-
tively. We use the non-linear function of sigmoid due to its good convergence
performance. The temporal weight vector control the amount of information of
former predictions to be used for making the final prediction.

3.3 Design of Objective Function

How the context-aware attention module acts on the input flood factors and
how the temporal-aware attention module acts on the hidden output of LSTM
cells are given in Fig. 3. Constrained by the objective function, the main LSTM
network, the context and temporal aware attention subnetwork can be jointly
trained to implicitly learn the model. We thus formulate the final objective
function of the context and temporal aware attention network with a regularized
cross-entropy loss for a sequence of flood factors as

Lt = −
C∑

i=1

6∑

t=1

loss(yi,t, p̃i + Δpi,t) + λ‖WN‖2 (5)

where C is the total number of training samples, yi,t = {yi,t+1, ..., yi,t+6} denotes
the groundtruth flow rate values for the next 6 h corresponding to the ith train-
ing sample, p̃i =

∑4
j=0 yi,t−j implies the mean of observed flow rate values for

former 5 h and current time, Δpi,t = {Δpi,t+1, ...,Δpi,t+6} refer to the predicted
difference flow rate values computed by the CT-LSTM, and function loss() is
defined as the smooth L1 loss function. The regularization item with L2 norm is
to reduce overfitting of the networks. WN denotes the connection matrix (merged
to one matrix here) in the networks, including Wc,t in Eq. 1 and Wm,t in Eq. 4.
Note that we use the back-propagation through time (BPTT) algorithm to min-
imize the loss function and adopt smooth L1 loss function. This is because the
smooth L1 loss function makes the loss value convergent in a faster and more
stable way comparing with adopting Root Mean Square Error.

4 Experimental Results

4.1 Dataset and Settings

Changhua Dataset. We collect hourly data of 40 floods happened from 1998
to 2010 in Changhua river as our original dataset. We use samples of flow rates
every 11 h as to increase dataset size. After augmentation, the number of flood
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samples is increased to 8555. We utilize 8-fold cross validation and Root Mean
Square Error (RMSE) to evaluate predictions:

RMSE =

√√√√ 1
n

n∑

k=1

6∑

t=1

(yk,t − p̃k − pk,t)2 (6)

where n refers to the number of testing samples. Note that smaller values of
RMSE imply better performance the predicting achieves.

Fig. 4. Comparison with the ground-truth flow rate values and predicted flow rate
values during a flood, where each row represents prediction results of the proposed
CT-LSTM, FCN, TA-LSTM and CA-LSTM, respectively. Note that the rectangles
indicate several obvious wrong predictions.

Implementation Details. For constructing the CT-LSTM network, we select
t as 11, the dimension of hidden output as 128 and λ as 0.00005, respectively.
We train the CA-LSTM network by setting learning rate, weight decay, epoch
iterations and batch size as 0.00225, 10−6, 500 and 100, respectively. The pro-
posed CT-LSTM network runs on a workstation (2.4 GHz 6-core Xeon CPU,
60 G RAM and Nvidia GeForce GTX 1080Ti) for all the experiments.

4.2 Performance Analysis

We implement Fully-connected Network, CT-LSTM network without attention
module (LSTM), CT-LSTM with only context-aware attention module (CA-
LSTM), and CT-LSTM with only temporal-aware attention module (TA-LSTM)
for comparisons. The main structures and training parameters of LSTM, CA-
LSTM and TA-LSTM are exactly the same as CT-LSTM, meanwhile FCN is
designed with 3 fully-connected layers. We compare the flow rate values predic-
tion results of CT-LSTM, FCN, TA-LSTM and CA-LSTM in Fig. 4. We can see
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the CT-LSTM and TA-LSTM achieve nearly the same flow rates as the observed
results. For CA-LSTM, we find it get obvious wrong predictions labeled by rect-
angles. We also view wrong predictions are enlarged when predicting with FCN.

Fig. 5. Comparison of RMSE on Changhua Dataset computed by the proposed CT-
LSTM, CA-LSTM, TA-LSTM, LSTM and FCN.

Figure 5 gives the detailed statistics of the proposed CT-LSTM network and
several comparative methods on the Changhua dataset. As shown in Fig. 5, CT-
LSTM network achieves the lowest RMSE values except for prediction at t+6.
In fact, LSTM is designed to solve the problem of local dependencies with the
forgetting structure, which implies LSTM network can not handle prediction
with a rather long interval or delay. We thus observe that CT-LSTM performs
nearly the same with TA-LSTM at t+6 due to the limitation of LSTM structure.
FCN is not suitable for the time-varying prediction problem proved by much
higher RMSE values comparing with other four LSTM-based methods. With
the context-aware or the temporal-aware attention module, we find CA-LSTM
and TA-LSTM achieve smaller RMSE than the conventional version of LSTM,
which proves the effectiveness of the proposed context-aware and temporal-aware
attention model. By jointly designing attentional module, the proposed CT-
LSTM achieves the lowest RMSE, which proves the advantages of the structure
of paying different levels of attentions on the input and output of LSTM cells
for prediction.

5 Conclusions

In this paper, we extend the original LSTM network to achieve a context and
temporal aware attention LSTM network for flood prediction, which is capable
to selectively focus on informative flood factors and nearby predicted flow rate
values. Experiment results on the Changhua dataset show the proposed method
outperforms several comparative methods. Our future work includes the explo-
ration on other hydrology purposes with the proposed method, such as mid-term
flood predicting and flood frequency analysis.
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