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A B S T R A C T

Inspired by instance segmentation algorithms, researchers have proposed quantity of segmentation-based
methods for text detection, achieving remarkable results on scene text with arbitrary orientation and large
aspect ratios. Following their success, we believe cascade architecture and extracting contextual information
in multiple aspects are powerful to boost performance on the basis of segmentation-based methods, especially
in decreasing false positive texts in complex natural scene. Based on such consideration, we propose a
multiple-context-aware and cascade CNN structure, which appropriately encodes multiple categories of context
information into a cascade R-CNN framework. Specifically, the proposed method consists of two stages, i.e.,
feature generation and cascade detection. During the first stage, we define ISTK (Isolated Selective Text
Kernel) module to refine feature map, which sequentially encodes channel-wise and kernel-size attention
information by designing multiple branches and different kernel sizes in isolate form. Afterwards, we build
long-range spatial dependencies in feature map via non-local operations. Built on contextual feature map,
Cascade Mask R-CNN structure progressively refines accurate boundaries of text instances with multi-stage
framework. We conduct comparative experiments on ICDAR2015 and 2017-MLT datasets, where the proposed
method outperform comparative methods in terms of effectiveness and efficiency measurements.
1. Introduction

Scene text detection is still challenging, due to factors like multi-
language, arbitrary-orientation and curving situations. Facing these dif-
ficulties, researchers have proposed quantity of methods by regarding
text as an instance of segment, which is the core idea of segmentation
based methods. On the basis of segmentation methods which have
achieved significant detection results facing arbitrary-orientation and
curving problems, we believe that applying cascade framework and
extracting context information can boost detection performance, espe-
cially in decreasing false positive detections on complex background.

Essentially, cascade is a classic and powerful architecture, which has
been successfully applied to boost performance on various tasks with
ideas of multi-stage refinement. It is noted that most of the current
network uses a relative low value as IOU threshold, thus causing noisy
detections. However, simply increasing IOU threshold will lead accu-
racy of detection to decrease. To relieve this issue, Cascade R-CNN [1]
constructs a sequence of object detectors trained with increasing IoU
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thresholds, which makes the threshold setting more suitable for train-
ing modules of each stage. Therefore, false positive results can be
effectively eliminated.

To fully leverage relationship between detection and segmentation,
Chen et al. [2] propose Hybrid Task Cascade (HTC) for instance seg-
mentation, which interweaves detection and segmentation as a joint
multi-stage processing to achieve better refinement on both tasks.
In order to better distinguish the foreground and background, they
further add a convolution branch to make full use of spatial context
information. Through multi-stage and multi-information fusion, they
successfully gain more powerful detection capabilities. Inspired by
these two state-of-the-art tasks, we argue that text detection can adopt
cascade architecture to boost performance as well, which not only
helps prevent overfitting during training due to exponentially vanishing
positive samples, but also relieves the burden of manually defining
proper IOU parameters to construct effective text detectors.

Abundant context information is essential to deal with complexity
brought by ambiguity property of visual scene, where different cate-
gories of attention modules are widely used to perform the modeling
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of context information. For example, SENet [3] builds subnet by con-
volutional layers to assign different weights across channels, which
greatly improves classification accuracy on complex scenes and wins
the champion of 2017 ImageNet Classification Competition. SKNet [4]
further proposes to dynamically adjust size of the convolution kernel
based on multiple scales of input information, which successfully builds
kernel-size attention by adopting task-specified size of receptive field.
Inspired by these tasks, we argue that appropriately encoding multiple
categories of attention information could help accurately detect text
by involving additional and informative scene context information,
especially in a complex natural environment. Furthermore, general
attention modules could be adjusted to further promote text detection
with special text-oriented designs.

Based on all these considerations, we propose a task-specified cas-
cade R-CNN structure encoding multiple context-aware information.
Specifically, the proposed method generates feature map with abundant
context information, i.e., spatial, channel, and kernel-size context infor-
mation extracted by the proposed ISTK module and NLNet module in
cascade form. After generating feature map, a cascade R-CNN structure
is applied to detect texts in multiple stages, which are sequentially
constrained with higher IoU thresholds to delaminate false positive
texts. After conducting experiments on ICDAR 15 and ICDAR 17 MLT
datasets, we prove the proposed structure is powerful to generate
correct text samples in complex nature scene scenarios, due to modeling
of abundant context information and utilization of cascade structure.

Our contributions can be concluded as follows:

• We propose a cascade R-CNN structure encoding multiple context-
aware information, which involves significant power of cascade
framework and context modeling for accurate detection perfor-
mance, especially in complex natural scene.

• As far as we know, the proposed method firstly involves three
different kinds of attention information, i.e., kernel size, channel-
wise and spatial attention, to construct task-specified feature map
for text detection.

• We specially design ISTK structure to fit with task of text de-
tection, which utilize isolated form of information fusion to gen-
erate informative feature map from aspects of channel-wise and
kernel-size attention.

The rest of the paper is organized as follows. Section 2 gives
an overview of the related work on relative aspects. In Section 3,
details of the proposed structure is discussed, including Total network
architecture, designs of ISTK and NLNet modules. Section 4 shows
our experimental results with several comparative methods. Finally,
Section 5 concludes the paper.

2. Related work

We introduce relevant research that inspired us to design the pro-
posed method in the section, including scene text detection and atten-
tion model.

2.1. Scene text detection

Due to the wide usage of deep learning models, we can see quantity
of mutual applications in different domains [5–10]. Most existing scene
text detection methods built on deep learning structures can be divided
into two categories, namely regression-based and segmentation-based
methods.

Regression-based text detection aims to detect text instance as a
common object. For example, Ma et al. [11] propose RRPN, which adds
a rotation angle to the detection frame to detect multi-directional text,
due to the multi-directionality property of texts. Liao et al. [12] design
Textbox++, which not only puts forward the idea of using text recogni-
tion to assist text detection, but also proposes a novel function to detect
arbitrary text. In order to solve the problem of extremely long text,
2

Zhang et al. [13] present LOMO, which localizes the text progressively
with multiple trial times. Most recently, Bai et al. [14] add an obliquity
factor to their proposed network, which is able to detect horizontal
objects and non-horizontal objects with accurate performance. From
the above research, we can conclude that the regression-based text
detection methods require additional algorithm design and computing
power to solve the problem of rotated texts.

Segmentation based methods obtain masks and bounding boxes
according to text instances progressively. Early, Mask R-CNN [15]
firstly modify the step of ROI pooling to ROI align on the basis of
faster R-CNN [16–19], and then add a mask module for accurate in-
stance segmentation. Later, PANet [20] use method of bottom-up path
augmentation to perform tasks of information path shorting, adaptive
feature pooling and fully-connected fusion, achieving better mask than
former Mask R-CNN algorithm. On the basis of Mask R-CNN, Liao
et al. [21] propose Mask TextSpotter, which is capable to detect texts
of various shapes and recognize characters. Afterwards, Pixel-link [22]
use a convolutional network to perform two tasks, i.e., text/non-text
prediction and link prediction, where determined pixels can be utilized
to connect link prediction, thus generating convinced shape on curved
texts.

Since close text can cause multiple texts to be mistaken for one
text, Wang et al. [23] propose PSENet to generate different scales
of kernels for each text instance, and gradually expand the minimal
scale kernel to the text instance. Owing to the guidance of semantic
information, SPCNet [24] propose to involve more context information,
resulting in stronger detection capabilities in complex natural scenes.
Further, TextSnake [25] regard texts as disks, meanwhile different
disks have different radius and directions. In this way, the flexibility
of their proposed network is much increased by novel representation
of texts. Afterwards, TextFuseNet [26] obtains richer text features by
fusing three different categories of features, i.e., character level, word
level and global level. Rich features enhance the detection ability and
environmental adaptability of their proposed network. Most recently,
ContourNet [27] generates more accurate anchors through Adaptive-
RPN, and uses Local Orthogonal Texture-aware Module model the local
texture information in two orthogonal directions, which successfully
reduces false positive results.

The proposed method is a segmentation based method, which is
capable to deal with situations of oriented and curved texts. Further-
more, the proposed method tries combination of cascade framework
and context information modeling, which successfully improves the
accuracy and robustness in locating texts in complex scenes.

2.2. Attention model

People usually focus on objects themselves and ignore the back-
ground to obtain important information. Based on such characteristics,
attention models have been applied in deep learning area and achieved
significant performance in multiple domains.

Researchers firstly try to build spatial and temporal attention, which
coincides with the visual principle of humans, i.e., focus on part of
scene or a duration within a sequence. With better understanding of
structures and functions of CNN network, channel-wise attention is
exploited to re-weight conv-layer feature map produced by different
layers of CNN, thus offering information on which feature channel is
informative during processing. For example, Woo et al. [28] propose
Convolutional Block Attention Module (CBAM), which redistributes
attention on both channels and spaces to enhance input feature map.
Compared with CBAM, Cao et al. [29] propose Global context network
(Gcnet), which simplifies non-local neural network and acts to be more
efficient and faster in run-time. To obtain more accurate detection
results with multiple attention modules, Zhao et al. [30] propose PFAN
(Pyramid Feature Attention Network), which adopt spatial attention
mechanism for low-level network structures and channel attention
mechanism for high-level network.
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Fig. 1. Network architecture of the proposed method, which consists of feature generation and cascade detection.
In parallel with channel-wise attention, researchers propose recep-
tive field to enhance representation ability of feature map. With the
idea of dynamic setting on receptive field, Liu et al. [31] propose RFB
(Receptive Field Block) network, which uses dilated convolutions to
obtain more noteworthy information on size of receptive field. Further
emphasizing on the importance of receptive fields, Li et al. [4] design
SKNet (Selective Kernel Network) to assign weights for both channel
related information and size of convolution kernel. Most related to
the proposed method, Xiao et al. [32] take receptive field, spatial and
channel attention information into account, and propose TCAM (Text-
Context-Aware Module) to solve the problem of multi-oriented and
multi-language, which proves the effectiveness of applying different
kinds of context information on task of text detection.

Inspired by these attention models, the proposed method proposes
the ISTK module, which not only properly encodes two categories
of context information, i.e., channel-wise and kernel-size, but also
specially design the module in a isolated form to coincide with inherent
characteristics of text in scenes. In order to capture long-range depen-
dencies, we further introduce NLNet to refine low-level feature map by
introducing spatial attention information.

3. The proposed method

In this section, we firstly involve text-context-aware characteristics
by multiple context modules to generate informative feature map.
Based on generated feature map, we construct a cascade R-CNN struc-
ture, which performs instance-level text mask segmentation task in a
sequential manner, thus performing a higher selective operation against
close false positives. We organize this section by first illustrating the
total network architecture, and then describing structures of ISTK and
NLNet modules in details.

3.1. Total network architecture

As shown in Fig. 1, the overall network structure is mainly com-
posed of two stages, i.e., feature generation and cascade detection,
where we perform sequential and step-wise text detection on informa-
tive feature map.

Specifically, We first adopt ResNet-50 to extract basic feature rep-
resentation for further processing. The reason to adopt ResNet-50 as
backbone network lies in the fact that texts can be regarded as a special
kind of object and ResNet-50 has been proved to be highly effective
in classifying different categories of objects with distinguishing feature
representation. The whole process can be represented as

𝐹 = 𝑅𝑒𝑠 (𝐼), 𝑤ℎ𝑒𝑟𝑒 𝐹 = {𝐹 |𝑖 = 1, 2, 3, 4, 5} (1)
3

50 𝑖
where 𝑖 is the layer index of feature map, 𝐼 refers to the input scene
image containing texts, and function 𝑅𝑒𝑠50() refers to the operations of
backbone network structure, i.e., ResNet-50. It is noted that we define
scale factor as 0.5 to deliver scalable feature map from the largest scale
(1st) to the smallest scale (5th).

After feature extraction, we refine the extracted feature map
through the proposed ISTK modules by introducing context information
on channel and kernel size, which can be represented as

𝐹𝑖 = 𝑓𝐼𝑆𝑇𝐾 (𝐹𝑖), 𝑤ℎ𝑒𝑟𝑒 𝑖 = {2, 3, 4, 5} (2)

where 𝐹𝑖 is the enhanced feature map with the proposed ISTK module,
and function 𝑓𝐼𝑆𝑇𝐾 () dynamically assigns weights on convolution ker-
nel size and channels based on input feature map 𝐹𝑖. It is noted that
we abandon the first scale of feature map with largest size, due to the
consideration of computation speed.

Compared with SKNet [4] which addresses the modeling of ker-
nel size context information, we offer separate structures on feature
extraction and attention modules, rather than embedding attention
module into the structure of feature extraction. By separating ISTK and
ResNet-50, the proposed method could not only reuse parameters of
the pre-trained ResNet-50 model with less modification and training,
but also makes the proposed ISTK module easier to be applied into any
existing networks as attention modules.

To capture long-range dependencies among feature map, we pro-
pose to enhance the lowest layer of feature map with NLNet module
by introducing spatial attention information, which can be expressed
as

𝐹2 = 𝑓𝑁𝐿𝑁 (𝐹2) (3)

where function 𝑓𝑁𝐿𝑁 () refers to operations in NLNet module. NLNet
module is capable to model the interaction between pixels, which could
be comprehended as globally spatial information, thus introducing
spatial context information into the second scale of feature map. The
reason to apply NLNet module only on the second scale lies in the
fact that low-level feature, extracted by lower layer of ResNet-50,
corresponds to color, texture, and other low-level visual features, and
high-level feature carries semantical and less information. In order to
model spatial context information among long-range regions, it is more
suitable to use NLNet to deal with informative and abundant feature
map generated by lower layer of the network.

After processing with ISTK and NLNet modules to introduce context
information, generated feature map are fed into FPN (Feature Pyramid

Network) for further feature refinement, which could help network
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Fig. 2. Architecture of the proposed ISTK module, i.e., multiple attention module, which shows the reconstruction of feature maps through different channels and different
convolution kernels.
detect text instances with different scales. The whole process can be
represented as

𝑃 = 𝑓𝐹𝑃𝑁 (𝐹2, 𝐹3, 𝐹4, 𝐹5), 𝑤ℎ𝑒𝑟𝑒 𝑃 = {𝑃𝑗 |𝑗 = 2, 3, 4, 5} (4)

where function 𝑓𝐹𝑃𝑁 () refers to operations of FPN.
After all processing steps in feature generation stage, refined feature

map are regarded as input of cascade detection, where RPN (Region
Proposal Network) firstly locates possible anchors of text instances 𝑏0:

𝑏0 = 𝑓𝑅𝑃𝑁 (𝑃 ) (5)

where function 𝑅𝑃𝑁() refers to operations of RPN.
After generating anchor candidates 𝑏0, we utilize cascade R-CNN

structure to progressively compute bounding boxes. It is noted that
cascade R-CNN structure regard the generated bounding box in one
stage as anchors, which is fed into ROIAlign module located in the next
stage. Such design with increasing IoU thresholds, could help the total
network be sequentially more selective against close false positives. We
represent processing steps of Cascade R-CNN as follows:

𝑚𝑘 = 𝑓𝑀,𝑘(𝑅𝑎(𝑏𝑘−1, 𝑃 )) (6)

𝑏𝑘 = 𝑓𝐵,𝑘(𝑅𝑎(𝑏𝑘−1, 𝑃 )), 𝑤ℎ𝑒𝑟𝑒 𝑘 = {1, 2, 3} (7)

where 𝑚𝑘 and 𝑏𝑘 represent segmentation mask and bounding box
generated in the 𝑘th stage respectively, function 𝑅𝑎() performs align
operations on regions of interest to generate new feature map based
on detected bounding box in last step 𝑏𝑘−1 and feature maps 𝑃 , and
function 𝑓𝐵,𝑘() and 𝑓𝑀,𝑘 denote the box head and mask head to generate
corresponding bounding box and mask for the 𝑘th stage respectively.
After three stages of cascade processing, false positive results caused
by the environmental impact of natural scenes can be eliminated. It is
noted that we modify classification task of general cascade structure
into the process of mask generation, since the core of text detection
task is to located text.

The loss function of proposed network is represented as follows :

𝐿𝑜𝑠𝑠 = 𝐿𝑅𝑃𝑁 + 𝐿𝑚𝑎𝑠𝑘,3 + 𝐿𝑐𝑙𝑠,𝑘 + 𝐿𝑟𝑒𝑔,𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑘 = {1, 2, 3} (8)

where the loss function can be divided into four parts, i.e., RPN, mask,
classification and regression. Since the generated masks of the first and
second stages in the cascade network have no effect on the final results,
they are not included in the calculation of loss function.

3.2. Design of ISTK module

In this subsection, we mainly describe the construction steps of the
proposed ISTK module.

Inspired by SKNet [4], we propose ISTK (Isolated Selective Kernel)
module to enhance feature representation by dynamically assigning
4

different weights to feature map generated by different convolution
kernels, where we show its structure in Fig. 2. Compared with feature
fusion stage in SKNet, we specially design the proposed ISTK in an
isolate form for the task of text detection. The reason to apply isolate
form lies in two aspects. Firstly, fusion will lead to information loss,
which could result in low representation ability of the generated feature
map. Secondly, low-level feature map are essentially important to
locate text anchors, such as shape, texture, color and so on. Fusion
in higher level leads to abstraction of information, thus generating
semantical meanings of feature map. Meanwhile, fusion in lower level
of feature map will result in misunderstanding of feature map due to
loss of information amount caused by fusion.

Moreover, we modify size of convolution kernel from 𝑛 ∗ 𝑛 to 1 ∗ 𝑛,
where 𝑛 refers to the width of kernel and the modified kernel size fits
with the long aspect ratio property of text instances. With such specific
design, unique text characteristics can be ensured to be well enhanced,
thus offering guarantees on robust and accurate text detection. Above
all, specific designs in the proposed ISTK module help the proposed
method to enhance distinguish ability in classifying texts or not. To
prove the effectiveness of ISTK module, we show detection samples of
using ISTK module and original SKNet in Fig. 3, where we can observe
ISTK module helps generate more promising detection results.

We design ISTK module with three steps, i.e., split, process and
select. During the first split step, input feature maps are processed by
using convolution kernels of 1*3, 1*5, 1*7 respectively, which compute
feature maps with different receptive fields:

𝐾𝑖,𝜆 = 𝑓𝑐𝑜𝑛𝑣,𝜆(𝐹𝑖), 𝑤ℎ𝑒𝑟𝑒 𝜆 = {1, 2, 3} (9)

where 𝜆 refers to index of convolutional kernels with different sizes,
i.e., {1 ∗ 3, 1 ∗ 5, 1 ∗ 7}, function 𝑓𝑐𝑜𝑛𝑣,𝜆() refers to convolutional
operation with predefined kernel sizes. Since spatial space occupied
by the utilized 1*n convolution kernels are already small enough, the
proposed method does not apply dilated convolution to process the
convolution kernels.

After extracting feature of different receptive fields with different
convolutional kernels, we further dynamically calculate weights 𝑤𝑖
based on feature maps generated with different receptive fields:

𝑤𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
3
⋃

𝜆=1
𝑓𝑓𝑐 (𝑓𝑎𝑣𝑔(𝐾𝑖,𝜆))) (10)

where function 𝑓𝑎𝑣𝑔() and 𝑓𝑓𝑐 represent operation of global average
pooling, and two fully connected operations, respectively. After pro-
cessing of operations in Eq. (10), we will obtain feature map with 1*1*C
size. In the generated feature map, we could use 𝐶𝑖,𝜆,𝑙 to represents a
specific feature channel, where 𝑙 refers to index of feature channel and
the corresponding convolution kernel size is 1*3 if 𝜆 equals 1. After
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Fig. 3. Sample detection results by utilizing either ISTK module (Left) or SKNet module
(Right), where red rectangles refer to false positive or false negative results.

processing by the softmax function, the corresponding weight for 𝐶𝑖,𝜆,𝑙
can be calculated as

𝑤𝑖,𝜆,𝑙 =
𝑒𝐶𝑖,𝜆,𝑙

𝑒𝐶𝑖,𝜆=1,𝑙 + 𝑒𝐶𝑖,𝜆=2,𝑙 + 𝑒𝐶𝑖,𝜆=3,𝑙
(11)

In this way, weights for feature channels computed by different convo-
lution kernels can be obtained for further processing.

Based on the calculated weights, we first multiply weights with the
feature map to encode context information and then perform feature
fusion to get the final feature map, which could be represented as

𝐹𝑖 = 𝑟𝑒𝑙𝑢(𝑠𝑢𝑚(𝑤𝑖 ∗ 𝐹𝑖)) (12)

where 𝐹𝑖 refers to generated feature map by ResNet-50, and function
𝑟𝑒𝑙𝑢() refer to ReLu activation function.

3.3. Design of NLNet module

In this subsection, we utilize Non-local Neural network (NLNet) to
encode spatial context information into the extracted feature map.

As shown in Fig. 4, we design NLNet module to model spatial
context information between pixels in feature map with long distance.
In fact, pixel-level spatial attention is hard to abstract, since receptive
field can only process local information so that pixels in the feature
map can only be associated with local neighboring pixels for context
modeling. To solve the problem of pixel-level spatial context modeling,
convolution operations in NLNet module are all equipped with 1 × 1
convolutions. Choosing 1 × 1 convolution kernel can not only extract
information with high effective, but also reduce dimensions of output
features and the total amount of parameters.

Following the description on structure of NLNet module, we could
calculate the middle representation of feature map 𝐹2,𝑚 wotj

𝐹2,𝑚 = 𝑓1𝑐 (𝐹2) ∗ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓1𝑐 (𝐹2) ∗ 𝑓1𝑐 (𝐹2)) (13)

where function 𝑓1𝑐 () refers to 1 × 1 convolution kernel to modify
dimension for processing. It is noted that multiply any two branches in
NLNet module is to build the connection between any these two points
of the feature map, which can be regarded as a procedure of modeling
spatial context information in long range.

Afterwards, we process 𝐹2,𝑚 with the following equation:

𝐹2 = 𝑓1𝑐 (𝐹2,𝑚) + 𝐹2 (14)

where we use additional 1*1 convolutional kernel to reshape 𝐹2,𝑚 as the
same size as input feature map 𝐹2. In this way, the extracted long-range
spatial context information can be successfully encoded into the feature
map.

4. Experiment

In this section, we first introduce our dataset. Then, we conduct ab-
lation experiments to show the effectiveness of the proposed structure.
Then, we carry out comparison experiments and associated analysis
with several latest text detection methods. Finally, we offer implemen-
tation details for readers’ convenience.
5

Fig. 4. Architecture of the proposed NLNet module.

Table 1
Performance comparisons with different structure designs on ICDAR2015 and
ICDAR2017-MLT datasets.

Method Precision Recall F-measure

Cascade Mask R-CNN 86.7 79.7 83.1
SKNet 88.8 81.1 84.8
ISTK (n*n) 88.8 81.8 85.1
ISTK (1*n) 88.4 82.1 85.2

Table 2
Performance comparisons with different structure designs on ICDAR2017-MLT dataset.

Method Precision Recall F-measure

Cascade Mask R-CNN 76.8 59.6 67.1
SKNet 75.5 61.2 67.6
ISTK (n*n) 77.8 60.3 67.9
ISTK (1*n) 76.6 61.1 68.0

4.1. Datasets

In this paper, we use the ICDAR2015 and the ICDAR2017-MLT
dataset, where ICDAR2015 dataset contains 1000 training and 500 test
pictures, ICDAR2017-MLT includes 7200 training, 1800 verification,
and 9000 test pictures. It is noted that ICDAR2015 dataset contains
only English texts, meanwhile ICDAR2017-MLT dataset contains mul-
tiple languages. Moreover, we could observe the scene category in
ICDAR2017-MLT dataset is more diverse and complex than scenes in
ICDAR2015 dataset, leading us to believe that ICDAR2017-MLT dataset
is more challenging for text detectors to locate text instances than
ICDAR2015 dataset.

4.2. Ablation experiments and analysis

We design different structure designs for ablation experiments in
Tables 1 and 2, where Cascade Mask R-CNN refers to only apply general
cascade structure on text detection without feature map enhancement,
SKNet performs feature enhancement with branch feature fusion and
n*n kernel size, ISTK(n*n) and (1*n) refer to the proposed method with
different settings on kernel size of convolutional filters.
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Table 3
Performance comparisons with different stage parameter designs on ICDAR2015 and
ICDAR2017-MLT datasets.

Method Dataset Precision Recall F-measure

Two-stage ICDAR2015 87.8 82.3 85.0
Three-stage ICDAR2015 88.4 82.1 85.2
Two-stage ICDAR2017 76.3 61.2 67.9
Three-stage ICDAR2017 76.6 61.1 68.0

Table 4
Comparisons of detection performance on ICDAR2015 dataset.

Method Precision Recall F-measure

He et al. [33] 85.0 80.0 82.0
Textbox++ [12] 87.8 78.5 82.9
EAST [34] 83.2 78.3 80.7
PixelLink [22] 85.5 82.0 83.7
SegLink [35] 73.1 76.8 75.0
DMPNet [36] 68.2 73.2 70.6
FoTs [36] 91.0 85.2 88.0
The proposed 88.4 82.1 85.2

Table 5
Comparisons of detection performance on ICDAR2017-MLT dataset.

Method Precision Recall F-measure

He et al.[33] 76.7 57.9 66.0
Lyu et al. [37] 83.8 55.6 66.8
TDN SJTU2017 [38] 64.2 47.1 54.3
SARI FDU RRPN [11] 71.2 55.5 62.4
FoTs [39] 81.0 57.5 67.3
The proposed 76.6 61.1 68.0

From Tables 1 and 2, we can observe that both ISTK and SKNet
chieves better performance than Cascade Mask R-CNN, which proves
he effectiveness of attention models by introducing informative and
bundant context information. Comparing between ISTK(n*n) and
KNet, we could find an improvement in F-measure by utilizing isolate
orm rather than feature fusion, which proves that retaining the whole
nformation of low-level feature map contributes to accurate localiza-
ion of texts. Moreover, utilizing 1*n kernel greatly improves recall
nd slightly decreases precision, when comparing performance between
STK(n*n) and (1*n). This phenomenon can be explained by the fact
hat long aspect ratio design leads text instance to be easily located in
omplex background, meanwhile long objects like sticks would be easy
o be misclassified as text as well.

In Table 3, we further compare detection performance of the pro-
osed method on both ICDAR2015 and ICDAR2017-MLT datasets, us-
ng different stage parameter, i.e., 2 and 3 stages. In three-stage train-
ng, we use 0.5, 0.6, and 0.7 as thresholds, meanwhile we use 0.5, 0.6
s thresholds. We can clearly observe that three-stage parameter setting
erforms better than two stages, represented by F-measure. However,
he recall performance slightly decreases, due to an additional stage of
rocessing.

.3. Comparative experiment and analysis

We offer comparisons between the proposed method and several
atest methods in Tables 4 and 5. It is noted that the proposed method
chieve the best F-measure on both ICDAR2015 and ICDAR2017-MLT
atasets, which proves the effectiveness of combining strength of cas-
ade structure and context modeling. In fact, the proposed network not
6

nly utilize cascade structure to boost performance by eliminating false
Table 6
Comparisons of FPS on ICDAR2015 dataset.

Method FPS

PixelLink [22] 7.3
Lyu et al. [37] 3.6
TextSnake [25] 1.1
FoTs [39] 7.8
The proposed 7.5

positives, but also encodes rich context information, i.e., kernel size,
channel-wise and spatial attention, to accurately locate texts in complex
natural scenes by constructing ISTK and NLNet modules.

It is noted that PixelLink [22] achieves a slightly higher recall than
the proposed method on ICDAR2015 dataset. The reason lies in the
fact that the core idea of PixelLink is a classification task on text
related pixels and links, which is easier to train and achieve higher
accuracy than the proposed method. Meanwhile, both FoTs [39] and
Lyu et al. [37] achieve a much higher precision than the proposed
method on ICDAR2017-MLT datasets. It could be explained by the fact
that FoTs [39] introduce text recognition to improve performance of
text detection, which utilize more input information for detection than
the proposed method. Lyu et al. [37] perform more precise detection
by dividing text instance into corners. Their proposed method is much
complicated in structure and requires relatively high computation cost.
The result of Fots on ICDAR2015 is 88.0, which is better than our pro-
posed model. Essentially, Fots not only uses ICDAR2013, ICDAR2015,
ICDAR2017-MLT, and Synth800k to train the model, but also uses the
OHEM to learn difficult samples. The proposed method only selects
1000 images in ICDAR2017-MLT and ICDAR2015 images for training,
which is the main reason that we achieve worse results than Fots.
Since the main difficulty of ICDAR2017-MLT lies in the fact of multiple
languages, adding additional datasets could not be helpful to improve
results on ICDAR2017-MLT. Therefore, the proposed method is better
than FoTs when testing on ICDAR2017-MLT dataset.

In order to better show the effect of ISTK, we use heat maps
to visualize the experimental results in Fig. 5. Based on the results
represented at the second row of Fig. 5 where we directly using feature
maps obtained by Cascade Mask R-CNN to display the heat map, the
text information can be accurately obtained. However, many areas
which are not related to text are also marked in red as text regions,
which can be regarded as false positive regions. Due to the lack of
context information, the ability to isolate the background of Cascade
Mask R-CNN is not effective. Although the results of ISTK shown in
third row have errors in marking the non-text areas as red, the size
of areas is much smaller than that achieved by Cascade Mask R-CNN.
Essentially, ISTK uses a convolution kernel with a different aspect ratio
to reshape the feature maps. Therefore, the non-text area in the third
row displays a relatively long red heat map, which shows the enhanced
ability of ISTK module to capture the shape of the long aspect ratio after
using the 1*n convolution kernels.

We offer FPS for comparisons in Table 6. Since ISTK uses the Dilated
convolution kernel and 1*n convolution kernel, the entire model is
lightweight and the detection speed is faster than many text detection
models. We show detection samples achieved by the proposed method
and Cascade Mask R-CNN in Figs. 6 and 7, where we can notice involv-
ing multiple categories of context information could greatly improve
performance on text detection.

4.4. Implementation details

All of these experiments are performed on four GTX 1080 GPU
cards. We use SGD optimizer for training by setting the momentum as

0.9 and weight decay as 0.0001. We set parameters of initial learning
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Fig. 5. The original images, heat maps achieved by Cascade Mask R-CNN and the proposed method are shown in the first, second and third row.
Fig. 6. Detection samples achieved by Cascade Mask R-CNN (the first row) and the proposed method (the second row) on ICDAR2015 dataset.
Fig. 7. Detection samples achieved by Cascade Mask R-CNN (the first row) and the proposed method (the second row) on ICDAR2017-MLT dataset.
rate as 0.01 and the minimum learning rate as 0.0001. The three thresh-
olds adopted by Cascade Mask R-CNN is 0.5, 0.6, and 0.7, respectively.
We use SmoothL1Loss as the loss function to make the entire training
process smoother, meanwhile we use gradient clip to prevent gradient
explosion.

5. Conclusion

In this paper, we propose a multiple-context-aware and cascade
CNN structure to detect multi-oriented and Multi-lingual text in natural
scene images. Due to the extracted rich context information and cascad-
ing structure, text can be detected more accurately by reducing false
7

positive results caused by complex natural environment. Experiments
show the proposed method achieves better performance than several
latest methods on public datasets. Our future plan is to explore idea of
unsupervised learning to relieve the concern on overfitting performance
of text detection.
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