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Abstract. To minimize the negative impacts brought by floods,
researchers pay special attention to the problem of flood prediction. In
this paper, we propose a hierarchical Bayesian network based incremental
model to predict floods for small rivers. The proposed model not only
appropriately embeds hydrology expert knowledge with Bayesian net-
work for high rationality and robustness, but also designs an incremental
learning scheme to improve the self-improving and adaptive ability of the
proposed model. Following the idea of a famous hydrology model, i.e.,
XAJ model, we firstly present the construction of hierarchical Bayesian
network as local and global network construction. After that, we propose
an incremental learning scheme, which selects proper incremental data to
improve the completeness of prior knowledge and updates parameters of
Bayesian network to prevent training from scratch. We demonstrate the
accuracy and effectiveness of the proposed model by conducting experi-
ments on a collected dataset with one comparative method.

Keywords: Incremental learning · Hierarchical Bayesian network
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1 Introduction

Flood, as one of the most common and largely distributed natural disasters,
happens occasionally and brings large damages to life and property. In the past
decades, researchers have proposed a quantity of models for accurate, robust
and reasonable flood prediction. We generally category models into two types,
namely hydrology model [8,11,17] and data-driven model [4,6,18]. Hydrology
models utilize highly non-linear mathematic systems to represent the complex
hydrology processes from clues to results. However, such models are extremely
sensitive to parameters [16] and require quantity of research efforts of experts to
fit them for one specific river. On the contrary, data-driven models use machine
learning methods to directly predict the river runoff values based on historical
observed and time-varying flood factors. However, floods are complicated natural
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phenomena affected by multiple factors. It’s hard to guarantee the rationality
and robustness by utilizing such data-driven models and not considering physical
processes.

In this work, we pay special interests to the problem of flood prediction for
small rivers, whose catchments are smaller than 3000 km. Predicting floods with
either hydrology models or data-driven models for small rivers could be a hard
task, since small rivers are not only complex to model and analyze, but also suffer
from shortages of exhaustive historical observation data. It’s an intuitive thought
that we should properly utilize the strength of hydrology model to improve
the accuracy, robustness and rationality of data-driven model. The hydrology
expert knowledge behind the hydrology model could relieve the requirement
for large amount of data, which solves the problem of not enough data at a
certain extent. Moreover, we aim to construct data-driven models with “growth”
ability. That is the predicting capability of models could be gradually improved
with more captured data. In fact, the floods data collected in small rivers are
generally lack of completeness and unevenly distributed. By involving the ability
of growth, the constructed model can run ahead and converge to a finalized and
robust system during the running period. Moreover, the predicting capability
of models are greatly affected by the occurrence of climatic variations, human
activities and other environmental changes. Models with growth ability thus
should continuously process new information captured from the latest floods
and make self-adaptive adjustments to ensure the accuracy of predictions.

Guided by the ideas of expertise and growth, we propose a hierarchical
Bayesian network based incremental model. In order to extract the expert hydrol-
ogy knowledge behind physical models, the entities and relations of the proposed
model refer to the physical factors and processes extracted from a famous hydrol-
ogy model, i.e., the XAJ model [10,17]. Moreover, we construct an incremental
learning scheme to develop the growth ability of the proposed model without
changing network structures or training from the scratch.

The main contribution of the paper is to propose a hierarchical Bayesian net-
work based incremental model for flood prediction of small rivers, which not only
embeds hydrology process to improve the accuracy, robustness and rationality,
but also designs an incremental learning scheme to improve the self-improving
and adaptive ability. Owing to the expertise and growth ability of the proposed
model, the requirements for size of training dataset could be largely reduced,
which coincides with the environment and conditions of predicting floods for
small rivers. The proposed method is powerful to discover the inherent patterns
between input flood factors and flow rate, especially for regions whose flood
formation mechanism is too complex to construct a convinced physical model.

2 Related Work

Hydrology Model. The famous XAJ model not only considers the rains and
runoffs, but also takes other hydrology processes into account, such as evapora-
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tion from water bodies and surface, rain infiltrated and stored by the soil, and
so on. We explain the processes of XAJ model with the following four modules:

1. Evaporation module: XAJ model firstly divide the river watershed into several
local regions. Evaporation values of local regions are computed based on the
soil tension water capability (referring to soil water storage capability) in
three layers, i.e., upper, lower and deep soil layers.

2. Runoff generation module: The XAJ model defines local runoff is not pro-
duced until the soil water of the local region reaches its maximum of soil
tension water capacity, and thereafter the excess rainfall becomes the runoff
without further loss. Therefore, the local runoff of XAJ model is calculated
according to the rainfall, evaporation and soil tension water capability.

3. Runoff separation module: The local runoff is subdivided into three compo-
nents, including surface runoff, interflow runoff and groundwater runoff.

4. Runoff routing module: The outflow from each local region is finally routed
by the Muskingum successive-reaches model [17] to calculate the outlet flow
of the whole river catchment.

Sensitive parameters of the XAJ model need be adjusted by experts’ experiences,
which makes it difficult to apply on small rivers for predictions.

Data-Driven Model. From the views of computer scientists, floods are directly
induced and affected by a set of multiple factors, including rainfall, soil category,
the structure of riverway and so on. Early, Reggiani et al. [9] construct a mod-
ified Bayesian predicting system by involving numerical weather information
to address the spatial-temporal variabilities of precipitation during prediction.
Later, Cheng et al. [1] perform accurate daily runoff forecasting by proposing an
artificial neural network based on quantum-behaved particle swarm optimiza-
tion, which trains the ANN parameters in an alternative way and achieves much
better forecast accuracy than the basic ANN model. Recently, Wu et al. [14]
construct a Bayesian network for flood predictions, which appropriately embeds
hydrology expert knowledge for high rationality and robustness. The proposed
method is built on it and involves an incremental design over all steps of Bayesian
network for fitting to the problem of flood predictions for small rivers.

Impressed by significant ability of deep learning architectures [5,7,15],
researchers try to utilize deep learning architectures for flood prediction. For
example, Zhuang et al. [18] design a novel Spatio-Temporal Convolutional Neu-
ral Network (ST-CNN) to fully utilize the spatial and temporal information and
automatically learn underlying patterns from data for extreme flood cluster pre-
diction. Liu et al. [6] propose a deep learning approach by integrating stacked
auto-encoders (SAE) and back propagation neural networks (BPNN) for the
predictions of stream flow. Most recently, Wu et al. [13] propose context-aware
attention LSTM network to accurately predict sequential flow rate values based
on a set of collected flood factors. However, the above deep learning methods
require large datasets to train. Without prior knowledge and inferences extracted
from hydrology models, the deep learning based models can’t predict floods in
a rational sense.
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Fig. 1. Illustration of the Changhua watershed, where (a) is the map for various kinds
of stations and (b) represents catchment areas corresponding to the listed rainfall
stations. Note that we need predict the flow rate values of river gauging station CH
and station SS functions as an evaporation station.

Fig. 2. Illustration of the proposed hierarchical Bayesian network based incremental
model, where dotted lines refer to time-varying updating, blue and green rectangles
represent incremental inputs and flood predictions, respectively. (Color figure online)

3 The Proposed Method

Take a typical small river, i.e., Changhua, for an example, we show its general
information in Fig. 1, where we can notice 7 rainfall stations, 1 evaporation
station and 1 river gauging station. In our work, we aim to predict the flow
rate values at the river gauging station CH for the next 6 h with the proposed
incremental model. The input set of flood factors consists of rainfalls observed at
the rainfall stations, evaporation and soil moisture observed at the evaporation
station SS and former river runoff observed at CH.

Considering that XAJ model is organized with local and global steps, we fol-
low its conception to design the proposed hierarchical Bayesian network based
incremental model as shown in Fig. 2. By inferring probabilistic relations between
inputting flood factors and intermediate variables extracted from the XAJ model,
we embed the hydrological expert knowledge with the proposed model by first
establishing relations and then improving the representations of knowledge with
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probabilistic distributions other than function systems. We construct the incre-
mental learning scheme by firstly selecting proper data to improve the generative
completeness of the proposed Bayesian network and then updating Conditional
Probability Table (CPT) of network, which prevents training from scratch. Note
that we calculate the initial value of soil tension water capability T t

i based on
soil moisture measured at the evaporation station. Meanwhile, soil free water
capability F t

i is settled as 0 at the beginning, which will gradually converge to
the real value. Note we transform the run-off regression problem to a multi-
label classification problem by splitting the observed runoff values of Changhua
dataset into 2000 intervals, i.e., assigning 2000 labels to the predictions of run-off
values.

3.1 Construction of Hierarchical Bayesian Network

In this subsection, we firstly introduce the theory foundation and novelty by
utilizing Bayesian Network for flood predicting. After that, we describe the con-
struction of Hierarchical Bayesian network.

Given data D, we determine the posterior distribution of θ based on Bayesian
theory as follows:

P (θ|D) =
L(D|θ)P (θ)

P (D)
(1)

where L(D|θ) is the likelihood function and P (θ) is the prior distribution of
random variable θ. Since the denominator of Eq. 1 is a constant related only to
the data set, the choice of prior distribution P (θ) is important for calculation
of the posterior distribution P (θ|D). Selecting proper P (θ) generally requires to
consider from the measured data and available prior knowledge. The former is
named as data-based prior distribution and could be obtained from the exist-
ing data and research results, while the latter, named as non-data-based prior
distribution, refers to a prior distribution resulted from subjective judgments or
theory.

By extracting prior expert hydrology knowledge from the XAJ model and
historic observation data, we think Bayesian Network offers an appropriate struc-
ture to joint learn the posterior distribution with the prior knowledge. Specif-
ically, the proposed method firstly considers the given observation data D is
formed by a set of hydrology attributes {Xi|i = 1...n} and the predicting run-
off value could be represented as an attribute X0 as well. Therefore, we could
represent the joint distribution of {Xi|i = 0...n} as

P (X0,X1,X2, ...,Xn) =
n∏

i=0

P (Xi|ζ(Parents(Xi))) (2)

where function Parents() and ζ() represents the sets of directly precursor
attributes and the corresponding joint distribution, respectively. In order to solve
Eq. 4 for X0, we utilize marginalization [3] operations to convert it as a list of
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conditional probabilities. We further adopt Bayesian network and the cooper-
ating CPTs to describe conditional probabilities. During training, we use loopy
belief propagation to estimate the parameters of conditional probability table.
Due to the loopy structure of the network, it is difficult to check for the conver-
gence. We thus adopt that training is terminated when 10 iterations of gradient
decent go not yield averagely improved likelihood over the previous 10.

After explaining the theory of Bayesian network, we describe the construction
of hierarchical Bayesian network. During the Local Bayesian Network stage, we
aim to predict the runoff contribution values in the local regions. We firstly divide
the total river watershed into small local regions based on hydrology principles
[12] and the locations of rainfall stations. The split results of local regions are
represented in Fig. 1(b). We then collect multiple kinds of inputs in each local
region, i.e. soil moisture T t

i , rainfall W t
i and evaporation Et

i by interpolation
based on observed flood factors, where i refers to the index of local region.
Next, we follow the first three modules of the XAJ model as discussed in the
last section, in order to embed the expert knowledge about hydrology processes
into the construction of the local Bayesian network. Finally, the trained local
Bayesian network could compute several hydrology intermediate variables, such
as surface runoff S̃t+1

i , interflow runoff Ĩt+1
i and groundwater runoff G̃t+1

i . In
the Global Bayesian Network stage, we utilize the last module of XAJ model to
construct the global Bayesian network, which predicts the river runoff for the
nexth hours {Qt, ..., Qt+h} based on the output of the local Bayesian network
and river runoff Qt−1, Qt in former times. To sum up, we properly embed the
hydrology process and variables of the XAJ model into the hierarchical Bayesian
Network.

3.2 Bayesian Network Incremental Learning

In this subsection, we firstly discuss how to select proper incremental data to
improve the completeness of the proposed model and then describe steps to
update CPTs of the proposed hierarchical Bayesian network.

Incremental data selection is one of the most important factors to improve
efficiency of incremental learning. In fact, selecting false labeled samples will
bring noise and decrease accuracy of further predictions. Generally, researchers

Algorithm 1. Incremental sample selection algorithm
Input: Model trained in the last iteration M , set of incremental samples S
Output: Prior incremental set P = ∅, undetermined incremental set U = ∅ and noise
set N = ∅
1: For each ai ∈ S, c = gt(ai)
2: If c ∈ Cn, N.add(ai)
3: Else β = M(ai)
4: If |β − c| < ω, P.add(ai)
5: ELSEIf |β − c| < ε, U.add(ai)
6: ELSE N.add(ai)
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select incremental data by calculating model loss, defined as difference values of
prediction accuracy between before and after selecting new samples for incre-
mental learning. However, such procedure is rather low in efficiency due to
time-consuming calculation. We thus propose a threshold-ruled incremental data
selection algorithm for better efficiency, which is presented in Algorithm 1.

In Algorithm 1, function gt() checks the ground-truth classification label from
training dataset, function add() adds an incremental sample into different sets,
function M() refers to the classification result achieved by hierarchical Bayesian
Network in the last iteration, Cn represents the classification labels set in the
last iteration, ω and ε are two adaptive parameters to decide the operation
on the inputting incremental sample. Specifically, we define ω = Q̃ × 5% and
ε = Q̃ × 20% to avoid the induce of noise data, where Q̃ refers to the mean
runoff value corresponding to the small river. Note that 20% is originated from
the international rule for permissible range of flood prediction system error. After
defining the set of P and U based on the inputting data S, we add the samples
of P for incremental training at first. After then, we utilize a matrix generated
from the normal distribution to expand the data in P by p̃ = L ∗ p. For the
generated and expanded data p̃, we further process it as input by Algorithm1
and utilize the corresponding results of P and U for incremental training at last.

After selection on the proper incremental data, we discuss the updating rule
inside the network. When incremental data and the former training date are
ruled by the same joint distribution, the training Bayesian network could be
adjusted only with the parameters to fit with new data. Following this idea, we
define D0, D+ and D = D0 + D+ as the initial dataset, incremental dataset
and total dataset, respectively. We also define the number of dataset as N0 =
|D0|, N+ = |D+| and N = N0 + N+. Supposing that there are n variables
X1,X2, ...,Xn and the corresponding possible values x1

i , x
2
i , ..., x

ri
i , we could use

θijk = p(xk
i |πj

i , θi, G) (3)

to represent the parameters of Bayesian network with structure G, where
π1

i , π2
i , ..., πqi

i (qi =
∏

xm∈πi
rj ,m �= i) are the father node set for node Xi. After

adding samples for incremental learning, we thus could calculate the modified
parameters as

θijk(D,G) =
θ′

ijk(D0, G) + Nijk(D+, G)
θ′

ij(D0, G) + Nij(D+, G)
(4)

where θ′
ij(D0, G) =

∑ri

k=1 θ′
ijk(D0, G), Nij(D+, G) =

∑ri

k=1 Nijk(D+, G) and
the network parameters can be defined as

⎧
⎪⎪⎨

⎪⎪⎩

∑n
k=1 θijk = 1

θij =
⋃ri

k=1 θijk

θi =
⋃qi

j=1 θij

θ =
⋃n

i=1 θi

(5)
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4 Experimental Results

4.1 Dataset and Measurements

We collect hourly data of floods happened from 1998 to 2010 in Changhua river
as our dataset. The floods happened from 1998 to 2003 and from 2009 to 2010
are used as the basic training and testing dataset respectively, meanwhile floods
happened from 2004 to 2008 are adopted as the incremental datasets, which are
divided into five parts and marked with D1 to D5, respectively. We analysis the
runoff values of Changhua dataset and find the values are unevenly distributed
in a fixed interval, which proves the supposition for data of small rivers, i.e.,
incomplete and highly uneven. Therefore, it’s necessary to involve the incremen-
tal learning to improve the performance of flood prediction in small rivers.

To better evaluate performance of the proposed method, we adopt several
quality measurements for evaluation of classification results, which could be rep-
resented as

FN =
Nnon

Nall
(6)

k − FC =
Nk,correct

Nall
(7)

where Nall is the total number of testing samples and Nnon refers to number of
none deciding testing samples, which can’t be assigned with labels by the pro-
posed model due to the lack of complete prior knowledge, i.e., related probability
inferences. Nk,correct refers to the number of testing samples, whose run-off pre-
diction values are close with ground-truth values. The difference value between
the prediction and ground-truth should be smaller than value represented by
k splitting intervals, where k is define as 1 in our experiment. Note that FN
is designed to show the ability to acquire new knowledge during the process of
incremental learning, meanwhile k-FC is used to evaluate the ability for accu-
rately flood prediction. Higher FN and k-FC value implies better performance.

4.2 Performance Analysis

We show the improvements on FN and 1-FC measurement with the proposed
method in Fig. 3. We can observe great decrements of FN values during the
period of incremental learning, especially for the first, third and fifth increment.
This is due to the completeness of the prior knowledge is gradually increased with
more training samples and the proposed method is efficient in extracting such
knowledge by incremental learning. The reason for different decrement values
lies in the fact that the dataset is split based on year other than the amount
of new knowledge. For 1-FC, we can view an obvious decrement in prediction
accuracy with larger perdition hours, which implies the task of flood prediction
becomes harder when predicting for a relatively long time. With the incremental
learning, we find the prediction accuracy is improved, especially for the first and
fifth increment. The most obvious improvements are labeled by blue rectangles
in Fig. 3, which refer to the fifth incremental learning for prediction in 4 and 5 h.
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Fig. 3. Illustration of the improvements on FN and 1-FC with the proposed incremental
learning scheme, where blue rectangles represent the obvious improvement on 1-FC
with the fifth increment. (Color figure online)

This fact proves that the proposed method is better at predicting in a relatively
long time.

Fig. 4. Comparison of 1-FC values on Changhua dataset computed by the proposed
method and incremental SVM.

In Fig. 4, we compare the 1-FC values computed by the proposed method
and incremental SVM [2]. Since SVM could predict without complete prior
knowledge, it’s meaningless to compare FN. We implement the incremental SVM
according to the instructions given in their paper. From Fig. 4, we can find the
prediction accuracy achieved by the proposed method is lower than that achieved
by the incremental SVM when predicting for 1 h, 2 h, 3 h and 4 h. However, the
proposed method gets better performance when predicting for 5 h and 6 h, which
proves the proposed method is better than incremental SVM at predicting in
a relatively long time. With Incremental learning, we can find improvements
achieved by either incremental SVM or the proposed method. However, the
increase values gained by the proposed method are more impressive than that
gained by the incremental SVM, especially when predicting for 4 h and 5 h. This
proves the proposed method is more efficient than incremental SVM for tasks of
incremental learning, especially for long time flood predicting.
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5 Conclusion

In this paper, we propose a hierarchical Bayesian network based incremental
model to predict floods for small rivers. The proposed model not only appro-
priately embeds hydrology expert knowledge with Bayesian network for high
rationality and robustness, but also designs an incremental learning scheme
to improve the self-improving and adaptive ability of the proposed model. By
involving power of incremental learning, the proposed model could be gradu-
ally improved with more collected data, which makes it fit with various appli-
cation scenarios. Experiment results on Changhua dataset show the proposed
method outperforms several comparative methods and achieves promising pre-
diction results on small rivers. Our future work includes the exploration on other
hydrology purposes with the proposed method, for example mid-term flood pre-
dicting.
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