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Deep learning has brought a significant progress in medical image analysis. However, their lack of interpretability 
might bring high risk for wrong diagnosis with limited clinical knowledge embedding. In other words, we believe 
it’s crucial for humans to interpret how deep learning work for medical analysis, thus appropriately adding 
knowledge constraints to correct the bias of wrong results. With such purpose, we propose Representation 
Group-Disentangling Network (RGD-Net) to explain the process of feature extraction and decision making 
inside deep learning framework, where we completely disentangle feature space of input X-ray images into 
independent feature groups, and each group would contribute to diagnose of a specific disease. Specifically, we 
first state problem definition for interpretable prediction with auto-encoder structure. Then, group-disentangled 
representations are extracted from input X-ray images with the proposed Group-Disentangle Module, which 
constructs semantic latent space by enforcing semantic consistency of attributes. Afterwards, adversarial 
constricts on mapping from features to diseases are proposed to prevent model collapse during training. Finally, a 
novel design of local tuning medical application is proposed based on RGB-Net, which is capable to aid clinicians 
for reasonable diagnosis. By conducting quantity of experiments on public datasets, RGD-Net have been superior 
to comparative studies by leveraging potential factors contributing to different diseases. We believe our work 
could bring interpretability in digging inherent patterns of deep learning on medical image analysis.
1. Introduction

To simplify the problem of performing medical image analysis is 
to build a desired intermediate representation like feature for hidden 
information in the input data. In fact, desired representation refers to 
that each feature should vary with others, where the most prefer form 
could be features as orthogonal basis. Under such feature basis, diseases 
can be easily classified without overlap or mutual information, resulting 
in wrong diagnose problem. Essentially, such problem is well studied in 
computer vision domain, named as disentangling factors of variation, 
where they try to learn a representation of the data which decomposes 
an observation into factors of variation which we can independently 
control.
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For example, Bouchacourt et al. [1] propose a deep probabilistic 
model to learn a disentangled representation from a set of grouped 
samples, where they successfully separate the latent representation into 
two swappable and semantical parts. Later, Group Supervised Learning 
(GSL) [2] is trained on groups of semantically related images and recon-
struction objectives, allowing to decompose inputs into swappable com-
ponents. Components from different images thus can be recombined to 
synthesize new samples. Regarding that existing Self-Supervised Learn-
ing (SSL) only disentangles simple augmentation features such as rota-
tion and colorization, Wang et al. [3] formulate an iterative SSL algo-
rithm: Iterative Partition-based Invariant Risk Minimization (IP-IRM), 
which successfully grounds the abstract semantics and the group acting 
on them into concrete contrastive learning.
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Inspired by these works, we want to use minimal supervision to 
learn a latent representation that reflects the disease semantics be-
hind a specific grouping of X-ray images, where the samples within a 
group share a common factor of variation. In other words, we want 
to group semantics hidden in images into a relevant and disentan-
gled representation that clinicians can easily understand and exploit, 
which is the original idea of applying group-disentangled representa-
tion for medical image analysis. Inspired by remarkable progress gained 
by deep learning methods [4,5], we further explore how to extracts 
group-disentangled disease representations with one typical deep learn-
ing structure.

In fact, existing deep probabilistic models often assume that the 
observations are independent and identically distributed, work as map-
pings from input factors to output classification results without explicit 
explanations. Therefore, they fail in promoting clinicians’ and patients’ 
confidence in trusting automatical diagnosis, thus preventing the us-
age of deep learning in medical domain. Most attempts [6,7] to explain 
deep learning focus on ‘post-hoc’ analysis by proving the importance of 
low-level visual features in producing accurate predictions. However, 
they couldn’t directly link low-level visual features with high-level se-
mantical diseases, and visually explain the decision making process. 
Essentially, both linking and explaining operations are valuable for clin-
icians to understand working patterns of deep learning for prediction.

As an alternative way, interpretable deep learning [8,9] considers 
the inherent requirement of interpretation to embed clues based ex-
planations in their neural network design. For example, Ouyang et al. 
[10] propose Longitudinal Neighborhood Embedding (LNE), which is 
defined as a refinement of group-learning representation by replacing 
the linear modeling of brain aging with one that is consistent in local 
neighborhoods in the latent space. With LNE, they successfully obtain 
an encoding so that neighborhoods are age-consistent and progression-
consistent for further applications.

Most of them built their framework on variational auto-encoder 
(VAE), which achieve significant process towards explainable deep 
learning by performing linking and explaining steps with help of visual 
clues represented as feature groups. However, they generally ignore 
independence of learned clues, where they map visual samples onto 
a latent space that overlapped separates the information belonging to 
different attributes. Therefore, they only achieve partly disentangled ef-
fects with overlapping and coarse-grained low-level features as shown 
in Fig. 1(a), resulting in confused explanations and low accuracy classi-
fication results.

To achieve completely group-disentangled latent space as shown in 
Fig. 1(b), it’s proved to enforce semantic consistency of attributes, thus 
facilitating to leverage semantic links between samples. In other words, 
a completely disentangled latent representation space should be con-
sist of subspaces, each encoding one attribute and each pair sharing 
no feature components. Following designs of completely disentangle-
ment, training such a model usually faces one fundamental challenge, 
i.e., shortcut problem, that models may learn degenerate encodings 
by focusing on local minimum instead of global minimum, especially 
equipped with relatively free-form encoding network, such as VAE. Last 
but not least, how to develop task-specified interpretable deep learning 
methods remains an open question, due to the lack of involvement of 
existing clinical knowledge for either decision making or post explana-
tion.

In this paper, we propose RGD-Net for interpretable thoracic patho-
logic prediction. We firstly achieve completely group-disentangled rep-
resentations of diseases through the proposed Group-Disentangle Mod-
ule. Such module is designed with group-swap and linking operations 
to leverage semantic links between input X-ray images and diseases, 
enforcing semantic consistency of attributes. To mitigate shortcut prob-
lem, we propose adversarial constricts, which borrows the idea of GAN 
to retain informative features during iteratively updating via group-
swap and linking operations. Such constricts guarantee the model to 
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seek for global minimum by forcing nash equilibrium between free-form 
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Fig. 1. (a) Partly disentangled latent space, where its feature groups are over-
lapped and coarse-grained, leading to confused explanations. (b) Completely 
disentangled latent space provided by RGD-Net, where feature groups are com-
pletely decomposed into independent subspaces, each of which corresponds to 
a specific disease.

grouping and convinced diagnosis, thus preventing model collapse. Sig-
nificantly, we have developed a local-tuning medical application to 
demonstrate the effectiveness of interpretable thoracic pathologic pre-
diction using RGD-Net. This application is capable of making informed 
decisions by updating only a subset of the subspace, thus reducing the 
computational burden of training from scratch when encountering new 
samples or unsatisfactory results.

To sum up, our contributions are as follows:

• We propose Representation Group-Disentangling Network (RGD-Net), 
which completely extracts group-disentangled disease representa-
tions with fine-grained and non-overlapping features, thus promot-
ing both interpretability and prediction accuracy.

• To resist shortcut problem caused by trapping in local minimum, 
an adversarial constraint is proposed to retain informative fea-
tures during iteratively updating, thus forcing global minimum and 
avoiding model collapse.

• We experimentally demonstrate that RGD-Net can significantly im-
prove classification accuracy, and showcase the potential local 
tuning medical application of RGD-Net, which not only enhances 
interpretable capability, but also relieves the burden of re-training.

The rest of the paper is organized as follows. Section 2 reviews the 
related work. Section 3 presents an overview structure and details of 
the RGD-Net. Section 4 conducts quantity of experiments to show the 
effectiveness of RGD-Net. Finally, Section 5 concludes the paper and 
shows the prospect.

2. Related work

The existing methods related to RGD-Net can be categorized into the 
following two types: Disentangled Representation Learning, and Tho-
racic Pathologic Prediction.

2.1. Disentangled representation learning

Disentangled Representation Learning [11,9] aims to separate the 
latent space of data into several parts, each representing a concrete, 

independent, and human-understandable concept.
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Existing methods for disentangling the latent space can be cat-
egorized into two classes: unit-disentanglement methods and group-
disentanglement methods. The former methods treat a single latent unit 
as an independent concept. Following Variational Autoencoders [12], 
most unit-disentanglement methods [13,14] incorporate KL-divergence 
into the objective by forcing the latent factors to be statistically inde-
pendent.

On the contrary, group-disentanglement methods treat a group of 
latent features as a concept. For example, Attila et al. [11] train their 
model with input triplets, in which the first two images should dif-
fer in the varying factor, but have the same common factor, and the 
third image is completely different from the first two. Furthermore, 
they offer solutions and analysis for shortcut problem and reference 
ambiguity in the disentangled representation learning. As a modifica-
tion of the variational autoencoder (VAE) framework, Higgins et al. 
[15] introduce beta-VAE, a framework to automatically discover inter-
pretable factorized latent representations from original image data in a 
completely unsupervised manner. They further introduce an adjustable 
hyperparameter to keep balance between latent channel capacity and 
independence constraints.

Considering rotation transformations harmful to contrastive learn-
ing (CL) resulting in failure when the objects show unseen orientations, 
Bai et al. [16] propose a representation focus shift network (RefosNet), 
which adds the rotation transformations to CL methods to improve the 
robustness of representation. Later, Liu et al. [17] carefully review the 
latest methods, where they motivate the need for disentangled repre-
sentations, revisit key concepts, and describe practical building blocks 
and criteria for learning such representations. Person re-identification 
(Re-ID) in real-world scenarios suffers from various degradations. Fol-
low the idea of disentangled representation learning, Huang et al. [18]
propose a degradation invariance learning framework for robust person 
Re-ID, where they carefully design a content-degradation feature disen-
tanglement strategy to capture and isolate task-irrelevant features.

RGD-Net prefers implicit disease concepts rather than explicit at-
tributes. Moreover, RGD-Net brings capability to be built in a practical 
medical application by solving the shortcut problem with adversarial 
constraints.

2.2. Thoracic pathologic prediction

To present ideas for predicting thoracic disease with latest improve-
ment, we focus on related deep learning methods for readers’ conve-
nience. Early, Wang et al. [19] propose a weakly supervised framework 
for multi-label classification of chest diseases, which have done experi-
ments on X-Ray8 dataset for 8 common chest pathologies. Then, Zhou 
et al. [20] propose a weakly supervised adaptive network, named as 
DENsenET-169, for chest disease recognition and classification in chest 
radiography. Specifically, they use different deep learning models for 
anomaly discovery classification and localization. Subsequently, Li et 
al. [21] propose a unified method for disease identification and local-
ization with limited labeling data, where they adopt a Multi Instance 
learning (MIL) formula that improves performance compared with base-
line models of ResNet and DenseNet.

Afterwards, Rajpurkar et al. [22] propose a 121-layer convolutional 
neural network CheXNet, which is trained on “ChestX-ray14”, a ex-
panded dataset of “ChestX-ray8” and containing over 100,000 frontal-
view X-ray images with 14 diseases. Then, Wong et al. [23] propose 
a deep learning-based framework using Inception-ResNet-V2 for abnor-
mal classification of chest X-ray images. Similarly, Wang et al. [24]
propose a ChestNet model, which consists of a classification module 
and an attention module for computer-aided diagnosis of thoracic dis-
ease on CXR images.

Building on Information Bottleneck Attribution (IBA) method, 
Khakzar et al. [25] propose Inverse IBA to identify all informative re-
gions that have high mutual information with the network’s output. 
112

Thus all predictive cues for pathologies are highlighted on the X-rays, 
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Fig. 2. Group-disentangled latent space encoding with disease-specific feature 
groups via auto-encoder structure.

a desirable property for chest X-ray diagnosis. Since input feature at-
tribution methods merely identify the importance of input regions for 
the prediction, Khakzar et al. [26] try to discover the semantics associ-
ated with feature maps extracted by the deep learning network. Later, 
Calli et al. [27] review recent studies with deep learning on chest ra-
diographs.

Most recently, Wang et al. [28] propose a framework with two steps: 
the Discrimination-DL and the Localization-DL. The former extracts 
lung features from chest X-ray radiographs for COVID-19 discrimina-
tion, meanwhile the later recognize X-ray radiographs to localize and 
assign them into the left lung, right lung or bipulmonary. Mao et al. 
[29] propose a new abnormality detection approach based on an au-
toencoder, which outputs not only the reconstructed normal version of 
the input image, but also a pixel-wise uncertainty prediction. Consider-
ing most deep learning works suffer from slow convergency and high 
computing cost, Kong et al. [30] present CT-CAD, context-aware trans-
formers for end-to-end chest abnormality detection on X-Ray images, 
allowing the transformer to focus on feature subspace and accelerate 
convergence speed.

3. Problem definition for interpretable prediction

Auto-encoders are often used in deep learning to enhance inter-
pretability. They perform hidden space decomposition, obtaining a 
quantity of latent vectors that contain vast information corresponding 
to input chest X-ray images. Through reconstruction training, auto-
encoder essentially compresses the input into the hidden space through 
encoder, and then reconstructs the original image through decoder 
based on hidden space.

Formally, we define Auto-Encoder:  →  as a combination of an 
encoder 𝐸 ∶  →𝑑 ; and a decoder 𝐷 ∶𝑑 →  , where 𝑑 denotes the 
dimension of the latent space 𝑍 =𝐸(𝑋) ∈𝑑 . To enhance interpretabil-
ity in feature extraction, we wish to divide latent space into several 
semantic-specific parts as shown in Fig. 2. We define such property with 
the following formal definition.

Definition (Group-disentangled latent space). A group-disentangled la-
tent space refers to a space consisting of several consecutive, non-
overlapping subspaces, each of which is responsible for one specific 
concept.

Such definition can also be expressed in the view of row-vectors:

𝑧(1) = [𝑔(1)1 , 𝑔
(1)
2 , ..., 𝑔(1)

𝑚
, 𝑏(1)], (1)

where row-vector 𝑧(1) is the concatenation of 𝑚 row-vectors {𝑔(1)
𝑖

∈
𝑑𝑖}𝑚

𝑖=1 and a background row-vector 𝑏(1) ∈ 𝑏. It’s noted that 𝑑 =∑𝑚

𝑖=1 𝑑𝑖 + 𝑏, where {𝑑𝑖}𝑚𝑖=1 and 𝑏 are hyper-parameters, and 𝑔𝑖 corre-
sponds to the concept 𝑐𝑖.

Although auto-encoder network can compress the image into the la-
tent space and reconstruct it in a proper way, researchers still care about 

internal structure of latent vectors, since general auto-encoder fails in 
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Fig. 3. The overall structure of RGD-Net, which extracts group-disentangled representations of disease through the Group-Disentangled Module and Adversarial 
Constrict. During testing, we use them to accurately predict corresponding disease labels.
generating separate independent representations of concepts. Without 
such independent representations, users are hard to be convinced by 
external and explicit links between concepts and predictions. There-
fore, we propose RGD-Net, which can completely disentangle the latent 
space into different subspaces, each part corresponding to a patholog-
ical concept. In that way, RGD-Net provides a robust and reasonable 
explanation on relationship between feature groups and disease labels.

4. Methodology

We first introduce overall structure design of RGD-Net. Then, we 
describe in detail how we perform complete disentanglement via Group-
Disentangled Module. Finally, we present the adversarial constrict that 
mitigates shortcut problem, even facing free-from swap and linking op-
erations existed in former step.

4.1. Workflow design of RGD-Net

As shown in Fig. 3, we propose RGD-Net to obtain group-disentang-
led latent space by completely disentangling representations of dis-
ease concepts (e.g., Atelectasis, Cardiomegaly, Effusion, and Infiltration 
in our case) based on a group of semantically related images. After 
training, we use the reconstructed group-disentangled latent space to 
perform quantity of downstream tasks, such as accurately predicting 
diseases based on testing images.

Specifically, RGD-Net firstly takes a group of semantically-related X-
ray images as inputs. Then, it trains its encoder and decoder through the 
proposed Group-Disentangled Module and Adversarial Constrict, which 
forces the encoder structure to reconstruct the input image by a group-
disentangled latent space. It’s noted that Group-Disentangled Module 
contains two operations, i.e., Linking and Group-Swap Operation. Link-
ing Operation acts like auto-encoder, which builds direct relationship 
between semantical concepts of disease and low-level visual features. 
We calculate its related reconstruction loss 𝐿𝑙𝑜 for each image. Mean-
while, Group-Swap Operation enforces semantic consistency of disease 
concepts constrained by the after-swap reconstruction loss 𝐿𝑔𝑠. Last but 
not least, Adversarial Constrict builds on the idea of GAN by involving 
113

adversarial loss 𝐿𝑎𝑐 to solve the model collapse, that may encounter in 
the process of group-disentanglement and is generally defined as short-
cut problem. During training, we combine three kinds of losses as a total 
loss 𝐿:

𝐿 =min
D,E

max
𝐷𝑖𝑠

𝐿𝑙𝑜 + 𝜆𝑔𝑠𝐿𝑔𝑠 + 𝜆𝑎𝑐𝐿𝑎𝑐 , (2)

where 𝐿𝑙𝑜, 𝐿𝑔𝑠 and 𝐿𝑎𝑐 refer to losses of linking operation, group-swap 
operation and adversarial constrict part respectively, and scalar coeffi-
cients 𝜆𝑔𝑠, 𝜆𝑎𝑐 represent the importance factor of different loss terms. 
It’s noted that we optimize 𝐿 by gradient descent on parameters of en-
coder (E), decoder (D) and discriminator (Dis).

After training, it’s supposed that we can apply RGD-Net on various 
computer vision tasks to provide convinced results. For example, it’s 
expected to connect a classifier, e.g., MLP, with group of visual features 
for classification tasks. Alternatively, users can connect a detector with 
feature groups for detection tasks. In this paper, we demonstrate the 
effectiveness of RGD-Net to predict four categories of diseases based on 
chest X-ray images. Guided by the idea to apply on automatical medical 
application, we use a trained encoder to convert the input image into 
a group-disentangled latent space during testing phase. Afterwards, we 
predict thoracic pathologies disease concepts based on the new input 
X-ray images with an additional classification module with 3 layers of 
MLPs.

Encoder 𝐸 is composed of a convolutional layer to generate fea-
ture map, four residual convolutional blocks with stride 2 for reshaping 
feature map to a vector, and a fully-connected layer to output a 100-
dimensional vectors as latent feature. Meanwhile, decoder 𝐷 mirrors 
the encoder in structure with a fully-connected layer, 4 residual de-conv 
blocks with stride 2 to reshape into a cuboid, and finally a de-conv layer 
to compute a synthesized image. Note that our method can be applied 
to the feature extraction part of any encoder - decoder structure neural 
network, rather than being limited to residual blocks.

4.2. Group-disentangled representation for learning

While training our RGD-Net, we wish to group-disentangle these la-

tent spaces by 𝐸. We use a group-swap operation based on auto-encoder 
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Fig. 4. Four steps in training RGD-Net to learn group-disentangled latent space: (a) Group Images, where we input a group of semantically related images to learn 
their common properties; (b) Linking Operation, where we link relationship between semantical concepts of disease and low-level visual features, calculating 
self-reconstruction loss for each image; (c) Group-Swap Operation: where we swap part of the latent representations of their shared concepts to enforce semantic 
consistency of disease concepts. (d) Adversarial Constraint takes triplet images as input to solve the shortcut problem caused by trapping in local minimal.
to link low-level visual features with high-level disease concepts in the 
latent space.

As shown in Fig. 4 (a), we take a group of semantically related im-
ages 𝑆 as the input of RGD-Net. First, we randomly select an image 
𝑥 from the data set, in this case, with atelectasis and cardiomegaly 
pathology. Based on the same pathology as 𝑥, we select images from 
the data set with Atelectasis and Cardiomegaly and without infiltration 
and effusion. Therefore, there are five images as input to RGD-Net. As 
input in this way, common properties between images can be effectively 
learned.

To retain the information of images in the hidden space, we use a 
auto-encoder based Linking Scheme, which links relationship between 
semantical concepts of disease and low-level visual features as shown 
in Fig. 4 (b). Specifically, for each input 𝑋, we embed data in a low-
dimensional vector by the encoder. Then we link 𝑑𝑖 units of the vector 
to a specific disease concept 𝑐𝑖. Formally, we select a subset of the latent 
space 𝑔𝑖 = [𝜇𝑙𝑖+1, ...𝜇𝑙𝑖+𝑑𝑖 ], where 𝑙𝑖 is the start position of the subset for 
concept 𝑐𝑖. Finally, we input this latent vector into the decoder and 
calculate the reconstruction loss 𝐿𝑙𝑠 for each image. As shown in Fig. 4
(c), we use the group-swap module to enforce semantic consistency of 
disease concepts, and extract features of disease concepts by leveraging 
semantic links between input images.

Taking an image pair sharing a disease as input, the group-swap 
module exchanges the corresponding part of the disease in the hidden 
space of the two images, and expects to get same result as the input 
through the decoder. Formally, for all 𝑥𝑜 ∈ 𝑆, 𝑥𝑜 ≠ 𝑥, with the pair 
(𝑥𝑜, 𝑥) share one concept value j (e.g., Atelectasis), the Group-Swap

operation is defined as

𝑧 =𝐸(𝑥) , 𝑧𝑜 =𝐸(𝑥𝑜) and zs, zos = swap(z, zo, j), (3)

where the swap operation is defined as

swap(𝑧(1), 𝑧(2), 𝑘)

= swap([𝑔(1)1 , ..., 𝑔
(1)
𝑘
, ..., 𝑔(1)

𝑚
, 𝑏(1)], [𝑔(2)1 , ..., 𝑔

(2)
𝑘
, ..., 𝑔(2)

𝑚
, 𝑏(2)], 𝑘) (4)
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= [𝑔(1)1 , ..., 𝑔
(2)
𝑘
, ..., 𝑔(1)

𝑚
, 𝑏(1)], [𝑔(2)1 , ..., 𝑔

(1)
𝑘
, ..., 𝑔(2)

𝑚
, 𝑏(2)].
The group-swap module is subject to the reconstruction loss

𝐿𝑔𝑠 = ||𝐷(𝑧𝑠) − 𝑥||22 + ||𝐷(𝑧𝑜
𝑠
) − 𝑥𝑜||22. (5)

4.3. Adversarial constrict for training

Ideally, if there exist sufficient sample pairs sharing no duplicate 
concepts, loss of group-swap operation 𝐿𝑔𝑠 will be zero, so that com-
plete group-disentanglement being logically obtained. However, due 
to free-form group-swap operation in former group-disentangled mod-
ule, shortcut problem can occasionally occur with local minimum trap, 
where RGD-Net may learn degenerate encodings that all information of 
input images are retained in the group of background features.

It’s supposed that shortcut problem can be mitigated by reducing 
dimensionality of background features, which not only forces the en-
coder to build a complete representation with several groups other than 
only one group of features, but also forces both encoder and decoder 
to properly link feature groups with the corresponding concepts un-
der reasonable space room assumption. However, strategy of reducing 
dimensionality can only be convenient in practice, nevertheless result-
ing in time-consuming trial-and-error procedures to guess the proper 
dimensionality number.

Unlike adding constraints on feature space with setting a hyper-
parameter, we propose an adversarial constrict to solve the shortcut 
problem without additional magic number to determine. As shown in 
Fig. 4 (d), we take triplet images, i.e., 𝑥𝑎, 𝑥 and 𝑥𝑎, as input and in-
troduce an adversarial training style. Specifically, the generator uses 
encoder-decoder structure to replace one specific feature group (repre-
sented as concept 𝑎) from 𝑥 to �̃�, thus generating new image 𝑥𝑎. In other 
words, the generator learns to generate an image containing patholog-
ical features shared by 𝑥 and 𝑥𝑎, trying to fool the discriminator with 
new and fake image pair [𝑥, 𝑥𝑎]. Meanwhile, the discriminator is de-
signed as neural network to distinguish between original/real image 
pair [𝑥, 𝑥𝑎] and new/fake image pair [𝑥, 𝑥𝑎]. Formally, 𝑥𝑎 can be defined 
as

�̃� =𝐸(�̃�) , 𝑧 =𝐸(𝑥) and x̃a = swap(z̃, z, a). (6)

In Fig. 4 (d), we show an example in adversarial training style by swap-

ping the first feature group. Similarly, we construct image triples with 
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Fig. 5. Local tuning principle. When the model produces bad results in the 
medical automated decision-making process, the model can be tuned locally by 
limiting the gradient propagation, rather than tuning the whole model.

different feature groups, i.e., concepts, and calculate total adversarial 
losses with all image triples:

𝐿𝑎𝑐 =
∑

𝑎=1,...,5
𝑙𝑜𝑔(𝐷𝑖𝑠(𝑥,𝑥𝑎)) + 𝑙𝑜𝑔(1 −𝐷𝑖𝑠(𝑥,𝑥𝑎)), (7)

where the total number of disease concepts is 5 in our medical diagno-
sis application, and function 𝐷𝑖𝑠() represents the discriminator to judge 
real or fake pair.

Essentially, the key idea in adversarial constricts is to achieve mini-
mal adversarial loss, thus forcing informative low-level features belong 
to disease concepts to keep remained during adversarial training pro-
cess. In other words, global minimum can be achieved only if original 
image pair [𝑥, 𝑥𝑎] is real and new image pair [𝑥, 𝑥𝑎] is fake, so that re-
placing any concept can’t beat the original concept pairing. In that way, 
we prove the best matching performance of the original image pair 
[𝑥, 𝑥𝑎], thus forbidding all image pairs collapse to wrong pairs. With 
global optimum of first adversarial loss 𝐿𝑎𝑐 and then total loss 𝐿, latent 
space could be completely and stably group-disentangled.

4.4. Local tuning medical application

Based on RGD-Net, we can obtain a group-disentangled feature 
space, which not only brings interpretability and purer features, but also 
benefits medical automated decision-making processes. Consider your-
self as a medical practitioner, while automating decisions with deep 
learning algorithms, has found that a few diseases are diagnosed with 
major errors, and that in most cases it works well. In this case, you 
should correct the part that caused the error and leave the rest un-
changed.

Based on this idea, we propose a local tuning method for fine-tuning 
specific parts of the model in medical automated decision making, 
rather than retraining the entire model. As shown in Fig. 5, we use 
solid and dashed lines to represent the forward propagation and gradi-
ent back-propagation of the network respectively.

The forward propagation of the network is no different from other 
neural networks, but the specific diseases can be considered in the 
gradient back-propagation, and the gradient is calculated only for the 
corresponding part of the group-disentangled feature space, while the 
other parts are frozen. For example, when it is found that the model 
has a large error in the diagnosis of Atelectasis in the process of med-
ical automated decision making, we can only make local tuning to the 
network, i.e., only allow the gradient of the corresponding features of 
Atelectasis to be transmitted, while gating the gradient of other fea-
tures.

5. Experiments

We first evaluate the performance of our method on thoracic patho-
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logic prediction and compare it with other non-disentangled DL meth-
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Table 1

Comparison experiments on ChestXray-14 dataset. For each pathology, the 
highest AUROC scores are bolded.

Methods Atel Card Effu Infi

RGD-Net (ours) 0.8630 0.8980 0.9269 0.8653

CheXNet [22] 0.8094 0.9248 0.8638 0.7345
Yao et al. [31] 0.7720 0.9040 0.8590 0.6950
Wang et al. [19] 0.7160 0.8070 0.7840 0.6090
ChestNet [24] 0.7433 0.8748 0.8114 0.6772
Li et al. [21] 0.8000 0.8700 0.8700 0.7000
Zhou et al. [20] 0.8121 0.9066 0.8786 0.7065

Table 2

Comparison experiments on ChestXpert dataset. For each pathology, the highest 
AUROC scores are bolded.

Methods Effu Edema Card

RGD-Net (ours) 0.900 0.9023 0.8871
Ye et al. [32] 0.9166 0.9436 0.8703
Pham et al. [33] 0.9640 0.9580 0.910

Irvin et al. [34] 0.9360 0.9280 0.8540

ods. Then, to demonstrate the effectiveness of the module, we per-
formed ablation experiments. Further, We evaluate our performance on 
learning group-disentangled representations and compare it with some 
partially disentangled and non-disentangled methods. Finally, we intro-
duce the local tuning method to help clinicians improve performance in 
medical automated decision making.

5.1. Datasets and measurements

We adopt two datasets to conduct thoracic pathologic prediction, 
i.e., chestxray-14 and ChestXpert. For the former dataset, we select 
a subset for experiments, which contains 36764 training images and 
7353 testing images with 4 pathology labels (Atelectasis, Cardiomegaly, 
Effusion and Infiltration), which are extracting from the associated ra-
diological reports using natural language processing. For the latter one, 
ChestXpert is a much larger data set, which demonstrates the perfor-
mance of our method under large data volumes. We also select a sub-
set in ChestXpert, which contains 162188 training images and 32437 
testing images with 3 pathology labels (Pleural Effusion, Edema and 
Cardiomegaly).

To evaluate the performance of prediction, we follow the evalua-
tion rules of both datasets, and adopt the area under receiver operating 
characteristic curve (AUROC) as our evaluation metric.

5.2. Accuracy analysis of thoracic pathologic prediction

Table 1 shows that our RGD-Net, which has significantly improved 
on ChestXray-14 dataset by prediction with group-disentangled latent 
representation compared with the existing methods.

The AUROC values of the network on A, B and C reached 1, 2, 
and 3 respectively The AUROC values of RGD-Net on Atelectasis, Car-
diomegaly, Effusion and Infiltration reached 86.30%, 89.80%, 92.69%, 
86.53% respectively, being 5.36%, -2.68%, 6.31% and 13.08% higher 
than the second-highest achieved by CheXNet. Considering the reason 
for the decline of AUROC in predicting Cardiomegaly, we explored the 
ChestXray-14 and found that there was an extreme imbalance of the la-
bel of Cardiomegaly. This may be a weakness of interpretable models, 
making it difficult to learn concepts from these imbalanced datasets.

To prove the performance of the proposed method on large medi-
cal datasets, we test the prediction performance of the proposed model 
on ChestXpert, one of the largest datasets currently available. As shown 
in Table 2, the accuracy of the proposed network is slightly lower on 
ChestXpert than the two latest networks, that is because our method 

considers not only the categories of predicted pathology, but also the 
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Table 3

Ablation and Division Experiments. AUROC of Thoracic Pathologic Prediction by 
RGD-Net with different structures on ChestXray-14.

Methods Atel Card Effu Infi

𝐿𝑙𝑠 +𝐿𝑔𝑠𝑚 +𝐿𝐺𝐴𝑁 (ours) 0.8630 0.8980 0.9269 0.8653

𝐿𝑙𝑠 +𝐿𝑔𝑠𝑚 0.6076 0.7048 0.7444 0.6332

𝐿𝑙𝑠 +𝐿𝐺𝐴𝑁 0.5263 0.5141 0.5365 0.5468

𝐿𝑙𝑠 (Auto-Encoder) 0.5065 0.4713 0.5032 0.5289

Less Background 0.8497 0.8749 0.9013 0.8633

More Background 0.8263 0.9048 0.8883 0.8445

Table 4

Group-disentangled representation analysis. We use the row disease features to predict the AUROC of column diseases on the test set by a simple 3-MLP. Diagonals 
are bolded and ‘-’ means that Esther et al. [8] fail to disentangle concept of background.

Disease RGD-Net (ours) (completely disentangled) Esther et al. [8] (partly disentangled) AutoEncoder (without disentangled)

Atel Card Effu Infi Atel Card Effu Infi Atel Card Effu Infi

Atelectasis 0.8630 0.4855 0.5094 0.5005 0.6136 0.4960 0.4816 0.5050 0.6076 0.4990 0.4802 0.5297

Cardiomegaly 0.4822 0.8980 0.4836 0.5063 0.5062 0.6610 0.4968 0.4758 0.5067 0.7048 0.5183 0.4864

Effusion 0.4893 0.5061 0.9269 0.5229 0.5153 0.5038 0.6688 0.5099 0.4884 0.4985 0.7444 0.5292

Infiltration 0.4986 0.4900 0.4985 0.8653 0.4863 0.5230 0.5315 0.5910 0.4996 0.4955 0.4911 0.6332

Background 0.4983 0.5200 0.4926 0.4926 - - - - 0.5045 0.5029 0.5087 0.4887
interpretability of the network. It is useful in promoting clinicians’ and 
patients’ confidence and expanding the usage of DL in automated dis-
ease diagnosis. Moreover, our method can be easily migrated to other 
medical computing tasks. For example, we can replace the classifica-
tion head with the detection head to detect the part related to the 
case.

5.3. Ablation experiments

To verify the effectiveness of each module in the proposed method, 
we conduct ablation studies on ChestXray-14, where performance is 
listed in Table 3. The AUROC will decrease by a large percentage with-
out the help of 𝐿𝑔𝑠𝑚 module (row 3), since group-swap implies that 
swapping one attribute does not destroy latent information for other 
attributes. Moreover, the group-swap module can enforce semantic con-
sistency of disease concepts, and extract features of disease concepts by 
leveraging semantic links between input images. When we remove this 
module, the model’s understanding of the concept of disease is reduced, 
and it is naturally difficult to accurately predict the pathology.

As removing the 𝐿𝐺𝐴𝑁 module (shown in row 4), the model 
will degenerate to auto-encoder, the AUROC decreases again, indi-
cating that the adversarial training module also has a certain group-
disentanglement effect. As removing the 𝐿𝐺𝐴𝑁 module from the RGD-
Net (shown in row 2), AUROC drops to an approximate value of Auto-
Encoder, which implies the fact that the model is collapsing. All the 
features of the image are kept in the background features, which makes 
the features not discriminative.

In the last two rows of Table 3, assuming that these thoracic patholo-
gies are independent of each other, we distribute their corresponding 
latent subspace with same size. But these pathologies are not necessarily 
independent of each other and contain different amounts of informa-
tion. Therefore, we modify the size of the latent space so that it is no 
longer equally divided. It’s noted that less background of RGD-Net rep-
resents 𝑔𝑖 = 22, 𝑖 = 1, 2, 3, 4 and 𝑏 = 12, and more background represents 
𝑔𝑖 = 15, 𝑖 = 1, 2, 3, 4 and 𝑏 = 40.

As we allocate less (as 12 in our paper) dimensions of latent space to 
represent background, the AUROC decreases by 1.33%, 2.31%, 2.56% 
and 0.2% for each pathology. If more (as 40 in our paper) latent 
space is used for background, the AUROC change by a percentage of 
-6.37%, +0.68%, -3.86% and -2.08%. This experiment shows that divi-
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sion equally is the most effective for this task.
5.4. Capability of group-disentangled representation analysis

To see the effect of group-disentanglement of our RGD-Net, we use 
the subspaces of disease concepts to predict four thoracic pathologies 
by a simple 3-MLP. If the hidden subspace contains all the information 
about the disease, the predicted result should be a matrix with 1 on the 
diagonal and 0.5 on the rest.

We use Esther et al. [8] and standard auto-encoder with classifi-
cation head as comparison methods. The former partly disentangles 
the latent space, and the latter is not a disentangled method. Table 4
shows that RGD-Net successfully decomposes the image into a group-
disentangled latent space and uses each subspace to accurately predict 
the corresponding concept, but not to predict other concepts. Results of 
two comparison methods, whose latent space is not completely group-
disentangled, show that each subspace doesn’t know what it corre-
sponds to, so their AUROCs are nearly 0.5.

This result shows that our method can effectively learn to group-
disentangle representation and decompose the feature space into sev-
eral independent parts, each of which represents a certain disease con-
cept. However, other methods do not enforce the semantic consistency 
between the latent space and the concept of diseases, which leads to 
unsatisfactory results.

6. Conclusion

This paper proposes a Representation Group-Disentangling Network 
(RGD-Net), which tries to explain the process of feature extraction 
and decision making inside deep learning framework. In fact, RGD-Net 
completely extracts group-disentangled disease representations with 
fine-grained and non-overlapping features. Specifically, RGD-Net ex-
tracts group-disentangled representations from input X-ray images with 
Group-Disentangle Module, which constructs semantic latent space by 
enforcing semantic consistency of attributes. To avoid possible model 
collapse problem, we propose adversarial constricts on mapping from 
features to diseases for robustness. Experiments demonstrate that RGD-
Net can significantly improve classification accuracy, when compar-
ing with partly disentangled interpretable. Our future work includes 
to extend such framework into other applications of medical image 

analysis.
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