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Abstract
Super-resolution is generally defined as a process to obtain high-resolution images form inputs of low-resolution observa-
tions, which has attracted quantity of attention from researchers of image-processing community. In this paper, we aim to 
analyze, compare, and contrast technical problems, methods, and the performance of super-resolution research, especially 
real-time super-resolution methods based on deep learning structures. Specifically, we first summarize fundamental problems, 
perform algorithm categorization, and analyze possible application scenarios that should be considered. Since increasing 
attention has been drawn in utilizing convolutional neural networks (CNN) or generative adversarial networks (GAN) to 
predict high-frequency details lost in low- resolution images, we provide a general overview on background technologies 
and pay special attention to super-resolution methods built on deep learning architectures for real-time super-resolution, 
which not only produce desirable reconstruction results, but also enlarge possible application scenarios of super resolution 
to systems like cell phones, drones, and embedding systems. Afterwards, benchmark datasets with descriptions are enumer-
ated, and performance of most representative super-resolution approaches is provided to offer a fair and comparative view 
on performance of current approaches. Finally, we conclude the paper and suggest ways to improve usage of deep learning 
methods on real-time image super-resolution.

Keywords  Image super-resolution · Real-time processing · Deep learning · Convolutional neural network · Generative 
adversarial network

1  Introduction

In image processing area, image generally describes more 
visual details with higher resolution. To better understand 
semantic meanings of real-world images, it is an essential 
task for researchers to provide high-resolution (HR) images 
with sharp and clear object boundary or rich visual descrip-
tions. However, obtaining HR images by possible hard-
ware-based approaches is difficult and expensive [74]. For 
example, one of the possible methods, i.e., decreasing the 
pixel size would decrease the amount of light achieved by 
sensors, results in shot noise and sensitivity to diffraction 
effects. Another possible way, i.e., increasing sensor size, 
slows down the charge transfer rate and greatly increases 
the cost of image systems. Therefore, it is more favorable to 
apply algorithmic-based methods to pursue HR images from 
low-resolution (LR) resource images, rather than utilizing 
hardware-based solutions.

Algorithmic-based methods are usually named as super-
resolution (SR) methods, which intend to reconstruct a HR 
image from input of LR observations captured in the same 
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scene. It has been proved that resolution raising via SR 
methods can largely increase the amount of available infor-
mation and thus leads to an accurate and robust vision-based 
machine learning system [70, 75]. Therefore, SR methods 
have gained great success in multiple domains, such as aerial 
imaging [138, 139], medical image processing [47, 118], 
automated mosaicking [13, 54], compressed image/video 
enhancement [11, 62], action recognition [73, 89], pose 
estimation [43, 44], face [18, 132], iris [4, 71], fingerprint 
[61, 101] and gait recognition [3, 140], scene text image 
improvement and reading [121, 122], and so on.

For the past two decades, numerous methods have been 
proposed to perform SR task. One of the most classical tax-
onomy ways to category SR methods relies on the number of 
LR images involved: single image or multiple images based 
SR methods [74]. Essentially, there exist fundamental differ-
ences on thoughts to solve SR problems in terms of number 
of LR images. Specifically, single-image based SR methods 
tend to hallucinate missing image details with relationship 
learned from training datasets. Multiple-image based SR 
methods generally utilize global/local geometric or photo-
metric relation between multiple LR images to reconstruct 
HR images.

We must address that several surveys [39, 77, 107, 135] 
have been conducted on single-image, multi-based based SR 
or both, which is the basis to build up our paper. For exam-
ple, Nasrollahi and Moeslund [74] provide a comprehensive 
overview of most of published and related papers up to 2012, 
which has offered plenty of reading resources to learn fun-
damentals and developing history for beginners in this field. 
Yue et al. [135] reviews SR methods and applications based 
on machine learning techniques up to 2016. Most recently, 
Hayat [41] focuses on the deep learning-based progress of 
three aspects in multimedia, i.e., image, video and multi-
dimensions. Nguyen et al. [75] comprehensively survey the 
super-resolution approaches proposed for a special applica-
tion domain, i.e., biometrics including fingerprint, iris, gait, 
face, etc. Built on but differing from these survey papers, 
our paper focuses on the review of deep learning-based SR 
methods with real-time response, which could enlarge pos-
sible application scenarios of SR methods to embedding sys-
tems, cell phone, drones and so on by effective performance 
and low computation cost.

In this paper, we attempt to establish a baseline for 
future work by providing a comprehensive literature sur-
vey of deep learning methods in real-time SR research. 
Incremental advances or thoughts to the state of the art 
thus could be made or inspired on our provided baseline. 
Specifically, we first summarize the fundamental problems, 
categorize existing methods and review the applications to 
the benefit of beginners. We then briefly introduce signifi-
cant progress in deep learning methods. By involving deep 
learning structures to solve problem of SR, quantity of deep 

learning-based SR methods are proposed. We highlight deep 
learning methods for real-time SR by analyzing, compar-
ing, and concluding their core ideas. Afterwards, perfor-
mance of the most representative deep learning approaches 
on benchmark datasets is compared and analyzed. Finally, 
we conclude to bring out open questions and future trends 
on improving deep learning methods for real-time SR 
performance.

The rest of the paper is organized as follows: Sect. 2 pre-
sents background concepts on super-resolution and deep 
learning methods for the benefit of beginners. Section 3 
highlights and analyzes deep learning-based methods for 
real-time SR. Benchmark datasets, evaluation methods 
and performance comparisons of quantity of methods are 
presented in Sect. 4. Finally, the paper is summarized with 
discussions about remaining problems and future trends in 
Sect. 5.

2 � Super‑resolution formation

To offer an overall view on deep-learning based SR meth-
ods, it is useful to provide background information about 
the underlying problems. In this section, we first introduce 
mathematic definition of SR problem by reviewing the rel-
evant imaging model. Then, we categorize the existing meth-
ods, which helps readers not only know history of SR, but 
also comprehend deep learning-based SR methods by com-
paring them with other types of SR methods. Afterwards, 
we review SR applications in different domains and focus on 
applications requesting real-time performance, which should 
be considered during the design of real-time SR methods. 
Finally, we explain fundamental thoughts of CNN and GAN 
structures for readers’ convenience, since this paper mainly 
focuses on real-time methods for SR with CNN and GAN 
structures.

2.1 � Definition of super‑resolution problem

Although SR methods give rise to many applications, the 
fundamental goal of SR is to collect missing detail infor-
mation by reconstructing super-resolved images from LR 
observations. In the literature, SR can be regarded as a heav-
ily ill-posed problem, since the informative information 
represented in LR images is often insufficient to complete 
the task of reconstruction. Therefore, SR methods need to 
complete three main tasks: up-sampling of LR images to 
increase image resolution, removing artifacts including blur 
and noise during SR process, and registration or fusion of 
multiple input LR images for a better representation of target 
HR image.

Based on these three tasks, we first describe the most 
common imaging model [51, 95] to generate LR images in 
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the simplest case, where this process can be modeled lin-
early as

where Li is an observed LR image, R is the original HR 
scene, q is a decimation factor or sub-sampling parameter 
which is assumed to be equal for both x and y directions, x 
and y are the coordinates of the HR image, and m and n of 
the LR images. The imaging model in Eq. 1 states that an 
LR observed image has been obtained by averaging the HR 
intensities over a neighborhood of q2 pixels.

This model becomes more realistic when the other param-
eters involved in the imaging process are taken into account, 
which is shown in Fig. 1, including stepwise representations 
for warping, down-sampling, noise adding, and blurring. It 
is noted that SR methods could be generally considered 
as an inverse processing workflow to generate HR images 
based on LR images. Supposing the real-world image R is 
captured by n different located cameras to form multi-view 
images, the generated LR Li is constructed by the following 
formulas:

where x, y and x′, y′ refer to coordinates of one pixel in real-
world image R and generated LR images Li, Lj , respectively, 
�i() is a warping function determined by locations and rota-
tions of multiple cameras, �i() is a own-sampling function, 
�i() is a blurring function, �i() is an additive noise, �i,j() is 
a coordinate transformation function including horizontal 

(1)Li(x
�, y�) =

1

q2

(q+1)m−1∑
x=qm
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y=qm

R(x, y),

(2)
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Lj(x
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�, y�))),

shift, vertical shift and rotation, and �i,j() is a pixel intensity 
transformation function. Specifically, if the LR image of Li 
is displaced from the HR scene of R by a translational vector 
as (a, b) and a rotational angle of � , the warping function in 
homogeneous coordinates could be represented as

In matrix form, Eq. 2 can be written as follows:

in which A stands for the above-mentioned degradation fac-
tors. This imaging model has been used in many SR works. 
It is noted that the first line in Eq. 2 refers to warping, down-
sampling, noise adding, and blurring on a single HR image 
and corresponds to inverse operations of task 1 and 2; mean-
while, the second line refers to multi-view transformation on 
two different LR image and corresponds to inverse operation 
of task 3. Moreover, we often define process of image reg-
istration [48, 80, 102] including functions �i,j() and �i,j() to 
handle multi-view images during SR. Essentially, the pro-
cess is to geometrically align multiple images of the same 
scene onto a common reference plain, where images can be 
captured at different times and from different views, or by 
multiple sensors.
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Fig. 1   Illumination of the most common used imaging model, where 
the forward pipeline represents the process of generating multiple 
LR images {L

i
,… ,L

n
} from a real-world image R by warping ( � ), 

down-sampling ( � ), blurring ( � ), and adding noise ( � ) , and the back-

ward pipeline refers to a basic method of reverse super-resolution to 
reconstruct the real-world or HR image from one input LR image or 
multiple LR images by de-blurring, up-sampling, aligning, and image 
registration ( � and �)
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2.2 � Categorization of super‑resolution methods

Following the description of imaging model and basic cat-
egorization in [74], we further categorize the existing SR 
methods into single image SR (SISR) or multiple images 
SR (MISR) as shown in Fig. 2. In the following discussions, 
we would follow Fig. 2 to state the categorization of current 
SR methods.

Being a highly ill-posed problem without sufficient infor-
mation about the original image sets, early SISR methods 
tend to utilize analytical interpolation to reconstruct HR 
images. Several famous interpolation-based SISR methods 
can be listed as linear, bicubic, cubic splines interpolation 
methods, Lanczos up-sampling [29], New Edge Directed 
Interpolation (NEDI) [63] and so on. These methods are 
very simple and effective ways in smooth parts with real-
time performance. However, simple rule in interpolation 
brings in overly smooth and blurring details, which harm the 
visual effect of image discontinuities like edges, boundaries, 
and corners. Hence more sophisticated insight to recover 
image details via reasonable SR ways is required.

Besides interpolation-based methods, researchers have 
proposed another two categories of SISR methods, i.e., 
reconstruction-based and learning-based methods. Recon-
struction-based methods suppose there exist certain priors 
or constraints in the form of distribution, energy function 
or score function between HR and the original LR images. 
Therefore, researchers try a variety of methods to perform 
SR tasks by establishing reconstruction priors like sharpen-
ing of edge details [21], regularization [5] or de-convolution 
[97].

Learning-based methods try to restore missing high-fre-
quency image details by establishing implicit relationship 
between LR patches and their corresponding HR patches 
via machine learning models. This category of methods has 
achieved more and more attention from researchers due to its 
promising and visually desirable reconstruction results. It is 
a general idea to enhance SR quality by learning relationship 
from large quantity of training data. However, applying over 

data might introduce spurious high frequencies, resulting in 
noise and blur details. Therefore, it is important to keep bal-
ance between size of training data and reconstruction visual 
effects.

With the development of machine learning technologies, 
researchers have tried quantity of learning models to solve 
SR problem. We further classify learning-based methods 
into five groups based on differences of their core ideas: 
neighbor embedding methods [7, 15], sparse coding meth-
ods [14, 28], self-exemplar methods [34, 46], locally linear 
regression methods [38, 129], and deep learning methods 
[26, 52, 67, 104]. In this paper, we focus on utilizing deep 
learning-based methods to solve SR problem, due to their 
significant HR reconstruction results. Deep learning-based 
methods will be comprehensively discussed in Sect. 3. In 
the following discussions, we will briefly introduce other 
four groups of learning-based methods for comparisons with 
deep learning methods.

Neighbor embedding (NE) methods consider that similar 
local geometries property is shared between LR patches and 
their corresponding HR patches. Due to the similar local 
geometry property of LR and HR feature space, patches 
in the HR feature domain can be computed with a form of 
a weighted average of local neighbors. After construction 
weight scheme, the whole SR computation process can share 
the same weights within LR feature domain. Based on this 
thought, Chang et al. [15] propose a SR method by apply-
ing a typical kind of manifold learning method, i.e., locally 
linear embedding (LLE) [87] on weight learning. Their pro-
posed method assumes each sample and its neighbors lie 
on or near a locally linear patch of the manifold, the idea of 
which has greatly influenced the subsequent coding-based 
methods in early times.

Sparse coding methods consider image patches as a 
sparse linear combination of elements, which could be 
selected from a pre-constructed and sparse enough dic-
tionary. By exploiting reasonable and sparse enough 
representation for each patch of low-resolution inputs, 
the process of generating high-resolution outputs can be 

Fig. 2   Categorization of the 
existing super-resolution meth-
ods. Among these methods, we 
pay special attention to deep 
learning methods
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represented as coefficients computing. For example, Yang 
et al. [130] train a joint dictionary to find a highly sparse 
and over-complete coefficient matrix, which directly and 
clearly describes relations between LR image patches and 
corresponding HR image patches.

However, these sparse coding approaches are generally 
slow in computing speed, since sparse encoding largely 
increases memory usage and more elements are thus 
required to be processed.

Natural images generally have self-similarity property, 
which inspires researchers to utilize internal similar prop-
erties among LR patches to help effective and qualified 
SR. Based on this core idea of self-exemplar methods, 
Glasner et al. [34] propose a scale space pyramid, which 
can be trained with internal class data, i.e., local pathes. 
Furthermore, self similarity information represented by 
the trained pyramid can help explicitly describe the map-
ping between LR and HR pairs. However, high computa-
tion cost, especially in building scale space, has prevented 
the further usage of self-exemplar methods.

The thought of locally linear regression methods 
sources from Timofte et al. [109], which focuses on solv-
ing computational speed shortcomings of sparse coding 
methods by replacing complex dictionary with many and 
light-scale ones. Following this trend, researchers try 
quantity of supervised machine learning techniques to 
replace heavy sparse coding dictionary, which not only 
directly learns mapping relationship embedded between 
LR image domain to HR image domain, but also helps 
keep low values in computation cost. The most popular 
supervised machine learning techniques to learn map-
ping relationship can be listed as anchored neighborhood 
regression [15, 109, 110], random forest [93, 94] , mani-
fold embedding [79] and so on.

For multiple-image SR, three main types of multi-frame 
methods can be listed: interpolation-based methods [8, 
78], frequency-domain methods [23, 49, 145] and regu-
larization-based methods [6, 106]. For a detailed descrip-
tion on category of MISR, we highly suggest the readers 
to read [19, 74]. Unlike interpolation-based methods for 
SISR, MISR consists of registration, interpolation, and 
deblurring, where extra image regression step reconstructs 
both local and global geometry based on multiple input 
LR images. Frequency-domain methods generally utilize 
DFT, DCT, DWT or other frequency transform methods 
to discover high-frequency details of HR images. Regu-
larization-based methods are specially designed to per-
form SR task with conditions like a small number of LR 
images or heavy blur operators. With either deterministic 
or stochastic regularization strategy, these methods try to 
form and incorporate prior knowledge of all the unknown 
HR images.

2.3 � Super‑resolution applications

Over the past two decades, there have been numerous SR-
related applications, which are the most basic concerns and 
requirements to improve SR methods. We thus offer some 
successful application examples of SR to analyze user needs 
for SR methods.

Medical diagnosis Doctors need various medical images 
to comprehend healthy messages sent by the inside human 
body structure. Unfortunately, resolution limitations of 
medical images do great harm to such precise diagnosis. By 
reconstructing high-resolution magnetic resonance images 
(MRI) [86], positron emission tomography (PET) [37] or 
other key medical images [25, 114], SR methods help main-
tain geometry structure captured by original 3-D imaging 
system. For instance, to collect similar images to establish a 
database [113], researchers apply example-based SR for sin-
gle frames to create clear enough samples. Specifically, the 
adopted training database was established with a set of five 
standard images, including computed tomography (CT) and 
MRI images from various parts of the human body. Since 
medical imaging systems are originally designed to acquire 
multi-view and multiple medical images, the main chal-
lenge of SR methods for medical diagnosis lies in the precise 
reconstruction with less errors and higher robustness.

Text image enhancement and reading Text detection and 
recognition has been applied in many real-life applications 
such as iTown, Rosetta and many other smart city devel-
opments [72, 131]. These applications encounter problems 
when performing natural scene semantics understanding or 
analysis, due to the low resolutions of images captured by 
cell phone or CCTV cameras, large variations in text rota-
tions or illumination embedded in complex backgrounds 
with buildings, trees, etc. It is needed to increase the image 
quality and processing speed of captured text images and by 
appropriate real-time SR methods, in order to fulfil requests 
of robust text reading and implementations on embedding 
systems, cell phone or CCTV cameras [81, 83].

Biometrics Biometrics is defined as a reliable method 
to automatically identify individual persons based on their 
behavioral and physiological characteristics, i.e., faces [115, 
151], fingerprints [134], and iris images [30]. Even though 
biometrics system has achieved great success [105], it still 
faces several challenges. Among these challenges, short dis-
tance of image acquisition has become the major one, since 
it prevents further wide usage of such systems. With proper 
SR methods, image details like shapes and structural texture 
can be clearly enhanced. Meanwhile, SR could help main-
tain the global structure of images. All these advantages can 
greatly improve the recognition ability in biometrics-related 
applications.

Remote sensing In the past decades, researchers have 
applied SR techniques to improve quality of remote sensing 
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images. After years of efforts, there exist successful and 
applicable examples in remote sensing area [138]. For 
example, Skybox Imaging Plan utilizes SR techniques to 
help provide real-time remote sensing images under a sub-
meter resolution, which shows that SR methods could help 
improve outputs of remote sensing applications. The main 
challenge for remote sensing image SR lies in two aspects: 
(1) how to deal with scene variations in case of temporal 
differences, and (2) how to modify the existing and success-
ful SR methods to handle large amounts of remote sensing 
images captured by satellites every day.

Based on former discussions, we can observe the vari-
ety of application scenarios of SR methods. Among these 
applications, medical diagnosis requires to process with less 
errors and higher robustness, while remote sensing requires 
to overcome temporal differences and handle massive 
amounts of input. Besides, both categories of applications 
have common property that users, i.e., doctors and scientists, 
could buy computation resource abundant devices to handle 
SR for edge computing or big data services [35, 127]. In 
other words, they can easily access better equipments for 
more satisfying SR results, meanwhile keeping low comput-
ing time. For biometrics and text image reading applications, 
they mainly run on embedding devices and have high request 
for real-time responses to improve user experience. There-
fore, it is a key problem for such applications to keep balance 
between SR quality and computation cost. In this paper, we 
would like to emphasize applications like biometrics and 
text image reading, thus reviewing SR methods for real-time 
computing and fulfilment of their emergency requests.

2.4 � Deep learning background

The most popular structures related to SR can be roughly 
categorized into the two groups: convolutional neural net-
work (CNN) and generative adversarial networks (GAN). 
These deep structures have high capability to represent infor-
mation abundant and distinctive features by self-learning 
strategies. For comparison, traditional learning structures 

require humans to observe and design manual features to 
perform classification tasks. In this subsection, we focus 
on explanation of fundamental thoughts of CNN and GAN 
structures.

Convolutional neural network Inspired by the promis-
ing classification results achieved by a typical CNN, i.e., 
AlexNet [55], quantity of trials on structures, learning strate-
gies and applications have been made, some of which can be 
listed as: VGG [100], Googlenet [103], ResNet [42], R-CNN 
[33] and so on. Several common types of layers are involved 
to construct CNN structure: convolutional layers, pooling 
layers, and fully connected layers.

Convolutional layers are designed to gather information 
of neighboring pixels. In fact, each pixel is closely associated 
with neighboring pixels and nearly irrelevant with pixels in 
long range, which is named as local receptive field. We show 
the comparison between local connection and full connec-
tion adopted by fully connected layer in Fig. 3. Essentially, 
a convolution kernel can only extract one specific feature in 
a local sense. Researchers thus design multiple convolution 
kernels to extract a variety of features from input images. 
With different feature maps produced by multiple convolu-
tion kernels, convolutional layers lead to better understand-
ing of image content.

Unlike convolutional layers, pooling layers are defined 
without parameters. Pooling layers utilize down-sampling 
operation to extract features from feature map, which reduce 
data size without modifications on data characteristics. The 
resulting abstract feature not only owns generalization abil-
ity from feature maps, but also has a certain degree of vari-
ety for translation, rotation, and scaling invariance. Pooling 
layers thus help improve robustness and generalization per-
formance of the whole network.

Fully connected layers locate at the end of CNN, where 
each neuron is connected to all neurons in the upper 
layer. With such processing, features locally extracted 
are globally involved to output the final result. Above 
all, CNN structure combines abilities provided by con-
volutional, pooling and fully connected layers, which 

Fig. 3   Comparison of recep-
tion field and parameter size 
between locally and fully con-
nected neurons
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help approximate any continuous function and ensure 
to perform difficult classification and recognition tasks 
successfully.

Generative adversarial network As one of the most sig-
nificant improvements on the research of deep generative 
models, GAN [36] provides a novel way to learn depth 
representation of features without large labeled training 
data. With this power for distribution modeling, GAN is 
extremely suitable to for unsupervised tasks [69, 148] 
including image generation [24], image editing [150], and 
representation learning [84].

The key idea of GAN stems from a two-player game 
preformed by a generator and a discriminator, where we 
show the basic structure of a typical GAN for generating 
hand-written digital images in Fig. 4. Specifically, the 
discriminator is responsible to judge whether an input 
image generated by the generator appears natural or 
could be found with artifacts; meanwhile the generator 
is to create images with the goal of making discriminator 
believe the created image is a natural image without any 
artifacts. After rounds of training, Nash Equilibrium will 
be achieved, where the trained generator would have the 
ability to understand inherent and intern representation of 
real images, thus generating real enough images.

GAN is still developing with great leading steps on 
structures, training algorithms and so on. With the devel-
opment of GAN structure, more related applications have 
been applied by researchers. However, training GAN for 
data augmentation is challenging, since the training pro-
cess can be easily trapped into the mode collapsing prob-
lem. Essentially, mode collapsing problem is defined as 
that where the generator only concentrates on producing 
samples lying on a few modes, instead of the whole data 
space [16, 92]. It is noted this problem exists in SR appli-
cations with GAN model as well, which will be further 
explained in Sect. 3.2.

3 � Deep learning methods for real‑time 
super‑resolution

Despite there exist quantity of review papers on deep learn-
ing methods for SR [39, 77, 107, 135], there is a lack of 
reviewing of methods for real-time SR to the benefit of 
researchers. In this section, we attempt to survey deep learn-
ing literature, including CNN, GAN and other deep learning 
methods, with the view of real-time super-resolution.

In the following discussion of each subsection, we first 
introduce several typical methods, which have achieved sig-
nificant HR reconstruction results but failed to obtain real-
time performance. Then, we highlight fast and real-time 
deep learning methods, where we would carefully explain 
their core ideas, innovations, algorithm steps and perfor-
mances. Finally, we conclude current state and discuss future 
developing trend. Furthermore, it is noted that we fuse SISR 
and MISR methods in this section, since many deep learn-
ing- based SR methods have ability to perform SISR and 
MISR.

3.1 � CNN‑based methods in real‑time image 
super‑resolution

3.1.1 � CNN‑based methods for SR

CNN-based SR methods are quite large in amount, due to 
their impressive HR image reconstruction results. The first 
work to solve SISR problem by CNN structure is proposed 
by Dong et al. [26], which constructs a three-layer CNN 
named as Super-Resolution Convolutional Neural Network 
(SRCNN) to learn mapping between LR patches and cor-
responding HR patches. Utilizing a bicubic interpolation 
for pre-processing, SRCNN optimizes and learns nonlinear 
mapping in manifold space based on information abun-
dant feature maps produced by convolutional layers. With 
the high distinguishing power of deep structure, SRCNN 

Fig. 4   Structure of a typical 
GAN model with a generator 
and a discriminator
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has achieved promising reconstruction results outperform-
ing majority of former methods, such as Self-Ex [46], A+ 
[110] and Kernel-based learning. Although SRCNN claims 
efficiency with a lightweight structure, its performance is 
still far from real-time response due to its time-consuming 
pre-processing step, i.e., bicubic interpolation.

Essentially, SRCNN is an important work to offer inspi-
rations on utilizing deep structure for SR purposes. After 
its publication, SRCNN appeared in many other works as 
a baseline method for comparisons or a basic structure to 
modify for new learners. More important, its structure with 
only convolutional layers has greatly affected later CNN-
based SR methods, which successfully avoid down-sampling 
effects brought by pulling or subsampling layers. However, 
the additional convolutional layers largely increase size of 
parameters, resulting in more possibility to be overfit with 
training dataset and be harder to achieve real-time responds. 
How to keep a balance between desirable reconstruction per-
formance and real-time computing speed thus becomes a 
major challenge in utilizing deep structures for SR.

With the remarkable success to construct very deep struc-
tures achieved by Res-Net, its core idea of residual learn-
ing is adopted by researchers to perform SR tasks. Residual 
learning not only offers capability to construct larger number 
of layers for better HR reconstruction results, but also reduce 
difficulty in training process with fast convergence and a 
small number of epoches. For example, Kim et al. [52] first 
try residual learning for SR with a novel Very Deep Convo-
lutional Networks (VDSR), which imitates VGG-net struc-
ture [100] to build 20 convolutional layers as a a very deep 
network. Following the trend of applying residual learning 
on SR, Tai et al. [104] propose Deeply Recursive Residual 
Network (DRRN), which first utilizes global residual learn-
ing to identify branch during inference and then proposes 
new concept of local residual learning to optimize local 
residual branch.

Recently, the main focus of CNN-based SR research is to 
utilize proper technologies for either improved HR recon-
struction results or fast computing speed. For example, Deep 
Back-Projection Networks (DBPN) [40] propose iterative 
up- and down- sampling layers to form an error feedback 
scheme, which help transmit projection errors among differ-
ent layers. With such scheme, they can represent the process 
of image degradation and super-resolution by simply con-
necting up- and down-sampling layers, thus improving HR 
reconstruction results with large scaling factors.

Related to the topic of real-time SR, Lim et  al. [65] 
develop an enhanced deep super-resolution network (EDSR) 
with performance exceeding current state-of-the-art SISR 
methods. Their proposed method performs optimization by 
removing unnecessary modules in conventional residual 
networks and expands model depth with a stable training 
procedure. Inspired by the development of attention models, 

Zhang et  al. [142] adopt an existing channel attention 
mechanism to construct very deep residual channel atten-
tion networks (RCAN). Their proposed residual in residual 
(RIR) structure is specially designed to bypass abundant 
low-frequency information for learning of high-frequency 
information. Hu et al. [45] propose a channel-wise and spa-
tial feature modulation (CSFM) network, which connects 
feature-modulation memory (FMM) modules with stack 
connections for transforming low-resolution features to 
high informative features. Considering that most of CNN-
based methods have not fully exploited all the features of 
the original low-resolution image, Shamsolmoali et al. [96] 
proposed an effective model based on dilated dense network 
operations to accelerate deep networks for image SR, which 
supports the exponential growth of the receptive field paral-
lel by increasing the filter size.

3.1.2 � CNN‑based methods for real‑time SR

CNN-based SR methods have demonstrated remarkable per-
formance in quality of reconstructed HR images, compared 
with the previous non deep learning based models. However, 
high computation cost and large computing time

prevent its further practical usage, especially in phones or 
wearable devices that demand small computing burden and 
real-time performance. There are thus many trials to acceler-
ate network for real-time performance, in order to enlarge 
possible application scenarios of CNN-based SR methods.

One of the most famous successful and inspiring tri-
als is advised and performed by Shi et al. [99], who find 
that utilizing a single filter, usually bicubic interpolation, 
before reconstruction to up-scale input LR images is sub-
optimal and time-consuming. They thus prefer to avoid such 
pre-interpolation operation by utilizing an end-to-end and 
unified CNN structure named as Efficient Sub-pixel CNN 
(ESPCN) for SR tasks, which tries to directly learn a up-
scaling filter, i.e., sub-pixel convolution layer, and integrates 
it into the structure of CNN network. We show the structure 
of ESPCN in Fig. 5, where we can notice feature maps to 
fill up image detail information is extracted in the LR space, 
rather than performing in HR space by most of the SR meth-
ods. Afterwards, extracted feature map in different layers is 
fed into sub-pixel convolution layer for further processing.

As far as we know, ESPCN is the first CNN-based SR 
methods with real-time performance, which is reported to 
perform real-time SR tasks on 1080p videos using a K2 
GPU device. Besides, authors report reconstruction results 
achieved by ESPCN is better than SRCNN by +0.15dB on 
Set14 dataset images.

Nearly the same time with ESPCN [99], Dong et al. [27] 
successfully accelerate SRCNN by constructing a compact 
hourglass-shape CNN structure, named as FSRCNN. As 
shown in Fig. 6, their structure modification on accelerating 
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SRCNN lies in three aspects: (1) they replace bicubic inter-
polation operation of SRCNN with a de-convolution layer 
located at the end of CNN network, thus avoiding bicubic 
pre-interpolation with visible reconstruction artifacts and 
unnecessary computational cost; (2) they train four convolu-
tion layers in a joint optimization manner to complete three 
tasks during feature extraction, i.e., shrinking, mapping, and 
expanding. Essentially, structure design of placing mapping 
layer after shrinking layer will greatly reduce feature dimen-
sions, leading to smaller computation cost; (3) they utilize 
smaller filter sizes and more mapping layers, in order to 
achieve desirable reconstruction results and less computing 
burden at the same time.

FSRCNN is reported to achieve real-time performance 
(> 24 fps) on test images in all benchmark datasets, which 
is almost a 40-time improvement than SRCNN in computing 
speed. Compared with ESPCN [99] which achieves real-
time performance on GPU, FSRCNN [27] could process LR 
images in real-time on a CPU-based platform, which largely 
expands its possible applicable scenarios.

Following the idea to replace time-consuming up-
sampling with partly design of neural network in ESPCN 
[99] and FSRCNN [27], Yamanaka et al. [128] integrate 
network in network (NIN) structure [66], i.e., Parallelized 
1 × 1 CNNs, into the whole network as a post processing 
step for efficient up-sampling operations. Specifically, they 
first involve deep CNN layers and skip connection layers 
to extract feature maps by gathering information from both 
local and global areas. Afterwards, they utilize NIN lay-
ers to perform up-sampling operation for reconstruction of 
HR images. Authors report 10 times lower computation cost 
achieved by their proposed work than typical deep resid-
ual network for SR tasks, thus ensuring real-time perfor-
mance. However, its simple structure design results in rela-
tively worse reconstruction results, comparing with results 
achieved by FSRCNN.

To achieve real-time performance, ESPCN [99], 
FSRCNN [27] and Yamanaka et al. [128] replace bicubic 
up-sampling operation with sub-pixel convolution layers, de-
convolution layers, and NIN layers, respectively. However, 

Fig. 5   Network structure of Shi et al. [99] for real-time SR, where they propose sub-pixel convolutional layers to perform up-sampling opera-
tions

Fig. 6   Network structure of FSRCNN [27], which successfully accelerates SRCNN by several modifications
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Lai et al. [56] argue that sub-pixel convolution, de-convo-
lution or NIN layer adopts small size networks, which can-
not guarantee to describe complicated mappings with their 
limited network representation capacity. They thus propose 
the Laplacian Pyramid Super-Resolution Network (LapSRN) 
to progressively reconstruct sub-band residuals for visually 
desirable HR images, where we show its structure in Fig. 7. 
During construction of each pyramid, feature extraction 
branch first predicts missing high-frequency residuals of 
HR images based on the input of coarse-resolution feature 
maps. Afterwards, image reconstruction branch adopts trans-
posed convolutions to perform up-sampling operation, thus 
generating finer and coarser feature maps as input for next 
level. Furthermore, they design recursive layers as parame-
ters sharing scheme across and within pyramid levels, which 
helps reduce the number of parameters in a large amount. 
With the careful design of pyramid structure, LapSRN 
claims to adaptively build model with different up-sampling 
scales, thus reducing computational complexity and achiev-
ing real-time computing speed on public testing datasets.

Besides pyramid structure, another solution to improve 
small network without enough representation ability is con-
structing neural networks with skip connections, which not 

only help go deeper of neural networks by preventing gradi-
ent loss, but also relieve computation burden with unneces-
sary computing steps. Tong et al. [112] thus introduce dense 
skip connections in a very deep neural network for SR tasks, 
where we show its structure in Fig. 8. In each dense block, 
we can notice input low-level features and generated high-
level features are combined in a reasonable way to boost 
reconstruction performance. To properly fuse low- and 
high-level features, dense block structure propagates feature 
maps generated by each layer into all subsequent layers and 
designs dense skip connection to allow for deeper structure. 
Since deep network generally leads to large computation 
cost, they further integrate de-convolution layers to reduce 
number of parameters for boosting speed of reconstruction 
process. By employing algorithm on a platform with a Titan 
X GPU, their proposed method could achieve an average 
running time of 36.8ms to reconstruct a single image from 
B100 dataset, thus guaranteeing real-time SR effects.

Unlike former CNN-based methods for real-time SR to 
utilize up-sampling operation and residual learning, Johnson 
et al. [50] tend to consider SR as an image transformation 
problem between input LR and output HR images. They thus 
model SR as a global optimization problem under a given 

Fig. 7   Network structure of Lai et al. [56], where a careful design with pyramid structure and two working branches is adopted to progressively 
reconstruct sub-band residuals of HR images
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objective function, which is formed as the sum of per-pixel 
loss between HR and ground-truth images and perceptual 
loss based on high-level features extracted from pre-trained 
neural networks. Such optimization problem could be solved 
by Gatys et al. [32] in real-time, thus achieving similar quali-
tative results but with three times faster running speed than 
SRCNN and other comparative methods. Essentially, their 
usage of perceptual loss functions to train feed-forward net-
works for SR problems and other image transformation tasks 
is novel and offers inspirations to many other similar works.

Inspired by A+ [110] and ARN [1] which build mapping 
between input LR space and output HR space by learning 
proper local linear functions, Li et al. [64] construct convo-
lutional anchored regression network (CARN) to learn repre-
sentative mapping function for fast and accurate SR. Differ-
ent from A+ and ARN, regression blocks inside CARN are 
built on the basis of automatically extracting feature map by 
convolutional filters, other than limited and hand-crafted fea-
tures used by A+ and ARN. Besides, CARN transforms all 
key concepts during SR operation, such as feature extracting, 
anchor detection, and regressor construction, into convolu-
tion operations with different parameters, so that users can 
jointly optimize all steps in an end-to-end manner. Such end-
to-end design relieves the burden of complicated step-wise 
optimization and thus decreases running time without lose 
of accuracy. CARN is reported to achieve 10 times lower 
computation cost than SRCNN, thus reaching real-time per-
formance on most platforms.

Due to the requirement of heavy computation, deep learn-
ing methods cannot be easily applied to realworld appli-
cations. To address this issue, Ahn et al. [2] propose an 
accurate and lightweight deep network for image super-res-
olution. Specifically, they design an architecture that imple-
ments cascading connections starting from each intermedi-
ary layer to the others upon a residual network, where we 
show its special structure design in Fig. 9. Such connections 
are made on both the local and global levels, which allows 
for the efficient flow of information and gradient.

To explore feature correlations of intermediate layers 
rather than focus on wider or deeper architecture design, 

Dai et al. [22] explore to enhance the representational power 
of CNNs for more powerful feature expression and feature 
correlation learning. Specifically, they propose a second-
order attention network (SAN) to adaptively rescale the 
channel-wise features by using second-order feature statis-
tics for more discriminative representations. Furthermore, 
they present a non-locally enhanced residual group (NLRG) 
structure, which not only incorporates non-local operations 
to capture long-distance spatial contextual information, but 
also contains repeated local-source residual attention groups 
(LSRAG) to learn increasingly abstract feature representa-
tions. All these improvements in structure have been shown 
in Fig. 10.

To solve the problem of lack of realistic training data 
and information loss of the model input, Xu et al. [124] 
propose a new pipeline to generate realistic training data by 
simulating the imaging process of digital cameras. To fur-
ther remedy the information loss of the input, they develop 
a dual convolutional neural network to exploit the origi-
nally captured radiance information in raw images. They 
gain favorable reconstruction results both quantitatively 
and qualitatively, and their proposed method is declared to 
enable super-resolution for real captured images.

After precise description on quantity of works about 
CNN-based methods for real-time SR, we can conclude 
their general structure. Specifically, in order to widen the 
receptive field, increasing network depth is one way adopted 
by quantity of methods, which is to construct network by a 
convolutional layer with filter size larger than a 1 × 1 or a 
pooling layer that reduces the dimension of intermediate 
representation. However, such designing may have a major 
drawback: a convolutional layer introduces more param-
eters and a pooling layer typically discards some pixel-wise 
information.

For the first issue of too many convolutional layers, 
we can see that each convolutional layer represents a new 
weight layer so that deep structure with quantity of convo-
lutional layers bring disadvantages of too many parameters. 
This problem might lead to over-fitting concern, difficulty 
to achieve real-time performance, and huge size of trained 

Fig. 8   Network structure of Tong et al. [112], which represents that all levels of features are combined via skip connections as input to recon-
struct HR images
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model to store. Therefore, light structure of CNN without 
additional and time-consuming designs is required and pur-
sued by researchers, which is the main trend of CNN-based 
methods for real-time SR.

Regarding image restoration problems such as super-
resolution and denoising, image details are very important. 
Therefore, most deep-learning approaches for such problems 
do not use pooling or sub-sampling layers, so that important 
image details can be saved during process of SR tasks. For 
example, DRCN [53] repeatedly applies the same convo-
lutional layer as many times as desired and does not apply 
pooling layers in their network architecture. The number of 
parameters does not increase while more recursions are per-
formed, which offers a promising idea on network structure.

3.2 � GAN and other deep learning‑based 
super‑resolution methods

Due to the unsupervised training property of GAN [90], 
GAN-base SR methods could use a large dataset of unla-
beled images and work without any prior knowledge between 
inputting LR and HR image, which is essentially the main 
feature of GAN-based SR methods. Since GAN is originally 
designed to generate images, GAN-based SR methods could 
achieve super performance in generating photo-realistic SR 
images. However, we find no real-time methods are proposed 
for SR at current time. In fact, the most common use of GAN 
is to regard its generator part as a CNN network to perform 
low-to-high SR task. Without special design like statements 

Fig. 9   Network structure of Ahn et  al. [2], where a, b represent plain ResNet and CARN structure, respectively. In the CARN model, each 
residual block is changed to a cascading block

Fig. 10   Framework of second-order attention network (SAN) [22] and its sub-modules
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in last subsection, it is hard for such GAN-based methods to 
achieve real-time performance. In our thought, researchers 
on GAN are still focusing on solving several most important 
problems of GAN structure, like mode collapsing and hard 
to train.

At last but not least, we introduce other deep learning 
methods for SR, including deep auto-encoder and deep rein-
forcement learning.

Ledig et al. [60] find that most commonly used measure-
ments to evaluate SR performance, such as MSE and PSNR, 
are designed with pixel-wise property. Since human percep-
tion often relies on evaluation in a global sense, some SR 
methods with high PSNR and MSE values would result in 
poor visual effects during SR process. Inspired by the sig-
nificant property of GAN, they thus proposed super-resolu-
tion generative adversarial network (SRGAN) with a novel 
measurement, named as perceptual similarity. We show the 
structure of SRGAN in Fig. 11. Specifically, perceptual 
similarity is measured by a perceptual loss function, which 
serves as a sum form of an adversarial loss and a content 
loss. It is noted that adversarial loss ensures SRGAN could 
generate high-quality and photo-realistic SR images with 
help of a discriminator network, which is trained to classify 
the generated SR images are whether super-resolved images 
or original natural scene images.

We show sampling images of SRGAN and other com-
parison samples in Fig. 12. From Fig. 12, we could notice 
that SRGAN, designed with perceptual loss function, could 
recover photo-realistic textures from low-resolution images 

sampled from public benchmarks. Meanwhile, SR methods 
designed with MSE-based measurement generate poorly 
visual HR images, even achieving high PSNR values at 
the same time. Therefore, we could conclude that SRGAN 
focuses on global contextual information to generate HR 
images, thus achieving lower pix-wise PSNR values than 
comparative methods as shown in Fig. 12. However, human 
perception is visual effect in a global sense; we thus observe 
photo-realistic textures from samples generated by SRGAN.

With the first and successful trial in SRGAN, Johnson 
et al. [50] further modify SRGAN on design of loss function, 
which could be improved as a sum form of pixel-wise loss, 
perceptual loss, and texture matching loss. In the context 
of combining GAN and CNN, Sajjadi et al. [91] propose 
EnhanceNe for automated texture synthesis, which utilizes 
feed-forward fully convolutional neural networks in an 
adversarial training setting. Their proposed network suc-
cessfully create realistic textures, rather than optimizing for 
a pixel-accurate reproduction of ground truth images during 
training.

By leveraging the extension of the basic GAN frame-
work [149], Yuan et al. [133] propose an unsupervised SR 
algorithm with a Cycle-in-Cycle network structure, which 
is inspired by the recent successful image-to-image trans-
lation applications. They further expand the algorithm to 
a modified version, i.e., MCinCGAN [143], which utilizes 
a multiple Cycle-in-Cycle network structure to deal with 
the more general case of SR tasks, using multiple genera-
tive adversarial networks (GAN) as the basis components. 

Fig. 11   Architecture of super-resolution generative adversarial network [60]
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More precisely, their proposed first network cycle aims at 
mapping the noisy and blurry LR input to a noise-free LR 
space. On the basis of first network cycle, a new cycle with 
a well-trained ×2 network model is orderly introduced to 
super-resolve the intermediate output of the former cycle. 

In this way, the number of total cycles depends on the dif-
ferent up-sampling factors ( ×2 , ×4 , ×8 ), which is presented 
in Fig. 13. Finally, users could get the desired HR images 
with different scale factors by training all modules in an 
end-to-end manner .

Fig. 12   Comparisons on SR quality, PSNR, and SSIM of different SR 
methods. It is noted that four images refer to HR images generated 
by bicubic interpolation, deep residual network optimized by MSE 

measurement, deep residual generative adversarial network designed 
with human perception loss [60], and original HR image, respectively

Fig. 13   The framework of the proposed MCinCGAN [143], where G1, G2, G3, G4, and G5 are generators and D1, D2, D3, and D4 are discrimi-
nators. It is noted that a–c show the frameworks for ×2 , ×4 and ×8 , respectively
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Bulat et al. [10] propose a two-stage process involving 
the idea of using a GAN to learn how to perform image 
degradation at first and then learn image super-resolution 
with trained GAN, where we show its network structure 
in Fig. 14. Specifically, they train a High-to-Low GAN 
to learn degradation and down-sampling operations on 
HR images during the first stage. Once training process of 
High-to-Low GAN is finished, they utilize pairs of low- 
and high-resolution images computed by High-to-Low 
GAN as training samples for a new Low-to-High GAN. 
After training based on enough and variant training pairs 
generated by High-to-Low GAN, the resulting Low-to-
High GAN could output desirable HR images The most 
interesting point for Bulat et al. [10] lies in the fact that 
their proposed method only requires unpaired image data 
for training so that annoying work of pairing low and 
high-resolution images can be avoided. By applying this 
two-stage process, the proposed unsupervised model effec-
tively increases the quality of super-resolving real-world 
LR images and obtains large improvement over previous 
state-of-the-art works. Although Bulat et al. [10] can simu-
late more complex degradation, there is no guarantee that 
such simulated degradation can approximate the authentic 
degradation in practical scenarios which is usually very 
complicated. Therefore, Zhao et al. [146] improves it by 
exploring the relationship between reconstruction and 
degradation with bi-cycle structure, which jointly stabi-
lizes the training of SR reconstruction and degradation 
networks. Most importantly, their degradation model is 

trained in an unsupervised way, i.e., without using paired 
images. since there are no pairs of LR-HR images in 
practice,

Bulat and Tzimiropoulos [9] propose Super-FAN to com-
plete two tasks simultaneously, i.e., improves resolution of 
face images and detects facial landmarks inside improved 
face images. Essentially, super-FAN constructs two sub-
networks to first optimize loss function for constructing 
of a convinced heat map and then perform face alignment 
through heat map regression. By jointly training both sub-
networks, they report desirable HR and detection results 
based on not only input LR images, but also real-world 
images affected by variant factors.

To further enhance the visual quality, Wang et al. [116] 
propose enhanced Super-Resolution Generative Adversarial 
Network (ESRGAN) to generate realistic textures, which 
introduces the Residual-in-Residual Dense Block (RRDB) 
without batch normalization as the basic network build-
ing unit. Furthermore, they successfully modify network 
structure with relativistic GAN and improve the perceptual 
loss with features before activation. Benefiting from these 
improvements, ESRGAN achieves consistently better visual 
quality with more realistic and natural textures and wins the 
first place in the PIRM2018-SR Challenge.

Deep Reinforcement Learning (DRL) has also been intro-
duced recently. Following the thought of reinforce learning, 
DRL generally designs a learning policy to guide spatial 
attention. In other words, they utilize reward scheme of rein-
force learning to navigate up-scaling regions, which results 

Fig. 14   Architecture design of Bulat et al. [10]. It is noted that LR and HR images are not paired in the training dataset
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in an adaptively optimizing way for SR based on the char-
acteristics of inputting images. For instance, Cao et al. [12] 
propose a novel attention-aware Face Hallucination frame-
work, which follows principles of DRL to sequentially dis-
cover patches required to up-scale at first. Afterwards, they 
follow the resulting optimization sequence to perform facial 
patch enhancement by exploiting and involving global char-
acteristics of the inputting facial image. Work of Cao et al. 
[12] is quite new in concept and provides a novel thought 
on how to adaptively process high-resolution images. How-
ever, the computation of [12] is much larger than SRCNN, 
reporting four times larger than SRCNN, due to the high 
computation cost of its deep structure.

4 � Comparisons

4.1 � Datasets and measurements

Many image datasets are popular to be adopted to prove and 
compare effectiveness of different super resolution meth-
ods in SR community. We list most of them with cites and 

descriptions in Table 1, where we can notice their original 
usages are different such as segmentation, classification, etc. 
Therefore, there are no actually construction rules to organ-
ize a specific dataset on SR topic. Among all these dataset, 
four datasets, i.e., SET5, SET14, B100, and URBAN100, are 
mostly commonly used for comparison in SR community. 
Our following performance will be performed on these four 
datasets.

There are two standard quality measures, i.e., peak signal-
to-noise ratio (PSNR) and structural similarity index (SSIM) 
[37], which have been mostly used for measuring the quality 
of super resolution methods. Specially, the definition of PSNR 
relies on MSE; we thus define these three measures as follows:

(5)MSE =
m ∗ n∑m

i=1

∑n

j=1
(I(i, j) − P(i, j))2

(6)PSNR =10 × log

(
2552

MSE

)

Table 1   Image dataset for super resolution and their corresponding descriptions

Index Dataset name Descriptions

1 SET5 [7] It contains five images named as baby, bird, butterfly, head, and woman. Scale factor used includes 2 × , 3 × and 
4 ×

2 SET14 [137] It includes 14 commonly used images for super-resolution evaluation. Compared with Set5, more diversity are 
introduced by SET14 including bridge, comic, poster and so on

3 B100 [68] Full name is Berkeley Segmentation Dataset and Benchmark, which was originally designed for natural scene 
image segmentation. Due to its high quality to cover variant attributes of natural scene images, it has been 
widely adopted to evaluate performance of SR approaches on natural scene images. It is noted that BSD300 
uses 100 testing images (named here ‘B100’) and 200 training images. The latest version is named as 
BSD500 including 200 more fresh test images

4 URBAN100 [46] It has 100 HR images diverse in real-world scenes and is widely used by examining with its self-similarities
5 ImageNet [88] ImageNet is a large visual database in visual object recognition and classification research. Latest, more than 

14 million images with over 20,000 categories have been hand-annotated. Since 2010, A famous challenge 
named as the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is performed on ImageNet to 
compete on object or scene classification and detection

6 super texture dataset [20] The main concern of this dataset lies on SR operation on texture. It provides 136 texture images in total
7 Timeofte dataset [110] It is one of the most widely used datasets by SISR researchers, which consists of 91 training images, and test-

ing images in BSD500, Set5, Set14 and super texture dataset
8 DIV2K [108] The DIVerse 2K resolution image dataset served as a benchmark for NTIRE 2017 Challenge. It is designed to 

evaluate SR performance on high-resolution images. It consists of 800 training, 100 validation, and 100 test 
images

9 Mnist [59] The MNIST database contains 60,000 training and 10,000 testing images. It is a large database of handwritten 
digits to evaluate performance of SR on hand-written images

10 Manga109 [31] It consists of numerous comic sketches from 109 Japanese comic books and often adopted as basic dataset to 
evaluate performance of SR on drawing images

11 LIVE [98] All images are originally captured by another project for the purpose of generic shape matching and recogni-
tion. Now it serves as a dataset of images with visual distortion effects to examine the extreme handling 
performance of SR methods

12 L20 [111] It focuses on images with large size. The common size in L20 is range from 3m to 29m pixels, while most of 
the other datasets own images below 0.5 m pixels
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where m and n refer to the width and the height of the image, 
I and P represent output image after operation of super reso-
lution and the input original image respectively, �x and �y 
represent the means of x and y, �2

x
 and �2

y
 represent the vari-

ances of x and y, �xy is the covariance of x and y, and c1 and 
c2 are two preset variables.

PSNR is often adopted to measure the quality of recon-
struction during super resolution by calculating power ratio 
of noisy signal introduced by super resolution. Higher values 
of PSNR represents better quality of reconstructed image. 
Meanwhile, SSIM is quantitative measure used to quantify 
the similarities of structure between original and HR image. 
High SSIM value can reflect that the process of super resolu-
tion does not affect image basic structure, thus proving better 
reconstruction quality.

4.2 � Performance analysis

Table 2 reports SR performance with five usually adopted 
dataset. All these statics are obtained by variety of 
approaches like sparse coding, CNN-based, GAN-based, and 
so on. We observe that SAN outperforms other algorithms 
in most datasets with scale factor 2× , 3× , 4× , and 8× , mean-
while DualGAN achieves best results with scale factor 8× 
and B100 dataset. However, it is noted that we only collect 
a few performance examples with smaller scale factors for 
most GAN-based methods, since most GAN-based methods 
perform experiments on large dataset and with higher scale 
factor. Therefore, it is not fair to say SAN is better at SR with 
smaller scale factor. Essentially, SAN could be regarded as 
an improved version of EDSR, which utilizes attention archi-
tecture to generate more task-specified feature map for SR 
task. Meanwhile, DualGAN modifies original structure of 
GAN to two generators and discriminators to learn a mixture 
of many distributions from prior to the complex distribution. 
Both methods have shown enough progress on improvement 
of CNN or GAN based methods.

Based on the success of DRRN and other residual-based 
learning methods for SR like DRRN, EDSR, LapSRN, etc. 
we could conclude that residual learning brings many ben-
efits to SR image reconstruction, since it captures and mod-
els the most important characteristics of SR. For example, 
Ms-LapSRN is an improved version of LapSRN by recon-
structing the sub-band residuals of HR images at multiple 
pyramid levels. DSRN exploits both lowre-solution (LR) and 
high-resolution (HR) signals jointly, where recurrent signals 
are exchanged between these states in both directions (both 
LR to HR and HR to LR) via delayed feedback. Based on 

(7)SSIM(x, y) =
(2�x�y + c1)(2�xy + c2)

(�2
x
+ �2

y
+ c1)(�

2
x
+ �2

y
+ c2)

,
the high performance of these residual learning network, we 
can conclude that CNN-based methods are still mainstream 
to achieve high performance on SR.

In Table 3, we compare average frame rate (FPS) of dif-
ferent methods on SET5, SET14, BSDS100, URBAN100, 
and MANGA109 with the scale factors 2× , 4× , and 8× , 
respectively. It is noted that since the codes of SRCNN and 
FSRCNN for testing are based on CPU implementations, we 
reconstruct these models in MatConvNet with the same net-
work weights to measure the run time on GPU. By evaluat-
ing the execution time of each algorithm on a machine with 
3.4 GHz Intel i7 CPU (64G RAM) and Nvidia Titan X GPU 
(12G Memory), we upscale input images by scale factors 2× , 
4× , and 8× in experiments, respectively.

From Table 3, we can notice that FSRCNN is a fast 
enough algorithm, since it applies several convolution opera-
tions on LR images and has fewer network parameters. Lap-
SRN achieves large FPS value, since it continually upscales 
images in a pyramid structure and adaptively applies differ-
ent number of convolutional layers. D2GAN could achieve 
better runtime performance with smaller scale factors, while 
it achieves much lower FPS value than FSRCNN with larger 
scale factor. This fact indicates GAN is not stable in running 
time and requires further development to obtain consistent 
performance. Besides, runtime performance of SRCNN, 
VDSR, RFL, SCN, DRCN, A+, and LapSRN all depend on 
the size of output images, while the speed of FSRCNN is 
almost constant. FSRCNN, LapSRN, ProGAN, and D2GAN 
achieve real-time speed (i.e., 24 frames per second) on most 
datasets. Runtime performance of SRCNN could be com-
mented as fast, while FPS values of other methods are quite 
low, even implemented with a powerful GPU card. There-
fore, there is still much work on adapting deep networks to 
achieve real-time SR.

4.3 � Comparisons between CNN and GAN‑based SR 
methods

Based on results achieved by CNN and GAN-based SR 
methods, we aim to generally compare differences and future 
developments of these two categories. Essentially, CNN and 
GAN-based SR methods can be regarded as typical super-
vised and unsupervised learning algorithms respectively, 
which is the main reason for their huge differences. More 
precisely, supervised CNN methods attempt to learn directly 
the mapping between LR and HR images and highly depend 
on predetermined assumptions. Meanwhile, GAN-based net-
works are much more flexible with promising performance 
due to incorporated unsupervised training.

How to appropriately collect training data with sufficient 
enough information to support SR tasks has become a major 
problem in CNN-based SR methods. For majority research-
ers, they collect image data for SR by first down-sampling 
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Table 2   Quantitative evaluation 
of a quantity of SR algorithm, 
where average PSNR/SSIM 
with scale factor ×2 , ×3 , ×4 is 
listed, information not provided 
by original authors is marked 
with [–]

Methods Scale Set5 Set14 B100 Urban100 Manga109

×2 Bicubic 33.66/0.9299 30.24/0.87688 29.56/0.8431 26.88/0.8403 30.80/0.9339
A+ [110] 36.54/0.9544 32.28/0.9056 31.21/0.8863 29.20/0.8938 −/−
SRCNN [26] 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663
VDSR [52] 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 37.22/0.9750
EDSR [65] 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351 39.10/0.9773
LapSRN [58] 37.52/0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101 37.27/0.9740
GuideAE [17] 37.52/0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101 37.27/0.9740
SRGAN [60] 37.22/0.9263 32.14/0.8862 31.89/0.8761 31.02/0.8955 −/−
ESRGAN [116] 37.81/0.9531 33.62/0.9152 31.99/0.8873 32.01/0.9131 −/−
SRMDNF [141] 37.79/0.9601 33.32/0.9154 32.05/0.8984 31.33/0.9204 38.07/0.976
IDN [147] 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.02/0.9749
CSFM [45] 38.26/0.9615 34.07/0.9213 32.37/0.9021 33.12/0.9366 39.40/0.9785
CARN [2] 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.51/0.9312 −/−
RDN [144] 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353 39.18/0.9780
SAN [22] 38.35/0.9619 34.44/0.9244 32.50/0.9038 33.73/0.9416 39.72/0.9797

×3 Bicubic 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
A+ [110] 32.58/0.9088 29.13/0.8188 28.29/0.7835 26.03/0.7973 −/−
SRCNN [26] 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117
VDSR [52] 33.67/0.9210 29.78/0.8320 28.83/0.7990 27.14/0.8290 32.01/0.9340
EDSR [65] 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653 34.17/0.9476
LapSRN [58] 33.82/0.9227 29.87/0.8320 28.82/0.7980 27.07/0.8280 32.21/0.9350
GuideAE [17] 33.82/0.9227 29.87/0.8320 28.82/0.7980 27.07/0.8280 32.21/0.9350
SRMDNF [141] 34.12/0.9254 30.04/0.8371 28.97/0.8025 27.57/0.8398 33.00/0.9403
IDN [147] 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.69/0.9378
CSFM [45] 34.76/0.9301 30.63/0.8477 29.30/0.8105 28.98/0.8681 34.52/0.9502
CARN [2] 34.29/0.9255 30.29/0.8407 29.06/0.8034 27.38/0.8404 −/−
RDN [144] 34.71/0.9296 30.57/0.8468 29.26/0.8093 28.80/0.8653 34.13/0.9484
SAN [22] 34.89/0.9306 30.77/0.8498 29.38/0.8121 29.29/0.8730 34.74/0.9512

×4 Bicubic 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
A+ [110] 30.28/0.8603 27.32/0.7491 26.82/0.7087 24.32/0.7183 −/−
SRCNN [26] 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555
VDSR [52] 31.35/0.8830 28.02/0.7680 27.29/0.0726 25.18/0.7540 28.83/0.8870
EDSR [65] 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148
LapSRN [58] 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09/0.8900
GuideAE [17] 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09/0.8900
SRMDNF [141] 31.96/0.8925 28.35/0.7772 27.49/0.7337 25.68/0.7731 30.09/0.9024
IDN [147] 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8936
CSFM [45] 32.61/0.9000 28.87/0.7886 27.76/0.7432 26.78/0.8065 31.32/0.9183
RDN [144] 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 31.00/0.9151
CARN [2] 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 −/−
SRGAN [60] 29.40/0.8472 26.64/0.7101 25.16/0.6682 25.11/0.7253 −/−
ESRGAN [116] 31.40/0.8713 27.98/0.7624 27.21/0.7123 31.99/0.8874 −/−
SAN [22] 32.70/0.9013 29.05/0.7921 27.86/0.7457 27.23/0.8169 31.66/0.9222
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Bold text indicates the best performance among all comparative methods

Table 2   (continued) Methods Scale Set5 Set14 B100 Urban100 Manga109

×8 Bicubic 24.40/0.6580 23.10/0.5660 23.67/0.5480 20.74/0.5160 21.47/0.6500

SRCNN [26] 25.33/0.6900 23.76/0.5910 24.13/0.5660 21.29/0.5440 22.46/0.6950

VDSR [52] 25.93/0.7240 24.26/0.6140 24.49/0.5830 21.70/0.5710 23.16/0.7250

LapSRN [58] 26.15/0.7380 24.35/0.6200 24.54/0.5860 21.81/0.5810 23.39/0.7350

MSLapSRN [57] 26.34/0.7558 24.57/0.6273 24.65/0.5895 22.06/0.5963 23.90/0.7564

DualGAN [136] −/− −/− 27.85/0.8911 −/− −/−

EDSR [65] 26.96/0.7762 24.91/0.6420 24.81/0.5985 22.51/0.6221 24.69/0.7481

DCGAN [85] −/− −/− 24.09/0.8619 −/− −/−

GP-GAN [120] −/− −/− 27.06/0.8595 −/− −/−

D2GAN [76] −/− −/− 27.17/0.8067 −/− −/−

SAN [22] 27.30/0.7849 25.23/0.6493 24.97/0.6031 22.91/0.6369 25.17/0.7964

Table 3   Comparisons of the 
FPS (frames per seconds) on 5 
benchmark dataset with scale 
factors 2× , 4× , and 8×

Bold indicates the best performance among all comparative methods

Methods Scale Set5 Set14 B100 Urban100 Manga109

×2 A+ [110] 1.12 0.52 0.74 0.15 0.10
SRCNN [26] 24.70 22.92 39.50 9.03 6.53
FSRCNN [27] 31.04 53.86 98.20 47.23 34.48
RFL [94] 0.65 0.45 0.52 0.13 0.15
SCN [119] 1.19 0.85 1.19 0.24 0.17
VDSR [52] 11.01 6.46 10.00 2.12 1.71
DRCN [53] 0.70 0.37 0.59 0.10 0.08
LapSRN [56] 30.20 40.00 97.36 16.81 85.32
ProGAN [117] 25.88 34.80 71.59 14.97 73.48
D2GAN [76] 46.21 61.72 141.34 24.86 132.12

×4 A+ [110] 2.86 1.62 2.43 0.49 0.41
SRCNN [26] 21.74 22.27 40.13 9.95 7.13
FSRCNN [27] 31.61 56.58 101.54 53.95 55.23
RFL [94] 1.97 1.21 1.64 0.42 0.34
SCN [119] 1.38 0.87 1.19 0.31 0.25
VDSR [52] 10.71 6.59 9.91 2.15 1.76
DRCN [53] 0.80 0.37 0.59 0.10 0.08
LapSRN [56] 25.49 25.46 54.35 12.40 47.63
ProGAN [117] 20.67 20.18 43.05 9.92 37.29
D2GAN [76] 38.33 38.28 87.95 16.08 75.71

×8 A+ [110] 5.79 2.84 4.31 0.80 0.64
SRCNN [26] 20.92 17.69 40.13 9.81 7.17
FSRCNN [27] 34.10 63.28 104.46 71.67 71.95
RFL [94] 2.54 1.61 2.25 0.47 0.33
SCN [119] 0.79 0.53 0.68 0.21 0.19
VDSR [52] 10.58 6.50 10.13 2.15 1.77
LapSRN [56] 24.02 23.40 50.44 10.54 33.09
ProGAN [117] 17.97 17.48 38.76 7.66 25.11
D2GAN [76] 23.70 23.08 50.97 10.28 34.41
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original HR to get LR images, and then using LR images as 
input to pursue HR results. However, such collecting process 
is not exactly the same as what happened in the applica-
tion scenario, since patterns to induce quality loss can be 
various, such as image transmission, different compression 
algorithms and so on. Simply utilizing down-sampling to 
generate LR images would do great harm to flexibility of 
CNN-based SR methods with respect to different scenarios. 
On the contrary, GAN-based methods require less image 
data for SR tasks, since they use a largely unsupervised 
training process on the real images. Therefore, they do not 
require label or prior condition between LR and HR image.

Major difficulty in constructing GAN-based SR methods 
lies in their designs of architecture and loss function. It is 
noted the most common used measurement, i.e., MSE, is 
adopted in favor of maximizing PSNR. However, halluci-
nated details of generated HR images are often accompanied 
with unpleasant artifacts, even achieving high PSNR val-
ues. In other words, traditional measurements expose several 
constraints to human perception. However, GAN has ability 
to produce better results only with the integrated perceptual 
assessment other than single and simple measurement. In 
order to further improve visual quality, it is thus required 
to improve key components of GAN models for SR, i.e., 
network architecture and loss function, which are now pro-
gressively explored and developed by researchers. All these 
truths imply GAN is still developing and is promising to 
achieve better reconstruction results than CNN-based meth-
ods. Moreover, GAN is hard to train due to mode collaps-
ing problem, which leads to early stopping by concentrating 
on only a few modes instead of the whole data space. On 
the contrary, CNN-based methods have been developed for 
several generations with visually desirable reconstruction 
results. With back-propagation training methods and well-
developed CNN construction softwares, it is much easier to 
implement and train a CNN-based SR method than perform-
ing with GAN model.

Above all, we can conclude that GAN-based SR methods 
have high potential to achieve better reconstruction results 
than CNN-based SR methods, due to its property to describe 
variety of SR patterns with less labeled data. However, GAN 
model needs to be further developed to be easily trained and 
implemented.

5 � Summary

Super-resolution is a hot and important research topic in 
computer vision and image processing community. By 
applying SR technologies, users can not only improve the 
resolution and visual appearance of inputting images, but 
also help improve accuracy and effectiveness of vision-
based machine learning systems which generally regard 

high-resolution images as input. Inspired by the significant 
performance of deep learning methods, this paper focuses 
on reviewing current deep learning methods for real-time 
image super-resolution. As the first comprehensive survey 
on such topic, it has analyzed recent approaches, classified 
them according to as many as criteria, and illustrated perfor-
mance for the most representative approaches.

In the past decade, research in this field has progressed as 
improved methods emerge. However, the small number of 
deep learning- based SR methods achieving real-time perfor-
mance shows that ample room remains for future research. 
Essentially, the main reason for less methods on real-time 
SR lies in the fact that deep learning methods are hard to 
achieve fast processing speed without high computation 
resource. However, applying deep learning methods on SR 
is a reasonable way to achieve high performance with the 
current large datasets, named as “big data”. We thus present 
main challenges of deep learning for real-time SR: how to 
adapt deep learning-based SR methods with acceleration 
strategies to deal with “big data” situation. Furthermore, 
low-resolution images captured in extreme imaging condi-
tions require robust enough algorithms to deal with such 
real-life complexities.

It is thus essential to develop novel methods, which are 
not only effective and efficient for “big data” processing, 
but also robust enough to handle extremely processing. 
Although abundant optimization methods have been pro-
posed for real-time SR with deep learning structures in 
Sect. 3, high efficiency, effectiveness, and robustness for 
SR on specific application area are still highly required by 
industry and require further improvement. Despite design-
ing alternative and high effective neural network structures, 
cloud computing is another simple and efficient solution to 
improve effectiveness of SR. By providing enough comput-
ing and storage services over the Internet [82, 123, 125, 
126] for local SR tasks, a powerful computing platform with 
easy access and high-scalability could be utilized locally 
and help users accomplish their SR goals. There exist other 
novel methods to help improve SR from different aspects. 
For example, deep compression methods could help prune 
neural networks for SR, resulting in less storage and com-
putation consume.

Based on all these analyses, we believe that this review 
is useful for developers who are willing to improve perfor-
mance of their SR solutions in both running time and accu-
racy. Our review will serve as a guidance and dictionary 
for further research activities in this area, especially in the 
deployment of real-time super-resolution with deep learn-
ing methods.
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