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Abstract
Flood is difficult to predict due to its extreme runoff values, short duration and complex generation mechanism. In order 
to reduce the negative effects of flood disasters, researchers try to forecast flood by utilizing deep learning technology. 
Essentially, historical flood data can be regarded as sequential data with sets of flood factors. Facing challenges brought by 
inherent characteristics of flood forecasting, this paper proposes a dual attention embedding network, i.e., DA-Net, to achieve 
accurate prediction results. The proposed attention mechanism not only embeds a convolution self-attention module (CSA) on 
Temporal Convolutional Network (TCN) for description of local context information, but also constructs a Temporal-related 
Feature Attention (TFA) Module to assign time-varying weights for different features in a global sense. Specifically, CSA 
offers additional and local context information to help predict extreme runoff values even within a small period, meanwhile 
TFA improves global modeling capability of TCN for construction of data-driven generation mechanism in our method. 
Experiments on Changhua and Tunxi watershed dataset show the proposed method achieves superior prediction performance 
than current deep learning based methods.

Keywords Flood forecasting · Attention mechanism · Temporal convolutional network · Data-driven model

1 Introduction

Due to global warming and extreme climate, flood disas-
ters occasionally happen and have brought great damage to 
human society, resulting in huge economic losses and safety 
hazards. It’s essential to carry out accurate flood forecast 
to avoid the risk brought by flood disaster, which is one of 

the key issues in both machine learning and hydrological 
research.

Generally, current flood prediction models can be 
roughly divided into two categories, i.e., traditional 
physical models by simulating hydrological process[1, 
2], and data-driven model based on machine learning 
algorithms [3, 4]. It’s noted traditional physical models 
require hydrological experts to define model parameters, 
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since performance of such models is quite sensitive to the 
pre-defined parameters. In other words, one specifically 
designed physical model by experts, which is limited to 
be applied in a well-examined watershed.

With significant progress of deep learning algorithm, 
data-driven models[5–9] have achieved remarkable 
development by exploring inherent relationship between 
run-off values and multiple flood factors. Essentially, 
data-driven models become the most promising ways to 
forecast floods, since large distributed sensors offer acces-
sible means to flood-related factors, such as rain, upstream 
water and others. However, directly applying deep learning 
algorithms, such as LSTM, GRU, etc, for flood forecasting 
could result in low accurate performance.

Flood data is characterized by high-dimensional com-
plexity, embedding highly non-linear relationship among 
flood factors. In other words, it’s essential to build tempo-
ral relationship among flood factors in a local sense, thus 
better describing instantaneous characteristics of flood. 
Since traditional sequential data processing model pay lit-
tle attention on modeling local temporal relationship, we 
adopt Temporal Convolutional Network (TCN) to extract 
temporal feature by enlarging the size of receptive field. 
On the basis of TCN, we propose CSA-TCN (short for 
Convolution Self-Attention-TCN) structure by embedding 
a self-attention mechanism, which successfully extracts 
local context information from sequential data with dif-
ferent receptive field sizes.

Moreover, different flood factors own different impor-
tance or weights on generation of flood in different process 
of flood. For example, soil moisture, one of the flood factors, 
has a great influence on the run-off values at the initial stage 
of flood. After middle stage of flood, soil can be filled with 
water and factor of soil moisture keeps consistent. In other 
words, we should assign a higher weight to factor of soil 
moisture at the beginning, meanwhile offering a quite small 
weight to it in middle or final stage of flood. Inspired by such 
fact, we propose a temporal-related feature attention (TFA) 
Module, which is capable to assign time-varying weights to 
high-dimensional features corresponding to different factors. 
Such weighting scheme focuses on the global hidden states 
of the LSTM in terms of temporal and feature dimensions, 
which offers a novel concept to build attention scheme for 
LSTM structure in global sense.

Based on the above consideration, we propose a dual 
attention network (DA-Net) for flood forecasting, which not 
only embeds a convolution self-attention module on TCN for 
description of local context information, but also constructs 
a temporal-related feature attention (TFA) Module to assign 
time-varying weights for different features. Both attention 
models serve as a part of the proposed dual attention mecha-
nism in either local or global sense. The main contributions 
can be summarized as follows:

• We propose a lightweight CSA-TCN on the basis of TCN 
structure, which not only successfully extracts temporal 
features during a short-time period of floods, but also 
enhances local context information of feature by embed-
ding a novel convolution self-attention mechanism.

• The proposed TFA module is capable to assign time-
varying weights to different features, which serves as a 
weighting scheme for temporal and feature related infor-
mation in a global sense.

The rest of this paper is arranged as follows. In the second 
part we introduce the correlation work for flood prediction 
methods. In the third part, details of our model structure and 
algorithm are presented. The fourth part introduces our com-
parative experiment, and the last part summarizes the paper.

2  Related work

This part will introduce relevant research results that inspire 
us to design models, mainly including data-driven models, 
temporal convolutional networks and attention mechanisms.

2.1  Data‑Driven Model

With the advancement and development of deep learning 
technology[10–12] and big data technology[13–15] , more 
and more data-driven models are applied to flood prediction. 
Toth et al. [16] comprehensively analyzed and compared the 
Auto Regressive Moving Average Model(ARMA), artificial 
neural network (ANN) and nonparametric nearest neighbor 
method applied to 1h-6h short-term flood prediction. Based 
on statistical theory, Yu et al. [17] used a support vector 
machine approach to determine the lag time of the input 
variables using the concept of hydrologic response time to 
develop an effective flood prediction model. Biondi and De 
Luca [18] discussed the exploration of Bayesian systems 
applied to flood forecasting. The importance of using dif-
ferent diagnostic methods to analyze the quality of forecasts 
is emphasized. Ding et al. [19] used LSTM and attention 
mechanism to dynamically extract key feature vectors from 
various hydrological information to improve the accuracy 
rate in flood prediction. Song et al. [20] designed a mul-
tivariate time-stepped LSTM network for flood forecast-
ing using information on the spatio-temporal dynamics of 
observed forecasted precipitation and early flows as input. 
Since current data-driven algorithms cannot achieve the 
expected detection effect in complex environments, such as 
background clutter, noise inundation or very small targets, 
Liu et al. [21] have designed an image enhancement-based 
detection algorithm for solving through detail enhancement 
and target expansion.
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2.2  Temporal Convolutional Network

TCN is a popular model recently used to deal with time 
series tasks [22]. Its basic idea is to rely on a sample of 
a known sequence to model the target sequence that one 
wants to generate. Traditional convolutional neural net-
works are generally considered less suitable for modeling 
time-series problems, mainly due to the limitation of their 
convolutional kernel size, which cannot capture long-time 
dependency information well. TCN is based on two main 
principles: the output length of the model is kept consistent 
with the input length, and it needs to ensure that future data 
information during the computation does not leak into the 
past in advance.

To realize the first point, TCN uses a one-dimensional 
fully convolutional network architecture in which each hid-
den layer has the same length as the input layer, and zero-
padding length is added to keep the length of subsequent 
layers the same as before. To realize the second point, TCN 
uses causal convolution, where the output at time t is only 
convolved with elements in the previous layer at time t or 
earlier. It differs from traditional convolutional neural net-
works in that it uses internally dilated convolutions.

TCN obtains different sizes of the receptive field size 
by changing the dilation factor d. Generally speaking, the 
larger the dilation factor, the larger the perceptual field can 
be obtained. Chen et al. [23] proposes a probabilistic pre-
diction framework based on a temporal convolutional net-
work that captures the dependencies of time series based on 
stacked residual blocks of dilated causal convolutions. Based 
on temporal convolutional network, Shen et al. [24] designed 
a general model for sequence modeling based on a temporal 
convolutional network, which is able to fully learn the fea-
tures of sequential data with different interval lengths, and 
the structure of this model gives us great inspiration. Huang 
and Hain [25] builds on TCN by adding self-attentive atten-
tion blocks to highlight target-related features and mitigate 
the interference of irrelevant information. Since Correla-
tion Filter based algorithms usually failed to track objects 
in complex environments, Liu et al. [26] propose a fuzzy 
detection strategy to prejudge the tracking result for tem-
poral information modeling. Most recently, Liu et al. [27] 
propose a template update mechanism in temporal domain 
to improve the accuracy of visual tracking, in order to solve 
the problem of tracking failure in clutter background.

2.3  Attention Model

The attention mechanism can effectively help our model to 
focus on important information in the data. This mechanism 
is similar to the human visual system, which focuses selec-
tively on the present information. Attention mechanism has 

been widely used in sequence tasks such as flood prediction 
[28] and speech recognition [29].

Attention mechanism can be strictly divided into Soft 
attention [30] and Hard attention [31]. Soft attention will 
pay attention to all the data, weighting each key after weight 
calculation. Hard attention will filter out some of the unqual-
ified attention and focus directly on certain keys. Fan et al. 
[32] combines high-performance multi-level forecasting 
with an interpretable understanding of temporal dynamics 
to improve prediction accuracy by learning underlying pat-
terns in historical data. Zang et al. [33] adds a temporal 
attention mechanism to the video streaming task, which 
effectively improves the recognition performance of video 
images through a time-weighted attention model. Shih et al. 
[34] focused on the design of TPA-LSTM (Temporal Pattern 
Attention-LSTM) that can weigh the selection of relevant 
variables at different times. In addition, Vaswani et al. [35] 
abandoned the traditional CNN and RNN models, and the 
entire network structure consists entirely of attention mecha-
nism. Li et al. [36] improved the Transformer for time series 
prediction by reducing the memory complexity and by con-
volutional design so that the model can capture the local 
context.

3  The Proposed Method

In this section, we introduce the overall architecture of DA-
Net, the structure design of CSA-TCN and TFA module in 
detail.

3.1  Overview

We first introduce the overall calculation flow of DA-Net in a 
general way. Fig. 1 shows the internal details of the DA-Net. 
The input data I of our model is specific to four hydrological 
factor sequences, which are the current evaporation, former 
rainfall, former rainfall factor and former flood flow. The 
objective of our model is to make short and medium term 
flood flow forecasts from 1 to 6 hours.

Our CSA-TCN structure is mainly composed of temporal 
convolutional network and convolution self-attention. The 
core part of temporal convolutional network is dilated causal 
convolution. The receptive field of the dilated convolution 
depends on the network depth , the filter size k and the dila-
tion factor d. For the factor sequences under different time 
intervals after TCN calculation, we use the convolutional 
self-attention to enhance their local contextual information, 
which can fully strengthen the association information on 
each time interval. The main calculation process of convolu-
tion is as follows:
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where I is the input sequence, TC is the function of tempo-
ral convolutional network, and fc is the function of CNN 
self-attention.

In addition, we use the design of residual blocks and skip 
connection to fuse the features of different sequences after 
convolutional self-attention calculation, so that local infor-
mation at different levels of time intervals can be obtained 
in the global sense.

Our TFA module focuses on the temporal and feature 
dimensions based on the hidden state matrix of LSTM net-
work. By focusing on the different weights of multivariate 
features at each point in time and the influence weights of 
different time series at past points in time, the module not 
only assigns time-varying weights to different features, but 
also reduces the interference of irrelevant noise informa-
tion. At the same time, our TFA module also retains the 
temporal information of the original hidden state matrix in 
the LSTM for time-weighted attention calculation. The two 
complement each other effectively to improve the prediction 
accuracy. The calculation process is as follows:

where Vt1
 is the context vector that the module is concerned 

about in the feature dimension,Vt2
 is the context vector that 

the module is concerned about in the temporal dimension, ht 
is the hidden state of LSTM, and lc is the linear layer calcula-
tion after vector splicing.

Our model uses the Back Propagation Through Time 
(BPTT) algorithm to minimize the loss function and uses 
MSE as our loss function.The loss function is defined as:

(1)yc = fc(TC(I))

(2)yd = lc
(
Vt1

,Vt2
, ht

)

where ȳi is the true flood flow, and yi is the predicted value 
of our model.

3.2  Design of CSA‑TCN Structure

We add the convolutional self-attention mechanism on the 
basis of temporal convolutional network. Temporal convo-
lution network is composed of multi-level one-dimensional 
dilated convolution. Since different dilated factors in each 
layer can capture data features at different scales, flood fea-
ture information at different time intervals can be learned. 
Fig. 2 shows the structure of the CSA-TCN structure.

For input data X, the calculation formula F of dilated 
convolution is as follows:

d is the size of the dilated factor and f is a filter of size k. 
ReLU is used as the activation function, and the residual is 
used to avoid gradient. The multi-head self-attention mech-
anism calculates the weight of three vectors K, Q and V 
respectively after the input changes through the linear layer.

(3)lossmin =
1

n

n∑
i=1

(
yi − ȳi

)2

(4)F(X) =

k∑
i=1

f (i) ⋅ Xt−di

(5)head i = softmax

⎛
⎜⎜⎜⎝

QiK
⊤

i�
d̃k

⋅ mask

⎞
⎟⎟⎟⎠
Vi

Figure 1  Structure design of the proposed DA-Net (Dual-attention Network).
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where Qi , Ki and Vi are obtained by linear transformation of 
the input vector.

In order to establish the temporal relationship between 
the flood factors in a local sense, we no longer use the 
linear transformation method for the feature sequences 
after obtaining the results of the dilated causal convolu-
tion calculation. Conv1D can make Q and K in attention 
computation have local context information compared to 
the linear layer.

The results of the dilated convolution at each layer in 
TCN will be output after the convolution from the attention 
weighting calculation, and the output results will be passed 
into the dilated convolution at the next layer as input. In this 
way, convolution self-attention calculation can be carried 
out for feature sequences at different scales. We believe that 
this method can effectively capture local context information 
while enlarging the receptive field.

Our model calculates the similarity of different feature 
sequences through Softmax scoring. In addition, the cal-
culation process of self-attention mechanism will do atten-
tion calculation for the whole sequence. But in the process 
of prediction, we do not want the future information to be 
leaked. So we refer to the Mask matrix method in Trans-
former to ensure that the information after time t cannot be 
seen.

Due to its successive multiplications in modeling, gradient 
of RNN is dominated by dependence learning within a short 
distance, thus being difficult to learn the dependence within 
a long distance and leading to gradient disappearance. Gradi-
ent disappearance of RNN would result in non-updating of 
parameters in training process, where the trained RNN model 
could obtain low performance in prediction tasks.

In order to solve the problem of gradient disappear-
ance encountered by RNN, LSTM improves the memory 
attention of long-distance information. But on the other 
hand, the retained long-distance information itself is not 
all valuable. LSTM has multiple gradient propagation 
paths through gating design, the structure of LSTM deter-
mines that the same weight is shared in each time step. Our 
temporal-related feature attention (TFA) module focuses 
on the key time step information and ignores the useless 
part from two directions of temporal and feature, so as to 
solve gradient disappearance by adding additional weights 
in training process. After times of trials, we observe that 
the involve of TFA leads to stable and improved perfor-
mance of the proposed prediction model. Fig. 3 shows the 
structure of the TFA in detail.

The classical LSTM network is designed to solve the 
gradient vanishing and gradient explosion problems when 
RNN is applied in the long sequence training process. By 
adding additional attention mechanism, the weight of 
important information can be increased more effectively. 
The traditional temporal attention mechanism is based on 
the position of different time steps to carry out effective 
information weighting calculation. As shown in Fig. 3, 
the time is the core of the model attention mechanism. A 
hidden state matrix H is obtained by LSTM calculation, 
H ∈ ℝ

m∗t . Convolution operation is performed on the row 
vectors of the hidden state matrix from time 1 to time t − 1 . 
The specific operation is as follows:

The HP matrix can be calculated by convolution to 
obtain the HC matrix. hC

i,j
 means to convolve the ith dimen-

sion of the hidden state matrix HP with the jth convolution 
check. HC ∈ ℝ

m∗k , which m said after convolution the vec-
tor dimension on each time step, and k represents the dif-
ferent convolutional kernels in the convolutional 
network.

Our feature attention mechanism focuses on the changes 
of different features in different time steps at the time of 
ht , so we can get the attention size of the ith hidden feature 
vector in the HC matrix:

Among them, W ∈ ℝ
k∗m for the parameters of the cor-

responding weighting matrix, attention size ai as in the 
sigmoid activation function under the action of the cor-
responding weights, the context vector Vt1

 is obtained by 
weighting the attention score.

(6)HP =
{
h1, h2,… , ht−1

}

(7)HC =

{
hC
1,1
, hC

i,j
,⋯ , hC

m.k

}

(8)ai = sigmoid
((

HC
i

)T
Wht

)

Figure 2  Illustration of the proposed CSA-TCN structure.
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By dynamically calculating the weight of different flood 
factors in the corresponding time step, our model can well 
discover the internal relationship between different flood 
factors in each time step, and at the same time reduce the 
interference of non-critical factors to the prediction to the 
greatest extent.

In addition, we calculate the temporal attention of 
the hidden state matrix H to get the time weight. Firstly, 
we transform H through a linear layer to get the matrix 
H′ . After the matrix H′ is obtained, the weight of tem-
poral attention is calculated. The specific process is as 
follows:

where wa is the corresponding temporal attention weight 
obtained by calculating the hidden state matrix H′ through 
activation function Relu and Softmax function.

Then, the context vector Vt2
 can be obtained through the 

product operation of wa and the hidden state matrix H, where 
Vt2

∈ Rn×1 . The specific process is as follows:

(9)Vt1
=

m∑
i=1

aiH
C
i

(10)wa = Softmax
(
ReLU

(
H�

))

(11)Vt2
=

t∑
i=1

hiwi

After splicing Vt2
 and the context vector Vt1

 and ht obtained 
previously, the final vector ht was obtained through a full 
connection layer. The specific process is as follows:

The vector h′
t
 is obtained from the context vector of tem-

poral and feature dimension respectively and from the hid-
den state ht , which pays attention to the key factors while 
retaining the original time sequence information, and the 
two complement each other to effectively improve the pre-
diction accuracy.

4  Experiments

4.1  Dataset and Measurement

We show the map of Tunxi and Changhua basin in Fig. 4. 
The hydrological station of Changhua Basin in Zhejiang 
Province has 31 hydrological flood field data measured 
from 1998 to 2010. Changhua Basin is located in the upper 
reaches of Fenshui River, with a total length of 96 kilom-
eters and a basin area of 1376 square kilometers. The basin 
is a mountain stream river, the flood has the characteristics 
of sharp rise and fall, and the flood peak is high and large. 
A total of 8,553 data were collected from Changhua River 
Basin. We randomly selected 1,000 samples as the test set 

(12)h�
t
= Linear

(
concat

(
Vt1

, ht,Vt2

))

Figure 3  Illustration of the proposed TFA Module.
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and the rest as the training set. Our goal is to predict the 
flood flow one to six hours after the current moment.

Tunxi Hydrological Station has 30 hydrological flood 
field data from 1981 to 2003. The Tunxi Valley is in Zhe-
jiang Province. The catchment area of the basin is 2696.76 
square kilometers, located in the subtropical monsoon cli-
mate zone. The average annual precipitation in this basin is 
as high as 1600mm. The annual distribution of precipitation 

is very uneven. It is rainy from April to June every year, 
accounting for half of the annual precipitation, and it is 
prone to flood disaster. Zhejiang Province is located in the 
eastern region, where there is plenty of rain and the rainfall 
lasts for a long time, and the flood process lasts for a long 
time, usually about a week. Due to the long duration of the 
flood process, the randomness of the rainfall regime changes 
during the period is great, so the regularity of the flood pat-
tern is difficult to grasp. There are 3765 pieces of Tunxi 
Basin data, and 500 samples are randomly selected as the 
test set and the rest as the training set. Our goal is to predict 
the flood flow one to six hours after the current moment.

We conducted the model experiment and evaluation in 
Changhua and Tunxi watershed, and we chose RMSE and 
MAE as our evaluation indexes.

where j is the index for test samples, n is the number of test 
samples, yi is the predicted result, and qi is the groundtruth.

4.2  Implementation Details

    All experiments are carried out on a Linux server equipped 
with 2.10 GHz 8-core Xeon CPU, 60GB RAM and Nvidia 
GeForce GTX 1080 Ti. A total of 3 layers of dilated con-
volution units are set in our network, and the dilated factors 
are 1,2,4 respectively. The hidden layer unit in LSTM is 
set as 128. The input sequence length is 32, the batch size 
is 64, the learning rate is 0.001, and the epoches design is 
1000 iterations.

4.3  Ablation Experiments

In order to verify the effectiveness of our idea, we first con-
ducted ablation experiments on Changhua and Tunxi data 
sets, and the experimental results are shown in Tables 1 and 
2. It’s noted that RMSE should be as low as possible, since 
we aim to simulate flood with few errors. T+1 means our 
prediction is designed to predict run-off value after one hour.

(13)RMSE =

√√√√1

n

n∑
j=1

(
yj − qj

)2

(14)MAE =
1

n

n∑
j=1

|yj − qj|

Figure  4  Map of each measuring station in Tunxi and Changhua, 
including rainfall station and river flow mapping station.

Table 1  Comparison of 
RMSE by conducting ablation 
experiments on Changhua 
dataset.

Method T+1 T+2 T+3 T+4 T+5 T+6 Average

Basic 26.94 52.01 63.21 71.45 81.90 92.98 64.74
Basic with CSA-TCN 28.86 46.65 59.43 71.10 82.39 93.70 63.69
Basic with TFA 28.52 46.29 58.25 69.53 81.27 93.91 62.96
Our Method 27.64 46.91 55.27 64.76 75.62 89.80 60.18
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Table 2  Comparison of 
RMSE by conducting ablation 
experiments on Tunxi dataset.

Method T+1 T+2 T+3 T+4 T+5 T+6 Average

Basic 35.32 59.39 90.67 114.94 142.35 164.23 101.15
Basic with CSA-TCN 31.76 57.83 85.36 111.93 139.47 165.48 98.64
Basic with TFA 29.28 55.76 81.10 107.98 138.62 167.14 96.65
Our Method 36.14 54.80 80.88 106.27 135.90 162.57 96.09

Table 3  Comparison of rmse on 
changhua dataset with several 
comparative methods.

Method T+1 T+2 T+3 T+4 T+5 T+6 Average

FCN [37] 37.30 41.88 56.87 84.32 110.80 125.3 74.41
LSTM [38] 54.50 57.67 61.93 71.41 83.32 96.12 70.83
SeriesNet [39] 26.94 52.01 63.21 71.45 81.90 92.98 64.74
CA-LSTM [40] 28.53 47.01 57.59 66.44 77.65 89.97 61.20
ST-GCN [41] 60.23 65.15 70.07 71.45 72.91 73.93 68.96
Our Method 27.64 46.91 55.27 64.76 75.62 89.80 60.18

Table 4  Comparison of MAE 
on Changhua dataset with 
several comparative methods.

Method T+1 T+2 T+3 T+4 T+5 T+6 Average

FCN [37] 14.88 22.21 28.59 34.01 38.86 42.92 30.25
LSTM [38] 26.08 27.14 29.71 33.68 37.30 40.77 32.45
SeriesNet [39] 12.26 19.20 25.10 30.60 35.55 39.74 27.08
CA-LSTM [40] 9.84 18.75 25.58 31.41 36.46 41.69 27.29
ST-GCN [41] 19.04 23.59 29.98 30.18 30.15 30.24 27.20
Our Method 10.61 18.42 23.80 29.88 32.42 38.17 25.72

Table 5  Comparison of RMSE 
on Tunxi dataset with several 
comparative methods.

Method T+1 T+2 T+3 T+4 T+5 T+6 Average

FCN [37] 48.78 68.93 93.25 120.85 148.91 177.47 109.70
LSTM [38] 40.22 67.47 90.69 117.56 146.28 170.91 105.52
SeriesNet [39] 35.32 59.39 90.67 114.94 142.35 164.23 101.15
CA-LSTM [40] 31.28 58.81 85.04 110.32 139.02 165.28 98.29
ST-GCN [41] 51.28 70.78 95.44 104.74 113.86 125.45 93.59
Our Method 36.14 54.80 80.88 106.27 135.90 162.57 96.09

Table 6  Comparison of MAE 
on Tunxi dataset with several 
comparative methods.

Method T+1 T+2 T+3 T+4 T+5 T+6 Average

FCN [37] 31.48 43.06 55.32 71.21 85.56 101.46 64.68
LSTM [38] 23.08 36.25 47.70 63.30 78.76 91.95 56.84
SeriesNet [39] 19.17 30.37 52.37 65.31 80.60 90.36 56.36
CA-LSTM [40] 15.62 30.21 44.62 58.93 73.61 87.73 51.79
ST-GCN [41] 47.08 48.85 21.44 50.60 70.49 76.96 52.57
Our Method 24.26 28.37 40.28 54.66 70.76 86.48 50.80
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On the basis of basis, i.e., SeriesNet model, we added 
the designed CSA-TCN structure and TFA module in turn 
to experiment. The results of experiment show that our 
modules have improved to a certain extent in the prediction 
from T+2 to T+6. In the experiment of Tunxi basin, our 
module has the best performance in the middle period of 

time. It’s not difficult to see from the experimental results 
that the proposed model has a good improvement effect on 
the prediction results, and is not weakened by the growth of 
the prediction time. After comparing average performance 
between Basic and basic with CSA-TCN or Basic with TFA, 
we can find both modules improve the prediction accuracy, 

Figure 5  Comparison on Tunxi Basin among the ground truth flow rates (first row) and predicted flow rates computed by our method (second 
row), FCN (third row), and CA-LSTM (fourth row). Note that the rectangles indicates several obvious comparison results.

359Journal of Signal Processing Systems (2023) 95:351–362



1 3

which proves the role of both modules. Our dual attention 
network consists of CSA-TCN and TFA, which is superior 
to both basic with CSA-TCN and Basic with TFA. The rea-
son is that our method properly embed both modules in our 
network, thus working closely to improve prediction.

4.4  Experiment Analysis

As shown in Tables 3 and 4, RMSE and MAE measurements 
are used to compare the proposed method with the implementa-
tions of CA-LSTM [40], SeriesNet [39], LSTM [38], FCN [37] 

Figure 6  Comparison on Changhua Basin among the ground truth flow rates (first row) and predicted flow rates computed by our method (sec-
ond row), FCN (third row), and CA-LSTM (fourth row).
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and ST-GCN [41], where CA-LTSM tries to build attention 
mechanism for flood prediction offering innovations to inspire 
later researchers, and ST-GCN encodes geometrical informa-
tion of watershed into modeling. Specially, our method is worse 
than SeriesNet in the first hour and slightly less effective than 
FCN in the second hour. Our method has a greater advantage 
in the last four hours of prediction. And the average RMSE 
value of our method is 60.18, which is the lowest prediction 
error among our comparison methods, expect for RMSE on 
Tunxi dataset. In the metric comparison of MAE, our method 
performs slightly lower than CA-LSTM at the first hour, but has 
better performance in the prediction from the second hour to 
the sixth hour. Moreover, we find ST-GCN generally performs 
stably with increasing of prediction hours, due to the encoding 
of geometrical information by graph neural network. In fact, the 
sufficient knowledge on watershed topography could greatly 
contributes to perdition with large hours, which could be our 
further improvement.

As shown in Tables 5 and 6, our method is worse than 
SeriesNet and CA-LSTM in the first hour and it has a greater 
advantage in the last five hours of prediction. The average 
RMSE value of our method is 96.09, which has the low-
est prediction error among our comparison methods. In the 
comparison of the MAE metric, our method slightly under-
performs in the first hour and it performs better in the sec-
ond hour to the sixth hour of prediction. It’s noted that the 
proposed method achieved 1.53s computing time for one 
sample prediction, and required 20.8 minutes on training 
dataset (including both tunxi and Changhua basins).

Figures 5 and 6 shows the actual prediction results of 
our comparison experiments on the two datasets, i.e., Tunxi 
and Changhua Basins. Observing the flooding process in 
the Changhua basin, we can find that there are two distinct 
flood peaks, with an average height between 600 and 700 
cubic meters. Although the prediction accuracy of various 
methods inevitably decreases with time. Compared to other 
methods, our model is more stable over time and performs 
better in predicting flood peaks.

It is not difficult to see the Tunxi watershed flood flow 
fluctuates larger. The flood had three distinct peaks, with an 
average height of between 2,000 and 3,000 cubic meters. It 
can be seen that the overall fitting of our model is relatively 
smooth, and certain accuracy is guaranteed when predicting 
the height of flood peak in the first three hours. There is a 
significant decrease in the prediction accuracy at the sixth 
hour, but our method still has the best overall results.

5  Conclusion

In this paper, a flood forecasting network DA-Net based on dual 
attention mechanism is proposed on the basis of SeriesNet. Our 
model not only embeds a convolutional self-attention module 

on Temporal Convolutional Network(TCN) for enhancing local 
contextual information, but also constructs a time-dependent 
feature (TFA) module to assign time-varying weights to dif-
ferent features. These two components improve the short-term 
flood prediction accuracy on small and medium-sized rivers 
by complementing each other with global perspective and 
local context information. It’s noted we generally name rivers 
with watershed areas smaller than 3000 square kilometers as 
small-sized rivers. Through the comparative experiments on 
Changhua and Tunxi river basins, it is proved that our model is 
superior to several existing methods, and our model has higher 
prediction accuracy. In the future research work, facing some 
basins with small data, we will try to add the idea of small 
sample learning to improve and optimize the model of flood 
prediction method.
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