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Abstract. Deep learning models have achieved significant success in
quantities of vision-based applications. However, directly applying deep
structures to perform single image super-resolution (SISR) results in
poor visual effects such as blurry patches and loss in details, which are
caused by the fact that low-frequency information is treated equally and
ambiguously across different patches and channels. To ease this problem,
we propose a novel context-aware deep residual network with promotion
gates, named as G-CASR network, for SISR. In the proposed G-CASR
network, a sequence of G-CASR modules is cascaded to transform low-
resolution features to high informative features. In each G-CASR module,
we also design a dual-attention residual block (DRB) to capture abun-
dant and variant context information by dually connecting spatial and
channel attention scheme. To improve the informative ability of extracted
context information, a promotion gate (PG) is further applied to ana-
lyze inherent characteristics of input data at each module, thus offering
insight for how to enhance contributive information and suppress use-
less information. Experiments on five public datasets consisting of Set5,
Set14, B100, Urban100 and Manga109 show that the proposed G-CASR
has achieved averagely 1.112/0.0255 improvement for PSNR/SSIM mea-
surements comparing with the recent methods including SRCNN, VDSR,
lapSRN and EDSR. Simultaneously, the proposed G-CASR requires only
about 25% memory cost comparing with EDSR.

Keywords: Context-aware residual network · Channel and spatial
attention scheme · Promotion gate · Single image super-resolution

1 Introduction

Recently, numerous deep learning methods have been proposed to reconstruct
high-resolution images based on single low-resolution images in multimedia.
However, these methods still suffer from drawbacks in visual effects. We show
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Fig. 1. Comparisons on SISR results achieved by G-CASR and comparative methods,
where HR refers to the high-resolution image of the yellow rectangle region. (Color
figure online)

examples of reconstructing a high-resolution image as in Fig. 1 (Left) to show
these unpleasant effects. Based on the comparisons between the ground truth
(HR in Fig. 1) and the generated high-resolution images of different methods in
Fig. 1, we can observe blurry patches, failures in reconstructing high-frequency
image details, and loss of low-frequency features like straight lines for the existing
methods consisting of Bicubic, A+, SRCNN, VDSR, lapSRN and EDSR. The
reason for unpleasant visual effects lies in the fact that the existing methods
lack context information to capture the unique characteristics of low-resolution
images. Essentially, the lack of context descriptor is one of the main drawbacks
in most deep residual networks.

Based on these limitations of existing methods for single image super-
resolution (SISR), we propose a novel Gated Context-Aware Super-Resolution
network, which is named as G-CASR. The proposed G-CASR network consists
of two main parts, namely, a dual-attention residual block (DRB) and a promo-
tion gate (PG). By modeling channel-wise and spatial attention information to
describe the inherent property of context information, the proposed DRB can
restore high-frequency features and maintain low-frequency features simultane-
ously. On the other side, the proposed PG is used to enhance informativeness of
context information with an adaptive gating signal.

By involving these two parts, we conduct a light-scale deep residual network
to capture the unique and informative context characteristics. The proposed G-
CASR network learns an end-to-end mapping between low-resolution image and
reconstructed high-resolution image. As shown in G-CASR in Fig. 1, we can see
the result of the same input is greatly improved by G-CASR.

The contributions of this paper are three-fold:

– We propose a novel and context-aware residual network G-CASR for SISR,
in which dual-attention residual structure and promotion gate mechanism
are proposed to enhance feature representative ability based on multi-level
features and context information.

– We design a new dual-attention residual block (DRB) by involving channel
and spatial attention scheme to modeling context information. Furthermore,
we are the first to propose promotion gate (PG) for attention-based residual
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networks, which effectively enhance high contribution features and meanwhile
suppress redundant ones.

– Experiments on five benchmark datasets show that the proposed G-CASR
achieves averagely 1.112/0.0255 improvement for PSNR/SSIM measurements
compared with recent methods. Additionally, our model requires only about
25% memory cost.

2 Related Work

We category the existing deep learning methods for SISR into two types, i.e.,
convolutional neural networks (CNN) and generative adversarial networks. CNN-
based SISR methods are quite larger in the amount due to more years of develop-
ment and their impressive high-resolution reconstruction results. The first work
to solve SISR problem, i.e., SRCNN, is introduced by Dong et al. [3]. Their pro-
posed three-layer CNN network directly learns an end-to-end mapping between
interpolated low-resolution image and the corresponding high-resolution output
image. Inspired by the success of very deep networks like Res-Net, Kim et al.
[8] propose very deep convolutional networks (VDSR), in which global residual
learning is utilized to recover high-frequency details. Moreover, VDSR stacks
20 convolutional layers to construct a very deep network for accurate SISR and
thus has an impressive property of fast convergence.

To pursue a deeper network for SISR task, Tong et al. [15] present a novel
SISR method by introducing dense skip connections in a very deep network.
By propagating feature maps of each layer into all the subsequent layers and
allowing dense skip connection, their model combines low-level and high-level
features in a reasonable way to boost reconstruction performance. Lim et al.
[11] develop an enhanced deep super-resolution network (EDSR) with its per-
formance exceeding the current state-of-the-art SISR methods. Their method
performs optimization by removing unnecessary modules in convolutional resid-
ual networks and expanding model depth with a stable training procedure.

Most recently, Kim et al. [9] propose a novel channel-wise and spatial atten-
tion mechanism specially optimized for super-resolution, which prefers to fuse
spatial and channel attention for a unity representation before assigning weights,
rather than two separate weight schemes. However, their work is only tested on
two simplified attention schemes. Woo et al. [16] construct convolutional block
attention module (CBAM) as a lightweight and general attention module, which
sequentially infers attention maps along spatial and channel dimensions at first
and then multiply attention maps to the input feature map for adaptive feature
refinement. Their proposed light-scale attention module has achieved excellent
performance in lots of recognition and classification tasks.

3 The Proposed Method

In this section, we describe the network architecture of G-CASR, and the struc-
tures of the proposed DRB and PG.
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Fig. 2. The framework of proposed G-CASR method, which consists of an input layer,
an inception block, G-CASR modules, a convolutional layer, an upsampling layer, and
an output layer.

3.1 Network Architecture Design

As shown in Fig. 2, the proposed G-CASR network mainly consists of six parts,
that is, an input layer, an inception block, G-CASR modules, a convolutional
layer, an upsampling layer, and an output layer. The input low-resolution image
IL is firstly processed by a convolutional kernel of the input layer to generate
shallow feature and then enhanced by an inception block, which can be formu-
lated as

FI = HI(HS(IL)) (1)

where function HS() denotes convolutional operation in the input layer, and
HI() refers to multi-branch operations of inception block.

After that, the first G-CASR module is adopted to generate deep feature FG1

based on enhanced feature FI :

FG1 = HG1(FI) (2)

where function HG1() denotes the operation of the first G-CASR module. Take
G-CASR as the basic module of the whole network, we thus construct deeper
network by cascading a quantity of DRBs and PGs. The generated feature after
processing of the mth G-CASR can be represented as

FGm
= HGm

(FGm−1) (3)

To increase the width of the network and generate global features, the con-
volutional layer accepts input from different modules. G-CASR network obtains
a high-resolution image IH by firstly performing the upsampling layer and then
generating the image after operation of the output layer:

IH = HO(HU (HC([FI ,HG1(FI), · · ·,HGm
(HGm−1(· · · HG1(FI) · · · ))]))) (4)

where function HC(), HU () and HO() represent the convolutional layer, upsam-
pling, and the output layer, respectively, while [,] denotes concatenation along
channel dimension.
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Fig. 3. Structure of the proposed DRB and three other different attention schemes,
where the rightmost structure is the proposed DRB.

3.2 Structure of Dual-Attention Residual Block

Inspired by attention schemes applied in other domains and related SISR work
based on attention scheme, we propose a lightweight DRB structure, which com-
bines channel-wise and spatial attention in a dual form to adaptively modulate
feature representations with context information among feature channels and
different regions.

We show structures of various attention schemes including CBAM [16], RAM
[9], CSAR block [6] and the proposed DRB in Fig. 3. We can observe DRB is
different from other schemes in structure design and combination form. Applying
an additional max-pooling to construct spatial attention scheme is adopted by
CBAM and DRB, which exploits maximal context characteristics of the feature
map to enhance its representative ability. Essentially, regions with the maxi-
mal values can be edges, corners or places with high gradient values, which
are more salient than other regions and require more attention to their high-
frequency details reconstruction. Meanwhile, we use mean-pooling operation in
the construction of channel-wise attention scheme, due to the fact that maximal
information is weak to exploit the inter-channel relationship.

We prefer dual form to combine the channel and spatial attention scheme
rather than a cascade form. This is because usually for recognition and clas-
sification tasks, feature information needs to be highly compressed to resolve
high-level and semantic information; however, a SISR task requires to restore
high-frequency details based on generated feature maps. Cascade combination
form often leads passed-by information to be compressed, while dual form can
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increase bandwidth for information transmission to obtain abundant information
for high-frequency detail reconstruction.

Take the first G-CASR module HG1 as an example and assume only one
DRB and PG inside, we firstly adopt two convolutional layers and an activation
layer to extract feature F̃I = HE(FI). Then, we construct the dual form of
attention scheme to extract informative part of the generated feature, which can
be represented as

FD = C(F̃I) � F̃I + S(F̃I) � F̃I (5)

where � denotes element-wise multiplication, C() and S() represent channel and
spatial attention scheme, respectively.

Channel Attention Scheme. Considering that a convolutional layer consists
of different channel filters, each 2D slice of the output 3D feature map essen-
tially encodes spatial-visual responses raised by a channel filter. By stacking
different layers, CNN extracts image features through a hierarchical representa-
tion of visual abstractions [17]. Therefore, features extracted from CNN structure
are essentially channel-wise and multi-layer. However, not all the channel-wise
features are equally important and informative for recovering high-frequency
details. We thus utilize channel attention scheme to compute task-specified fea-
ture map for SISR by exploiting the cross-channel relationship.

As shown in Fig. 3, a global mean-pooling is firstly performed on input feature
map F̃I to output global mean-pooled feature map Fc with size C × 1 × 1.
Then, Fc will be fed into a multi-layer perception with two hidden layers. It
is noted that the first hidden layer is used to perform dimension reduction for
compact feature representation. Finally, a sigmoid activation function is applied
to squeeze the output, thus generating channel attention weight as follows:

C(F̃I) = sig(W1 ∗ (relu(W0 ∗ Pa(F̃I)))) (6)

where function Pa(), sig() and relu() refer to the global mean-pooling operation,
Sigmoid and ReLU activation function respectively, W0 and W1 are learnable
parameter matrices and defined with size C

r ×C and C × C
r respectively, and r is

a pre-defined dimension reduction parameter and we set it as 16 by experiments.

Spatial Attention Scheme. We observe the information contained in feature
maps and low-resolution images is diverse over spatial positions. For example,
edge or texture regions usually contain high-frequency information, while smooth
areas have low-frequency information. To better recover high-frequency details
and maintain low-frequency parts for a SISR task, we thus propose a spatial
attention scheme to adaptively optimize feature map in different regions with
suitable operations. Spatial attention scheme is constructed based on the differ-
ence of feature map of different positions, which essentially explores the spatial
relationship to construct context descriptor.

As shown in Fig. 3, a global max-pooling operation is first performed on
input feature map F̃I to output max-pooled feature map Fm with size 1×m×n.
Then, we perform mean-pooling operation along channel dimension to generate
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Fig. 4. Architecture of the proposed PG for residual network.

mean-pooled feature map Fa. Finally, a convolutional layer and a sigmoid acti-
vation function are performed on the concatenated feature map of Fa and Fm

to generate spatial attention weight:

S(F̃I) = sig(Conv([Pm(F̃I), Pac(F̃I)]) (7)

where function Pm(), Pac() and Conv() refer to the global max-pooling opera-
tion, mean-pooling operation along channel dimension and convolutional layer
with 7 × 7 kernel, respectively.

3.3 Promotion Gate for Residual Network

During modeling a SISR task, missing pixels of high-resolution images can be
generated from clues by analyzing low-frequency information from the input low-
resolution images. Such highly non-linear processing can be properly achieved
by constructing deep neural network to learn from a large training set. How-
ever, gradient disappearance from layer to layer leads to shallow structure, thus
preventing to obtain deep CNN-based structure.

Inspired by GRU [2] and LSTM [5] for time-varying signal processing, we
design PG to work on residual network for deeper layers, where we show its
architecture in Fig. 4. Essentially, a GRU or LSTM-based network can build
long-term dependencies based on complicated and time-varying information due
to their unique gate design, which allows to efficiently update memory with the
useful part of a signal. This inspires us to borrow the most important concept
of GRU, i.e., gating mechanism, to help build a deeper residual network by
enhancing informative part of features, thus relieving the burden of gradient
disappearance.

As shown in Fig. 4, the feature FD is computed by the proposed DRB block
for reconstruction, and also the input of the proposed PG. By comparing between
the original signal FI and FD, the proposed PG decides the proportion of enhanc-
ing and forgetting information with a simple but effective gating signal z, which
is constructed as a lightweight structure of a convolutional layer with 1 × 1
kernel and a sigmoid activation function:

z = sig(Conv([FI , FD])) (8)
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Table 1. Comparisons on PSNR/SSIM measurement with or without DRB and PG. It
is noted that the scale factor is 2×,

√
and × represent network design with or without

structure, respectively.

DRB PG Set5 Set14 B100 Urban100 Manga109

× × 37.97/0.9604 33.54/0.9169 32.17/0.8996 31.99/0.9270 38.40/0.9767√ × 37.98/0.9605 33.49/0.9163 32.15/0.8994 32.06/0.9275 38.61/0.9769

× √
38.03/0.9606 33.62/0.9179 32.20/0.8999 32.10/0.9283 38.52/0.9769√ √
38.01/0.9606 33.68/0.9186 32.19/0.9000 32.19/0.9288 38.70/0.9772

Since z is of the same size as FI and FD, it can be directly applied as weight to
process both features:

FG1 = z � FI + (1 − z) � FD (9)

Essentially, z resets FI by assisting to forget useless information, meanwhile
1 − z updates FD by selectively enhancing valuable information. Since z and
1−z change synchronously, the PG allows the residual network to keep balance in
remembering and forgetting, thus relieving the burden of gradient disappearance.

4 Experimental Results

In this section, we firstly introduce datasets. Then, we conduct four groups
of ablation studies to demonstrate the proposed DRB and PG are effective for
SISR task. After that, we show performance of our final model on five benchmark
datasets. Finally, we describe implementation details for readers’ convenience.

4.1 Datasets and Metrics

We conduct experiments on five datasets, i.e., Set5 [1], Set14 [18], B100 [12],
Urban100 [7] and Manga109 [4]. Note that Set5, Set14 and B100 consist of nat-
ural scenes, Urban100 contains challenging urban scenes images with details, and
Manga109 is a dataset of Japanese cartoon drawing. Besides these benchmark
datasets, DIV2K [13], which served as the benchmark for NTIRE 2017 challenge,
is adopted as a part of the training set. We achieve pairs of low-resolution and
high-resolution images by a bicubic operator on high-resolution images. Above
all, we obtain 800 images for training and 100 images to perform cross-validation
for evaluating SISR methods. Peak signal to noise ratio (PSNR) and structural
similarity index (SSIM) are used to measure reconstruction performances for
SISR.

4.2 Ablation Study

To verify the effect of the proposed DRB and PG, we conduct four ablation
experiments with different network design. To be clear, we define the number of
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Table 2. Quantitative evaluation of state-of-the-art SISR algorithms, where average
PSNR/SSIM for scale factors 2×, 3×, 4× are listed. Best results are highlighted.

Methods Scale Set5 Set14 B100 Urban100 Manga109

Bicubic 2× 33.66/0.9299 30.24/0.87688 29.56/0.8431 26.88/0.8403 30.80/0.9339

A+ [14] 2× 36.54/0.9544 32.28/0.9056 31.21/0.8863 29.20/0.8938 35.57/0.9663

SRCNN [3] 2× 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663

VDSR [8] 2× 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 37.22/0.9750

LapSRN [10] 2× 37.52/0.9591 33.08/0.9130 31.80/0.8950 30.41/0.9101 37.27/0.9740

EDSR [11] 2× 38.11/0.9601 33.92/0.9195 32.32/0.9013 32.93/0.9351 39.10/0.9773

G-CASR 2× 38.22/0.9614 33.94/0.9214 32.33/0.9015 32.79/0.9344 39.24/0.9782

Bicubic 3× 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556

A+ [14] 3× 32.58/0.9088 29.13/0.8188 28.29/0.7835 26.03/0.7973 29.93/0.9089

SRCNN [3] 3× 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117

VDSR [8] 3× 33.67/0.9210 29.78/0.8320 28.83/0.7990 27.14/0.8290 32.01/0.9340

LapSRN [10] 3× 33.82/0.9227 29.87/0.8320 28.82/0.7980 27.07/0.8280 32.21/0.9350

EDSR [11] 3× 34.65/0.9282 30.52/0.8462 29.25/0.8093 28.80/0.8653 34.17/0.9476

G-CASR 3× 34.66/0.9294 30.55/0.8464 29.26/0.8094 28.76/0.8637 34.18/0.9480

Bicubic 4× 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866

A+ [14] 4× 30.28/0.8603 27.32/0.7491 26.82/0.7087 24.32/0.7183 27.03/0.8439

SRCNN [3] 4× 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555

VDSR [8] 4× 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870

LapSRN [10] 4× 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09/0.8900

EDSR [11] 4× 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148

G-CASR 4× 32.54/0.8996 28.88/0.7882 27.72/0.7424 26.69/0.8038 31.14/0.9163

G-CASR modules as m, the number of DRB with PG in each G-CASR module
as n and filter number of each convolutional layer as k. The setting for ablation
experiments is m = 4, n = 4 and k = 64. For parameter balancing, two con-
volutional layers with an activation function replace the proposed structure to
construct original network.

By comparing the first and second rows of Table 1, we can observe the effec-
tiveness of DRB structure since PSNR/SSIM values achieved by G-CASR with
DRB structure are higher than those of the original network on most datasets. It
is noted that G-CASR with DRB fails to improve reconstruction effect on Set14
and B100 datasets. This is caused by unsuccessful modeling of complicated and
multi-type context information embedded in natural scene scenario. This conclu-
sion can be further proved by tests on Manga109 dataset, where G-CASR with
and without DRB achieve results of 38.61/0.9769 and 38.40/0.9767, respectively.
Manga109 dataset contains only cartoon drawings, which makes it easy to model
context information. By comparing the first and third rows of Table 1, we can
observe the effectiveness of PG since PSNR/SSIM values achieved by G-CASR
are higher than those of the original network on all the datasets including B100
and Urban100.

Between the results of the first and last rows, we can notice the network with
DRB and PG achieves improvements on all listed datasets, which proves the
effectiveness of the proposed DRB and PG for feature map enhancement. More-
over, PG enhances reconstruction performance based on the network only with
DRB, which can be proved by the fact that DRB with PG achieves 0.13/0.0013
and 0.09/0.0003 improvement on Urban100 and Manga109.
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Fig. 5. Visual comparisons for SISR on B100 and Urban100 dataset, where the yellow
rectangle represents enlarged regions for comparisons. (Color figure online)

4.3 SISR Performance and Analysis

Table 2 shows quantitative comparative results with 6 SISR algorithms for 2×,
3× and 4× SISR, respectively. It is noted that we obtain results of all com-
parative methods on five public datasets directly from their published papers.
Among these methods, we pay special attention to EDSR since it is the current
state-of-the-art algorithm for SISR. We test G-CASR by setting m = 4, n = 8
and k = 128.

From Table 2, we can notice G-CASR achieves better performance on Set5,
Set14, B100 and Manga109 datasets compared with EDSR at 2×, 3× and 4×.
This is due to their context information is easy to be captured and described by
the proposed structure, thus enhancing feature map by context information. In
fact, less performance improvement on Urban100 can be viewed by comparing G-
CASR with EDSR because the former suffers from fewer model parameters. With
only 25% model size of EDSR, G-CASR still produces superior SISR results.
For example, the PSNR/SSIM value of G-CASR and EDSR on Manga109 are
31.14/0.9163 and 31.02/0.9148, respectively. The proposed structure acts well in
most cases to partly describe context information embedded in complex urban
and natural scenes, which are difficult to completely modeling. This can be
proved by the fact that G-CASR obtains all the best performance during testing
on B100 and Urban100 at 4×.

Figure 5 shows comparisons of visual effects achieved by G-CASR and com-
parative methods on B100 and Urban100. We can notice that G-CASR accu-
rately reconstructs straight lines and parallel grid patterns on building sur-
face and ground texture. This is because the proposed G-CASR network well
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preserves low-frequency features. We notice blurry effects and loss of image
details achieved by other comparative methods for testing on image containing
hair and beards since they fail to achieve clear focus and restore high-frequency
details through learning on abundant low-frequency features. In contrast, our
approach effectively suppresses these methods by removing redundant informa-
tion but remember high contributive information.

4.4 Implementation Details

The upsampling layer contains a convolutional layer with 3 × 3 kernel and a
pixel-shuffle operation afterward. The number of feature channels after the con-
volutional operation is s times the input so that the pixel-shuffle operation can
generate an enlarged feature map, where s refers to scale factor. To make full
usage of training data, we used a data augmentation method, in which each
training picture is rotated 90◦, 180◦, 270◦ with a probability of 0.5, or flipped
along a horizontal position. The input patch size is set as 48 × 48 × 3. We adopt
the Adam optimizer by setting its hyperparameters with β1 = 0.9, β2 = 0.999,
ε = 10−8. We adopt L1 loss function and set the initial learning rate as 0.0001.
It is noted the learning rate decays by 0.5 for every 100 epochs and the total
number of training epoch is 300. All of these experiments are performed on a
single GTX 1080Ti GPU with 12 GB memory.

5 Conclusion

In this work, we propose a deep and lightweight context-aware residual network
named as G-CASR, which appropriately encodes channel and spatial attention
information to construct a context-aware feature map for SISR. Comparative
results show that G-CASR not only achieves superior SISR performances than
the current state-of-the-art method, i.e., EDSR, but also has the advantages of
fewer parameters and less memory requirement. Our future work includes explo-
rations to achieve real-time performance and better visual effects with extreme
imaging situations.

Acknowledgment. This work is supported by the Natural Science Foundation of
China under Grant 61672273, Grant 61832008, and Grant 61702160, Scientific Foun-
dation of State Grid Corporation of China (Research on Ice-wind Disaster Feature
Recognition and Prediction by Few-shot Machine Learning in Transmission Lines),
National Key R&D Program of China under Grant 2018YFC0407901, and the Science
Foundation of Jiangsu under Grant BK20170892.

References

1. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity
single-image super-resolution based on nonnegative neighbor embedding. In: Pro-
ceedings of BMVC (2012)



Context-Aware Residual Network for SISR 147

2. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

3. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for
image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.)
ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10593-2 13

4. Fujimoto, A., Ogawa, T., Yamamoto, K., Matsui, Y., Yamasaki, T., Aizawa, K.:
Manga109 dataset and creation of metadata. In: Proceedings of the 1st Interna-
tional Workshop on coMics ANalysis, Processing and Understanding, p. 2 (2016)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. Hu, Y., Li, J., Huang, Y., Gao, X.: Channel-wise and spatial feature modulation
network for single image super-resolution. arXiv preprint arXiv:1809.11130 (2018)

7. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed
self-exemplars. In: Proceedings of CVPR, pp. 5197–5206 (2015)

8. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very
deep convolutional networks. In: Proceedings of CVPR, pp. 1646–1654 (2016)

9. Kim, J.H., Choi, J.H., Cheon, M., Lee, J.S.: Ram: residual attention module for
single image super-resolution. arXiv preprint arXiv:1811.12043 (2018)

10. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep Laplacian pyramid networks
for fast and accurate super-resolution. In: Proceedings of CVPR (2017)

11. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks
for single image super-resolution. In: Proceedings of CVPR, vol. 1, p. 4 (2017)

12. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In: Proceedings of ICCV, vol. 2, pp. 416–423 (2001)

13. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: NTIRE 2017
challenge on single image super-resolution: methods and results. In: Proceedings
of Computer Vision and Pattern Recognition Workshops, pp. 114–125 (2017)

14. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood
regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang,
M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16817-3 8

15. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip con-
nections. In: Proceedings of ICCV, pp. 4809–4817 (2017)

16. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention
module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018.
LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-01234-2 1

17. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

18. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-
representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010.
LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27413-8 47

http://arxiv.org/abs/1406.1078
https://doi.org/10.1007/978-3-319-10593-2_13
https://doi.org/10.1007/978-3-319-10593-2_13
http://arxiv.org/abs/1809.11130
http://arxiv.org/abs/1811.12043
https://doi.org/10.1007/978-3-319-16817-3_8
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-642-27413-8_47
https://doi.org/10.1007/978-3-642-27413-8_47

	Context-Aware Residual Network with Promotion Gates for Single Image Super-Resolution
	1 Introduction
	2 Related Work
	3 The Proposed Method
	3.1 Network Architecture Design
	3.2 Structure of Dual-Attention Residual Block
	3.3 Promotion Gate for Residual Network

	4 Experimental Results
	4.1 Datasets and Metrics
	4.2 Ablation Study
	4.3 SISR Performance and Analysis
	4.4 Implementation Details

	5 Conclusion
	References




