
DEEP LEARNING APPROACHES FOR REALTIME IMAGE SUPER RESOLUTION

(DLRSR)

CASR: a context-aware residual network for single-image
super-resolution

Yirui Wu1,2 • Xiaozhong Ji2 • Wanting Ji3 • Yan Tian4 • Helen Zhou5

Received: 2 April 2019 / Accepted: 8 November 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
With the significant power of deep learning architectures, researchers have made much progress on super-resolution in the

past few years. However, due to low representational ability of feature maps extracted from nature scene images, directly

applying deep learning architectures for super-resolution could result in poor visual effects. Essentially, unique charac-

teristics like low-frequency information should be emphasized for better shape reconstruction, other than treated equally

across different patches and channels. To ease this problem, we propose a lightweight context-aware deep residual network

named as CASR network, which appropriately encodes channel and spatial attention information to construct context-

aware feature map for single-image super-resolution. We firstly design a task-specified inception block with a novel

structure of astrous filters and specially chosen kernel size to extract multi-level information from low-resolution images.

Then, a Dual-Attention ResNet module is applied to capture context information by dually connecting spatial and channel

attention schemes. With high representational ability of context-aware feature map, CASR can accurately and efficiently

generate high-resolution images. Experiments on several popular datasets show the proposed method has achieved better

visual improvements and superior efficiencies than most of the existing studies.

Keywords Context-aware residual network � Channel and spatial attention scheme � Inception block � Single-image super-

resolution

1 Introduction

Super-resolution (SR) is generally defined as a process to

obtain high-resolution (HR) images form inputs of low-

resolution (LR) observations. There exists a rough but

classical taxonomy way to category SR methods based on

number of input LR images: single-image super-resolution

(SISR) and multiple images super-resolution (MISR).

Being a highly ill-posed problem, SISR is more challeng-

ing than MISR, since it requires to hallucinate missing

image details by learning the relationship between LR and

HR from a training dataset.
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With the development of deep learning techniques, more

works involve convolutional neural network (CNN) [21],

generative adversarial network (GAN) [12] or other deep

learning models [5] to perform SISR tasks. However, these

methods generally suffer from drawbacks in visual effects,

which are shown in Fig. 1 by testing with an example

sampled from B100 dataset [28]. Based on visual com-

parisons between groundtruth HR images and HR images

produced by various methods, we can observe unpleasant

artifacts like blurry patches, failure in reconstructing high-

frequency image details and loss of low-frequency features

like straight lines or etc. In fact, unpleasant visual effects

couldn’t be avoided by most of deep learning methods,

since their generated feature map is short of context

information to capture unique characteristics of input LR

images. Without context information, deep-learning-based

methods perform the same operation across channels and

patches, which loses emphasis on reconstructing task-

specified feature map for a better representation.

To deal with this drawback, several attention schemes

[15, 58] are recently adopted to recalibrate the extracted

feature maps, so that builded networks are more adaptive

and sensitive to restore high-frequency features. For

example, Zhang et al. [58] adopt an existing channel

attention mechanism to construct very deep residual

channel attention networks (RCAN). Hu et al. [15] propose

a channel-wise and spatial feature modulation (CSFM)

network built by feature modulation memory (FMM)

modules with stack connections, which successfully

transforms low-resolution features to high informative

features. However, their adopted attention scheme is either

out of modification to be suitable for SISR problem, or lack

of emphasis on locally preserving low-frequency features

due to their stack structures. Therefore, how to construct an

appropriate attention scheme to describe context informa-

tion for SISR problem remains unresolved. Based on these

considerations, we propose to build a context-aware and

light-scale deep residual network, named as CASR, to

perform SISR task.

The contributions of this paper are threefold:

• We propose a novel deep and context-aware residual

network for accurate SISR task, in which a task-

specified inception block and DRM structure are

adopted to enhance feature representative ability on

the basis of multi-level features and context

information.

• DRM is carefully designed with a dual combination

form between channel and spatial attention scheme.

DRM adaptively rescales feature map by exploiting

inter-channel and intra-channel interdependencies, thus

involving inherent and unique context characteristics of

LR images for better reconstruction results. Since DRM

only increases a small amount of computation burden

and can be easily implemented, we believe it can be

adopted by other computer vision tasks with

modifications.

• CASR successfully builds a lightweight SISR system

with features of high reconstruction accuracy, fast

computing speed and only 40M storage size. (For

comparison, EDSR [25] reports 120M storage request.)

We believe these properties make CASR appropriate to

be applied in most of application scenarios, like

cellphones, drones or other embedding systems

The rest of the paper is organized as follows. Section 2

gives an overview of the related work on relative aspects.

In Sect. 3, details of the proposed CASR network,

including network architecture design, Inception block and

Fig. 1 Comparisons on visual effects among CASR?, Bicubic, A?

[42], SRCNN [8] and LapSRN [23] with 2� scale factor. It’s noted

CASR? is an improved version of CASR by utilizing self-ensemble

property during testing. We enlarge the patch labeled by yellow

rectangle to offer a better visual comparison, where we can clearly

observe poor visual effects like blur, geometry preservation and detail

reconstruction failures achieved by comparative methods. Meanwhile,

we can notice CASR? maintains intrinsic geometry information like

lines or etc, and clearly reconstructs high-frequency details like

textures or etc
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DRM structure, is discussed. Section 4 shows our experi-

mental results with several comparative methods, and

finally Sect. 5 concludes the paper.

2 Related work

Existing methods related to our work can be categorized

into the following two categories: deep learning methods

for SISR and attention model.

2.1 Deep learning methods for SISR

In this subsection, we category deep learning methods for

SISR into three types, i.e., convolutional neural network

(CNN), generative adversarial network (GAN) and other

deep learning methods.

CNN-based SISR methods are quite larger in amount

than the other two categories of methods, due to their long

history and impressive HR reconstruction effects. The first

work to solve SISR problem, i.e., SRCNN, is introduced by

Dong et al. [8]. Three-layer SRCNN network directly

learns an end-to-end mapping between input LR images

and the corresponding HR output images. Inspired by

success of ResNet, Kim et al. [18] propose very deep

convolutional networks (VDSR), which constructs a very

deep network with global residual learning and layer stack

technologies. VDSR successfully recovers high-frequency

details and has impressive property of fast convergence.

Following the idea of residual learning, Tai et al. [41]

propose deeply recursive residual network (DRRN), which

not only uses global residual learning in the identity

branch, but also introduces new concept of local residual

learning in local residual branch. Involving both global and

local residual learning results in desirable visual effects and

high performance in measurements.

To pursue better feature map representation, Tong et al.

[44] combine low-level and high-level features in a rea-

sonable way by propagating feature maps of each layer into

all subsequent layers and allowing dense skip connection.

Recently, Lim et al. [25] develop an enhanced deep super-

resolution network (EDSR), which generates high-quality

feature map by removing unnecessary modules in con-

ventional residual networks and expands model depth with

a stable training procedure. Haris et al. [13] propose deep

back-projection networks (DBPN), which exploits iterative

up- and downsampling layers to provide an error feedback

mechanism for less projection errors at each stage. Sham-

solmoali et al. [39] present an effective model based on

progressive dilated densely connected, and a novel acti-

vation function has a nonlinear learnable function with

some short connections. These strategies help the network

to obtain deep and complex features, which supports the

exponential growth of the receptive field, parallel by

increasing the filter size.

With the development of edge computing [34, 51], cloud

computing [31, 36], big data technology [35, 50], internet

of things [32, 48], and other technologies [33, 52], more

technologies are adopted to improve efficiency of CNN-

based SISR methods. Inspired by the light-scale and

effective network design in EDSR [25], we aim to propose

a light CNN structure, which is fast in running speed and

small in storage size.

Due to unsupervised training feature of GAN, GAN-

based SISR methods could handle a large amount of

unlabeled images without any prior knowledge on input-

ting LR and HR images. Super-resolution generative

adversarial network (SRGAN) [24] is first proposed to

apply GAN model on SISR task, which is trained under the

constraint of perceptual similarity. Specifically, perceptual

similarity is defined as a sum value of adversarial loss and

content loss, where the former one is specially designed to

guarantee that SRGAN could generate high-quality and

photo-realistic HR images with help of a discriminator

network. Afterward, Bulat et al. [3] propose a two-stage

process, which uses a GAN to learn how to perform image

degradation at first and then learn image super-resolution

with the trained GAN. To pursue high quality for large

upsampling factors, Wang et al. [45] propose ProGANSR,

which is progressive in both architecture and training: the

network upsamples an image in intermediate steps, while

the learning process is organized from easy to hard. Most

recently, Shamsolmoali et al. [40] organize a GAN-based

model for SR tasks by a gradual learning process from

simple to advanced, which means from the small upsam-

pling factors to the large upsampling factor that improves

the overall stability of the training.

Deep Reinforcement Learning (DRL) recently has been

introduced for SISR task. Following the idea of reinforce

learning, DRL for SISR utilizes reward scheme to navigate

up-scaling regions, which results in an adaptively opti-

mizing way. For instance, Cao et al. [5] propose a novel

attention-aware Face Hallucination framework, which first

follows principles of DRL to sequentially discover patches

required to up-scale and then exploits global characteristics

of inputting facial image to enhance facial patch. More-

over, Cao et al. [4] propose a novel SR method with multi-

channel constraints learning conception, which integrates

clustering, collaborative representation, and progressive

multilayer mapping relationships to reconstruct high-reso-

lution (HR) color image.

2.2 Attention model

Attention model sources from visual attention mechanism

found in humans. Human generally intends to focus on part
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of scene over time to obtain important and informative

messages to comprehend his or her surroundings. Based on

study from human brain, attention model, regarded as an

automatically and selectively focusing mechanism, has

been deployed in various deep-learning-based applications.

The key effects to apply attention model lies in two

aspects, namely, decide meaningful parts of input to focus

on and allocate limited computing resources to important

parts for higher efficiency. Based on different mechanisms,

researchers generally classify current attention models into

two categories, i.e., hard and soft attention, where the

former one selects certain parts of input signal to focus on,

and the latter one assigns different weights to parts of input

signal for selection.

Hard attention is firstly introduced by Mnit et al. [29],

which adaptively selects a sequence of regions as infor-

mative parts according to a group of criterions. These

selected regions are then regarded as input for later RNN

network to perform recognition or other tasks. Following

the idea to focus on informative parts of input data, He

et al. [14] propose a novel text-attentional convolutional

neural network (Text-CNN) for scene text detection, which

particularly focuses on text-related features extracted from

salient regions based on context information of image

components.

Due to its flexibility and efficiency, soft attention is

more widely used than hard attention in deep learning

structures. Soft attention model is generally formed as a

dimension of interpretability into internal representations

by selectively focusing on specific information. Specifi-

cally, we could divide core procedures of soft attention

model into two stages, i.e., calculate weights based on

similarity between input signal and pre-trained weights,

and re-weight original values based on calculated weights.

During the first stage, multilayer perception (MLP) is

often utilized to calculate similarity or correlation between

input signal Q and one of the pre-trained weights Wi as

simðQ;WiÞ ¼ MLPðQ;WiÞ. Afterward, researchers often

adopt Softmax function to perform normalization on cal-

culated similarity and emphasize informative parts based

on its inherent ability:

ai ¼ softmaxðsimðQ;WiÞÞ ¼
esimðQ;WiÞ

PL
j¼1 e

simðQ;WiÞ
; ð1Þ

where L refers to the number of pre-trained weights.

In the second stage, attention value Atten can be

obtained by summing weighted original values with:

Atten ¼
XL

i¼1

ai � vi ð2Þ

where vi refers to original values and operation � means

element-wise operation. By calculating with two stages

above, we can get the attention value Atten for original

vector v with the input signal Q.

Based on the core procedures of soft attention model,

various methods are proposed to solve different problems.

With the idea of utilizing attention-based weight scheme to

fuse information, Yeung et al. [53] propose a sliding

window to capture a range of frames as input, which are

further assigned with frame-wise attention weights learned

by an auto-encoder network. Chen et al. [6] fuse attention

with convolutional neural network (CNN) and RNN to

automatically extract the most salient modality-specific

features, which are further converted to higher level rep-

resentation for the purpose of human activity recognition

with imbalanced labeled data over classes. Anderson et al.

[1] propose a combined bottom-up and top-down attention

mechanism based on Faster R-CNN, which enables atten-

tion to be calculated at the level of objects and other salient

image regions. They further apply their novel attention

model on image captioning, which results in a new state-

of-the-art performance on public datasets. Latest, Zhao

et al. [60] propose end-to-end Recurrent Attention (RA)

models for pedestrian attribute recognition, which combi-

nes the Recurrent Learning and Attention Model to high-

light the spatial position on feature map and mine the

attention correlations among different attribute groups to

obtain more precise attention.

Most related to SR work, Kim et al. [20] propose a novel

channel and spatial attention mechanism specially opti-

mized for SR, which prefer to fuse spatial and channel

attention for a unity representation before assigning

weights, rather than two separate weight schemes. How-

ever, their work is only tested on two simplified attention

schemes. Woo et al. [47] construct Convolutional Block

Attention Module (CBAM) as a lightweight and general

attention module, which sequentially infers attention maps

along spatial and channel dimensions at first and then

multiplies attention maps to the input feature map for

adaptive feature refinement. Their proposed light-scale

attention module has achieved excellent performance in

lots of recognition and classification tasks. Inspired by

attention schemes applied in other domains and related

SISR work based on attention scheme, we combine channel

and spatial attentions in a dual form to construct light-

weight DRM structure, which adaptively modulates feature

representations for accurate SR with context information

among feature channels and different regions.

3 The proposed method

We firstly design a light-scale network architecture to

complete general tasks of SISR, i.e., generating feature

maps and up-scaling. Then, we design a task-specified
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inception block to enhance representative ability of gen-

erated feature map with multi-branch convolutional layers.

Afterward, we propose a novel Dual-Attention ResNet

module (DRM) to construct context descriptors for feature

map enhancement. Finally, we describe structure details of

the proposed channel and spatial attention schemes, which

are adopted to construct DRM.

3.1 Network architecture design

The fundamental goal of SISR methods is to hallucinate

missing detailed information of super-resolved images. In

the literature, SISR is an inherently ill-posed problem,

since the informative information contained in LR images

is often insufficient to complete the task of reconstruction.

There usually exist two tasks for traditional SISR methods:

upsampling of LR images to increase image resolution, and

removing artifacts including blur and noise. Owing to the

significant multi-task ability of deep neural networks,

multiple tasks or intentions of SISR can be accomplished

by a single neural network:

IH ¼ FðILÞ ð3Þ

where IL and IH represent input LR and output HR image,

respectively, and function Fð�Þ refers to single neural net-

work to accomplish SISR task.

As shown in Fig. 2, the proposed CASR network mainly

consists of five parts: input layer, inception block, Dual-

Attenion module, upsample layer and output layer. It’s

noted that all kernels of filters adopted by five blocks

represented in Fig. 2 are defined with 3 � 3 in kernel size.

In the first input layer block, we use one convolutional

layer (Conv) to extract initial and shallow feature FS for

further processing:

FS ¼ HSðILÞ ð4Þ

where function HSð�Þ denotes convolution operation of the

input layer. FS is then enhanced by inception block with

multi-branch convolutional layers:

FI ¼ HIðFSÞ ð5Þ

where function HIð�Þ indicates multi-branch operations of

the proposed inception block.

Afterward, we construct n Dual-Attention ResNet

modules (DRMs) to perform task of enhancing feature map

with context information, where n is settled as 16 for all

tests in the paper. Specifically, the first DRM is employed

to generate context feature FD1 based on FI:

FD1
¼ HD1

ðFIÞ ¼ C1ðFIÞ þ S1ðFIÞ þ FI ð6Þ

where function C1ð�Þ and S1ð�Þ represent operations of

channel and spatial attention scheme in the first DRM,

respectively, operator þ refers to a dual combination form,

and the last term of FI represents a stack connection. It’s

noted that we stack DRM with short skip connection (SSC)

for fast convergency. In fact, the long and short skip con-

nection as well as the shortcut in residual block allows

abundant low-frequency information to be bypassed

through these identity-based skip connections, which can

ease the flow of information.

Regarding DRM as the basic module of CASR network,

we could construct deep enough network by cascading n

DRMs, which can be represented as

FDn
¼ HDn

ðFDn�1
Þ ¼ CnðFDn�1

Þ þ SnðFDn�1
Þ þ FDn�1

ð7Þ

where the last term of FDn�1
represents a short stack con-

nection. After processing of n DRM, CASR network per-

forms a Conv, an upsampling operation and an output layer

to obtain output HR image:

IH ¼ HOðHUðHCðFDn
ÞÞ þ FIÞ ð8Þ

where function HCð�Þ, HUð�Þ and HOð�Þ represent Conv,

upsampling and operations of output layer, respectively,

and the last term of FI represents a long skip connection. In

upsampling layer, convolutional filter is followed by a

pixel-shuffle operation, which enlarges size of feature

extracted from Conv filter.

Fig. 2 Network architecture of the proposed CASR network, which consists of input layer, inception block, Dual-Attention module, upsample

layer and output layer
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Following the definition of SISR task in Eq. 3, CASR

can thus be represented as

IH ¼ FCASRðILÞ ¼ HOðHUðHCðHDn
ð� � �HD1

ðHIðHSðILÞÞÞ � � �Þ
þ HIðHSðILÞÞÞÞ

ð9Þ

During training, the proposed CASR network is designed

to optimize with a loss function. To achieve desirable

reconstruction results of HR images, we have investigated

several loss functions, such as L1 and L2 form, perceptual

and adversarial losses. We choose L1 form of loss function

based on two considerations. Firstly, it’s fair for compar-

isons by adopting L1 form since most of residual-based

SISR methods use L1 form for optimization. Secondly,

usage of L1 form improves performance on SSIM after our

experiments with different loss functions.

Supposing a training set with N pairs of LR images and

corresponding HR images represented as

fIiL; IiH ; i ¼ 1::;Ng, the L1 form of loss function to train the

proposed CASR network could be represented as

LðhÞ ¼ 1

N

XN

i¼1

k FCASRðIiL; hÞ � IiH k ð10Þ

where h denotes the parameter set of our network. We

utilize algorithm of stochastic gradient descent to minimize

Eq. 10. More details of training parameters and settings can

be viewed in Sect. 4.4.

In order to accelerate training and improve the final

performance on SISR, we utilize a pre-training strategy for

training process. For example, to train CASR for upsam-

pling factor �3 and �4, we initialize the model parameters

with pre-trained network, of which upsampling factor is

settled as �2. Essentially, such initialization strategy

makes CASR converge much faster than start training with

random initialization.

3.2 Task-specified inception block

Inspired by [27] to enhance feature representation for better

object detection results, we believe it’s essential to offer

abundant and enhanced low-frequency features for high-

frequency detail reconstruction. We thus design a task-

specified inception block to perform low-frequency feature

map enhancement.

Structure of the proposed inception block is shown in

Fig. 3a, where we can notice it contains multi-branch

convolutional layers to help capture abundant and variant

information from inputting LR image. There exist two

main differences between standard and the proposed

inception block. Firstly, we utilize special chosen kernel

sizes, i.e., 1� 1, 3� 3, to be cores of multi-branch con-

volutional layers, which copes with multi-scale property of

low-frequency features, thus successfully capturing char-

acteristics of different receptive fields. Secondly, we use

two kinds of convolutional layers, i.e., normal and astrous

convolutional layers. In fact, astrous convolutional layer is

designed to capture information with a larger area, while

keeping the number of parameters unchanged. We thus

utilize astrous convolutional layer to enlarge receptive field

and keep low computation cost at the same time. It’s noted

the proposed inception block concatenates features gener-

ated by multi-branch convolutional layers, which fuses

information captured by different receptive fields for a

unity and enhanced representation.

The proposed inception block could simulate the rela-

tionship between size and eccentricity of receptive fields in

human visual systems. In other words, the proposed

inception block ensures that positions near the center have

larger weights than faraway ones with variety of kernels. In

that way, we enhance representative ability of low-fre-

quency features by considering a general rule of human

visual systems, i.e., relationship between size and eccen-

tricity. Above all, the proposed inception block success-

fully enhances low-frequency features with information-

abundant, multi-level, and visually-featured properties,

Fig. 3 Architecture of DRM,

where a refers to inception

block and b represents the dual

combination form of DRM
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which guarantees latter DRM structure could build highly

convinced and effective context-wise descriptors.

3.3 Dual-Attention ResNet module

During the construction of deep neural networks, generated

feature map contains different types of information such as

low-frequency and high-frequency information across

channels, patches and layers. All these information essen-

tially have different reconstruction difficulties as well as

different contributions to recover the implicit high-fre-

quency details. However, most CNN-based methods con-

sider different types of information are equal in

informativeness and lack flexible modulation ability to deal

with them. Moreover, simply increasing depth or width of

network can hardly achieve better improvement with sin-

gle-path direct connections or short skip connections

among layers, since hierarchical features could hardly be

fully utilized and long-term information that might be

important for SR would be forgotten with the growing

depth of network. Based on these two considerations, we

construct a set of Dual-Attention ResNet modules (DRMs)

and stack them in a chain structure to dynamically modu-

late multi-level features in a global-and-local manner. The

proposed DRM structure emphasizes high informative and

contribution information and suppresses redundant infor-

mation, which guarantee to maintain long-term information

and generate context feature map for image SR.

We design the proposed DRM to combine both channel

and spatial attention schemes for generation of context-

aware feature map, where its structure is shown in Fig. 3b.

However, such complicated and multi-stage process of

DRM make it hard to train for convergency. To ease this

difficulty, we propose a residual shortcut on DRM, which

makes gradient descent propagate in a much easier way.

How to appropriately combine channel and spatial

attention schemes is discussed in many previous works. We

show structures of these attention schemes in Fig. 4,

including CBAM [47], CSAR block [15], RAM [20] and

the proposed DRM. We could observe that DRM is dif-

ferent with comparative schemes in input feature map,

designs of attention schemes and combination form.

Without enough low-frequency features extracted from

inputting LR image, it’s hard to guarantee performance of

constructed context-aware descriptors. We thus utilize a

task-specified inception block before DRM structure for

enhanced feature extraction.

Fig. 4 Structure of various attention schemes, where CBAM can be

regarded as a cascade form combination, DRM and CSAR represent

dual form combination, and RAM is a fused form combination

between two simplified attention schemes. It’s noted that input feature

map for DRM is previously enhanced by an inception block to

increase its multi-level property
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Applying an additional max-pooling operation to con-

struct spatial attention scheme is adopted by CBAM and

DRM, which exploits maximal context characteristics of

feature map. Essentially, regions with maximal values

could be edges, corners or places with high gradient values,

which require more attention on their high-frequency

details reconstruction. DRM thus utilizes max-pooling

operation to detect such regions and adopts higher weights

to emphasize these regions.

We prefer a dual form to combine the channel and

spatial attention scheme, rather than a cascade form. We

choose dual form for SISR on the basis of task purpose. For

classification tasks, feature needs to be highly compressed

to resolve high-level and semantic information. However,

SISR task requires to restore high-frequency details based

on feature maps. Generally speaking, cascade combination

form leads passed-by information to be compressed, while

dual form can increase bandwidth for information trans-

mission to obtain abundant information for reconstruction.

Last but not least, direct fuse combination form adopted by

RAM works well only with simplified attention scheme,

since fuse complicated multi-modal information is a chal-

lenging and unsolved problem. Therefore, a dual combi-

nation form is more favorable for SISR task.

We further improve dual combination form by replacing

the last layer from concatenate operation to a simple ele-

ment-wise addition operation, where the latter operation

brings advantage of less parameters. Furthermore, back-

propagation gradients can be equally passed to either

channel or spatial attention scheme with element-wise

addition operation, resulting in fast and stable convergency

during training.

3.4 Structure of channel and spatial attention
scheme

The proposed DRM aims to exploit inter-channel and intra-

channel context relationship of feature maps with channel

and spatial attention scheme, respectively. In this subsec-

tion, we describe structure details of the proposed channel

and spatial attention schemes.

3.4.1 Channel attention scheme

A convolutional layer usually scans the input image and

computes the corresponding 3D feature map. Considering

that a convolutional layer consists of different channel

filters, each 2D slice of the output 3D feature map essen-

tially encodes spatial-visual responses raised by a channel

filter. From the view of pattern recognition, each channel

filter actually performs as a pattern detector. In other

words, low-layer channel filters detect low-level visual

cues like edges and corners, while high-layer ones detect

high-level and semantic patterns like parts and objects [55].

By stacking different layers, a CNN extracts image features

through a hierarchical representation of visual abstractions.

Therefore, features extracted from CNN structure are

essentially channel-wise and multilayer. However, not all

the channel-wise features are equally important and infor-

mative for recovering high-frequency details. We thus

utilize channel attention scheme to compute task-specified

feature map for SISR by exploiting cross-channel rela-

tionship. In other words, channel attention scheme offers

an intuitive descriptor on inherent context property among

different feature channels.

As shown in Fig. 4b, global mean pooling is firstly

performed on input feature map Fi to output global avg-

pooled feature map Fc with size C � 1� 1, which could be

represented as

Fc ¼ APðHRðFiÞÞ ð11Þ

where function HRð�Þ represents two Conv operations to

generate features and is represented in Fig. 3b, and function

APð�Þ refers to the global mean pooling operation.

Then, Fc will be fed into a multilayer perception (MLP)

with two hidden layers. It’s noted that the first hidden layer

is used to perform a dimension reduction for a compact

feature representation to aggregate information among

channels. Finally, a sigmoid activation function is used to

squeeze the output of MLP. Channel attention weight thus

could be computed as:

CðFiÞ ¼ sigðW1 � ðreluðW0 � FcÞÞÞ ð12Þ

where functions sigð�Þ and reluð�Þ refer to sigmoid activa-

tion function and relu activation function, respectively, W0

and W1 are learnable parameter matrices and defined with

size C
r
� C and C � C

r
; respectively, and r is a pre-defined

dimension reduction parameter and we set it as 16 by

experiments.

3.4.2 Spatial attention scheme

We observe the information contained in feature maps or

LR images is diverse over spatial positions. For example,

the edge or texture regions usually contain high-frequency

information, while the smooth areas have low-frequency

information. To better recover high-frequency details and

maintain low-frequency parts for SISR task, we thus pro-

pose a spatial attention scheme to adaptively optimize

feature map in different regions with suitable operations.

Moreover, human perception on visual effects requires

high similarity between LR and HR images, which could

be achieved by spatial attention scheme to globally adjust

intensity distribution and visually enhance saliency

regions. Spatial attention scheme is constructed based on
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difference of feature map of different positions, which

essentially explores inter-channel relationship to construct

context descriptor. Above all, spatial attention helps focus

on saliency parts of feature map to describe inter-channel

context property and is thus a beneficial complementary to

channel attention.

As shown in Fig. 4b, a global max-pooling operation is

first performed on input feature map Fi of DRM to output

max-pooled feature map Fm with size 1� m� n, which

could be represented as

Fm ¼ MPðHRðFiÞÞ ð13Þ

where function HRð�Þ represents two Conv operations

before attention scheme, and function MPð�Þ refers to the

global max-pooling operation.

Then, we perform mean pooling operation along chan-

nel dimension to generate avg-pooled feature map Fa,

which is different from Fc in channel attention scheme on

its pooling direction. Afterward, a concatenation operation

along channel axis is performed on avg-pooled feature map

Fa and max-pooled feature map Fm. Finally, a convolu-

tional layer with 7� 7 kernel and a sigmoid function are

performed on the concatenated feature map to generate

spatial attention weight as follows:

SðFiÞ ¼ sigðConvð½Fa;Fm�Þ ð14Þ

where [, ] denotes concatenation operation along channel

axis, function Convð�Þ means operation of a convolutional

layer.

4 Experimental results

In this section, we show the effectiveness and efficiency of

the proposed CASR network for SISR task. We first

introduce dataset and measurements. Then, we conduct

three groups of comparative studies to demonstrate CASR

is effective in super-resolving real-world photos. After-

ward, experiments on computational cost are conducted to

prove the efficiency of CASR. Finally, we describe

implementation details for readers’ convenience.

4.1 Dataset and measurement

Among all popular dataset for super-resolution task, we

choose five datasets including Set5 [2], Set14 [56], B100

[28], Urban100 [17] and Manga109 [10] for experiments,

since Set5, Set14 and B100 consist of natural scene images,

Urban100 contains challenging urban scenes images with

quantity of visual details, and Manga109 is a dataset of

Japanese cartoon drawing. It’s noted that DIV2K [43]

serving as a benchmark for NTIRE 2017 super-resolution

Challenge, is adopted as part of training set. We achieve

pairs of LR and HR images by bicubic operator on HR

images. After such operations, we finally obtain 800 ima-

ges for training and 100 images to perform cross-validation

for all comparative SISR methods.

We choose two standard quality measures, i.e., peak

signal-to-noise ratio (PSNR) and structural similarity index

(SSIM), to compare quality of super-resolution results. It’s

noted that PSNR is adopted to measure reconstruction

quality by calculating power ratio of noisy signal intro-

duced by SISR process. Higher PSNR value represents

better quality of reconstructed image. Meanwhile, SSIM is

used to quantify the similarities of structure between

original and HR images. High SSIM value indicates that

SISR doesn’t affect basic structure of original image, thus

proving good reconstruction quality.

Since the definition of PSNR is on the basis of MSE, we

define all these three measures as follows:

MSE ¼ m � n
Pm

i¼1

Pn
j¼1ðIði; jÞ � Pði; jÞÞ2 ð15Þ

PSNR ¼10� logð255
2

MSE
Þ ð16Þ

SSIMðx; yÞ ¼
ð2lxly þ c1Þð2rxy þ c2Þ

ðl2x þ l2y þ c1Þðr2x þ r2y þ c2Þ
ð17Þ

where m and n refer to the width and the height of the

image, I and P represent output image after operation of

super-resolution and the input original image, respectively,

lx and ly represent the means of x and y, respectively, r2x
and r2y represent the variances of x and y, respectively, rxy
is the covariance of x and y, and c1 and c2 are two preset

variables.

4.2 Performance and analysis

In this subsection, we conduct three groups of comparative

experiments, where the first one is to check whether dual or

cascade form is suitable for combination of channel and

spatial attention schemes, the second group is designed to

show the effectiveness of CASR with or without DRM, and

the last one is performed on a variety of datasets to com-

pare performance of CASR with other SISR methods.

Before stating, we define number of DRMs utilized in

CASR as n and filter number of each convolutional layer in

CASR as k, which are key parameters during experiments.

We show statics of the first comparative experiment in

Table 1, where we define n ¼ 16 and k ¼ 64. During

experiments, we combine channel and spatial attention

schemes in either cascade form or dual form, and keep

other parts remain the same for a fair comparison. From

Table 1, we can notice that PSNR/SSIM values achieved

by CASR with dual form are higher than those with
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cascade form on all the datasets. This proves that dual form

is more appropriate than cascade form in DRM for context

feature map generation. In fact, tasks, like recognition and

detection, are in favor of cascade combination between

different attention schemes, since comprehending high-

level information or semantics meanings of images gen-

erally requires low-frequency features to be highly com-

pressed for process of encoding and decoding. Meanwhile,

dual form increases bandwidth of information transmission

among modules of network, so that abundant information

including both low- and high-frequency information, can

be utilized by subsequent networks for image recovery or

reconstruction tasks.

Details of the second comparative experiment are pre-

sented in Table 2, where we set n ¼ 16 and k ¼ 64.

Specifically, we perform two rounds of experiments either

with or without DRM structure represented as

CASR(w) and CASR(wo), respectively. From Table 2, we

can notice PSNR/SSIM values achieved by CASR(w) in-

crease on the basis of CASR(wo) in most cases, which

proves the effectiveness of DRM to involve context

descriptors for feature map enhancement. For the case of

B100 dataset where SSIM achieved by CASR(wo), i.e.,

0.8989, is a bit larger than that obtained by CASR(w), i.e.,

0.8987, we conclude that it sources from complicated and

multiple categories of context information embedded in

B100 dataset. With sufficient ability to encode context

information of Manga109 dataset, CASR(w) obtains a

much larger PSNR/SSIM value, i.e., 38.45/0.9767, than

that of CASR(wo), i.e., 38.05/0.9760. In fact, Manga109

dataset consists of cartoon drawings with much more

simple context information, compared with real-world

natural images from B100 dataset.

Table 3 shows quantitative comparative results with

various kinds of SISR algorithms for 2�, 3�, 4� and 8�
SISR tasks, such as Bicubic, A? [42], SRCNN [8], VDSR

[18], EDSR [25], LapSRN [23], GuideAE [7], SRMDNF

[57], IDN [61], MSLapSRN [22] and DualGAN [54]. It’s

claimed that we achieve results of all comparative methods

directly from their published paper. With the same setting

(n ¼ 32 and k ¼ 128), we could observe that CASR?

achieve better SISR performance than CASR due to its

self-ensemble strategy, which pre-process input LR images

by flip and rotation operations for data augmentation.

From Table 3, we could notice CASR? achieves the

best performance among Set5, Set14 and Manga109 data-

sets, since their context information with a few images or

cartoon drawings could be encoded and described by DRM

structure. Meanwhile, small increase or worse performance

on PSNR/SSIM values can be viewed when comparing

CASR? with EDSR on B100 and Urban100, since images

representing urban and natural scene are difficult and

complex in modeling their context information. With only

half number of filters compared with EDSR, CASR? is

able to produce superior reconstruction results in most

cases, which proves DRM structure guarantee CASR? to

achieve good performance with a small amount of

parameters. Essentially, involving context information by

various attention schemes help focus on informative parts

among different channels and regions to reduce computa-

tion burden and improve reconstruction performance.

Compared with CASR?, G-GANISR [40] achieves better

reconstruction results with 8� scale factor, which proves

power of GAN-based structure for SR with larger scaling

factor.

Samples of reconstruction visual effects are shown in

Fig. 5 with 4� scale factor. We can notice that CASR?

accurately restores parallel straight lines and grid patterns

like windows and building shape, since CASR? guarantees

to preserve low-frequency features. Blurry effects and loss

of image details can be viewed in most cases achieved by

comparative methods, since they fail to restore high-fre-

quency details via training and learning on abundant low-

frequency features. For example, we observe artifacts of

Table 1 Comparisons on PSNR/

SSIM measurement between

cascade and dual combination

form

Methods Set5 Set14 B100 Urban100 Manga109 Average

Cascade 37.93/0.9603 33.43/0.9140 31.97/0.8971 31.78/0.9244 38.29/0.9762 34.68/0.9344

Dual 37.97/0.9605 33.56/0.9163 32.06/0.8986 31.94/0.9261 38.39/0.9766 34.78/0.9356

Bold values indicate the best performance among all comparative methods

The scale factor is set as �2

Table 2 Comparisons on PSNR/SSIM measurements between CASR with or without DRM, where w and wo refer to with and without DRM,

respectively, and the scale factor is set as �2

Methods Set5 Set14 B100 Urban100 Manga109 Average

CASR(wo) 37.85/0.9602 33.51/0.9159 32.06/0.8989 31.93/0.9265 38.05/0.9760 34.68/0.9355

CASR(w) 37.94/0.9605 33.56/0.9165 32.07/0.8987 32.01/0.9267 38.45/0.9767 34.81/0.9358

Bold values indicate the best performance among all comparative methods
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Table 3 Quantitative evaluation of state-of-the-art SISR algorithms,

where average PSNR/SSIM for scale factors �2, �3, �4, �8 are

listed, information not provided by original authors is marked with [–

], and CASR? represents application version of utilizing self-

ensemble property for testing

Methods Scale Set5 Set14 B100 Urban100 Manga109

�2 Bicubic 33.66/0.9299 30.24/0.87688 29.56/0.8431 26.88/0.8403 30.80/0.9339

A? [42] 36.54/0.9544 32.28/0.9056 31.21/0.8863 29.20/0.8938 –/–

SRCNN [8] 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663

VDSR [18] 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 37.22/0.9750

EDSR [25] 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351 39.10/0.9773

LapSRN [23] 37.52/0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101 37.27/0.9740

GuideAE [7] 37.52/0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101 37.27/0.9740

SRMDNF [57] 37.79/0.9601 33.32/0.9154 32.05/0.8984 31.33/0.9204 38.07/0.976

IDN [61] 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.02/0.9749

CASR 38.16/0.9612 33.86/0.9190 32.22/0.9007 32.70/0.9332 39.04/0.9779

CASR? 38.23/0.9614 34.02/0.9202 32.33/0.9016 32.92/0.9347 39.25/0.9784

�3 Bicubic 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556

A? [42] 32.58/0.9088 29.13/0.8188 28.29/0.7835 26.03/0.7973 –/–

SRCNN [8] 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117

VDSR [18] 33.67/0.9210 29.78/0.8320 28.83/0.7990 27.14/0.8290 32.01/0.9340

EDSR [25] 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653 34.17/0.9476

LapSRN [23] 33.82/0.9227 29.87/0.8320 28.82/0.7980 27.07/0.8280 32.21/0.9350

GuideAE [7] 33.82/0.9227 29.87/0.8320 28.82/0.7980 27.07/0.8280 32.21/0.9350

SRMDNF [57] 34.12/0.9254 30.04/0.8371 28.97/0.8025 27.57/0.8398 33.00/0.9403

IDN [61] 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.69/0.9378

CASR 34.67/0.9295 30.55/0.8448 29.15/0.8076 28.69/0.8625 34.06/0.9478

CASR? 34.75/0.9300 30.64/0.8467 29.29/0.8096 28.92/0.8660 34.42/0.9495

�4 Bicubic 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866

A? [42] 30.28/0.8603 27.32/0.7491 26.82/0.7087 24.32/0.7183 –/–

SRCNN [8] 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555

VDSR [18] 31.35/0.8830 28.02/0.7680 27.29/0.0726 25.18/0.7540 28.83/0.8870

EDSR [25] 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148

LapSRN [23] 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09/0.8900

GuideAE [7] 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09/0.8900

SRMDNF [57] 31.96/0.8925 28.35/0.7772 27.49/0.7337 25.68/0.7731 30.09/0.9024

IDN [61] 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8936

CASR 32.54/0.8995 28.79/0.7848 27.60/0.7383 26.49/0.7978 30.85/0.9133

CASR? 32.62/0.9000 28.89/0.7877 27.74/0.7413 26.73/0.8036 31.31/0.9175

�8 Bicubic 24.40/0.6580 23.10/0.5660 23.67/0.5480 20.74/0.5160 21.47/0.6500

SRCNN [8] 25.33/0.6900 23.76/0.5910 24.13/0.5660 21.29/0.5440 22.46/0.6950

VDSR [18] 25.93/0.7240 24.26/0.6140 24.49/0.5830 21.70/0.5710 23.16/0.7250

LapSRN [23] 26.15/0.7380 24.35/0.6200 24.54/0.5860 21.81/0.5810 23.39/0.7350

MSLapSRN [22] 26.34/0.7558 24.57/0.6273 24.65/0.5895 22.06/0.5963 23.90/0.7564

DualGAN [54] –/– –/– 27.85/0.8911 –/– –/–

G–GANISR [40] 31.11/0.9082 28.07/0.8803 29.18/0.9065 27.23/0.8750 –/–

EDSR [25] 26.96/0.7762 24.91/0.6420 24.81/0.5985 22.51/0.6221 24.69/0.7481

CASR 27.00/0.7755 24.98/0.6398 24.84/0.5974 22.49/0.6181 24.60/0.7799

CASR? 27.24/0.7825 25.13/0.6439 24.90/0.5997 22.71/0.6256 24.88/0.7873

Bold values indicate the best performance among all comparative methods
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right slashes in reconstruction results of Img93 achieved by

comparative methods. Meanwhile, our approach suppresses

this artifact by constructing context descriptors for feature

map enhancement, where we can clearly observe exact

shape reconstruction as HR image achieved by CASR?.

Samples of reconstruction visual effects are shown in

Fig. 6 with a larger scale factor, i.e., 8�. We could observe

CASR? achieves better reconstruction effects than

comparative methods, even operating with a large scale

factor. When compared with original HR images, we can

notice some artifacts occur like unclear boundaries, blur

effects and so on, which are caused by shortage of suffi-

cient low-frequency information for reconstruction with

large scale factor. We believe this situation can be

improved by involving more training images, since we use

a relatively small number of training images.

Fig. 5 Visual comparisons for

4� SISR on Set14 and

Urban100 dataset, where yellow

rectangle represents enlarge

regions for comparisons
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4.3 Execution time analysis

We use original codes of comparative methods to evaluate

runtime performance on the same machine with 3.4 GHz

Intel i7 CPU (64G RAM) and NVIDIA Titan 1080Ti GPU

(12G Memory). Figure 7 shows trade-offs between runtime

and reconstruction performance (in terms of PSNR) on five

datasets for 2� scale factor. Since CASR? is computed by

mean operation among 8 images for data augmentation, it’s

intuitive that CASR? is almost 8 times lower than CASR,

thus removing CASR? from comparisons. From Fig. 7, we

can notice running speed of CASR is a little faster than

EDSR. Moreover, CASR achieves better performance on

PSNR than EDSR. LapSRN [23], FSRCNN [9] and

D2GAN [30] are fast enough to guarantee real-time per-

formance; meanwhile, D2GAN is promising to achieve

high-quality reconstruction results. SRCNN [8] is faster

Fig. 6 Visual comparisons for 4� SISR on Set14, B100, Urban100 and Manga109 dataset, where yellow rectangle represents enlarge regions for

comparisons

Fig. 7 Speed and accuracy trade-off, where runtime results are

evaluated on five datasets with the scale factor 2�
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than CASR, DRDN [39], EDSR [25], DRCN [19], VDSR

[18], SelfExSR [16], SCN [46], RFL [38], RDN [59] and

A? [42] achieve almost the same performance as CASR in

runtime speed. However, all these methods get much lower

PSNR values than CASR. Above all, CASR achieve a

relatively good balance between runtime and reconstruc-

tion performance.

We show FPS performance comparisons with different

scale factors in Table 4.We can observe CASR is much better

in runtime performance than EDSRwith large scaling factors,

since context descriptor help reduce computation burden

especially for cases of large scaling factors requiring more

computing resources. Moreover, CASR can be deployed with

40MBstorage size, which is one fourth of storage requirement

by EDSR. We thus conclude that modeling context informa-

tion by DRM not only helps CASR achieve better perfor-

mance, but also leads to a lighter structure with smaller

amount of parameters and less storage request.

4.4 Implementation Details

All of these experiments are performed on a single Titan

1080Ti GPU with 12GB memory. We set parameters of

initial learning rate as 0.0001 and initial batch size as

48 � 48 � 3. It’s noted the learning rate is decremented by

0.5 for every 100 epochs and the total number of training

epoch is 300. We adopt the Adam optimizer by setting its

hyperparameters with b1 ¼ 0:9, b2 ¼ 0:999, � ¼ 10�8. Our

final CASR is trained within less than 30 h. In order to

make full usages of training data, we used a data

enhancement method, in which each training picture is

rotated 90, 180, 270 degrees with a probability of 0.5, or

flipped along a horizontal position.

5 Conclusion

In this work, we propose a lightweight context-aware res-

idential network, named as CASR, which appropriately

encodes channel and spatial attention information to

construct context-aware feature map for SISR task. During

construction, we propose an inception block to enhance

feature representation, and a DRM to describe channel and

spatial attention via dual form combination. During

experiments, we conduct comparative experiments to test

effectiveness of dual combination form, DRM attention

structure, and CASR network. Compared with comparative

methods, CASR achieves superior reconstruction perfor-

mance and has advantages of less parameters, less memory

request and faster running speed. With the development of

cloud computing [26, 37], and mobile or wearable devices

[11, 49], we believe a lightweight and real-time super-

resolution method is required by applications. Therefore,

our future work includes the explorations on improvements

to achieve real-time performance and better visual effects

with extreme imaging situations.
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