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Abstract—Intelligent flood forecasting systems provide an ef-
fective means to forecast flood disaster. Accurate flood flow
value prediction is a huge challenge since it’s influenced by both
spatial and temporal relationship among flood factors. Popular
deep learning structures like Long Short-Term Memory (LSTM)
network lacks abilities of modeling the spatial correlations
of hydrological data, thus cannot yield satisfactory prediction
results. Moreover, not all the temporal information is always
valuable for flood forecasting. In this paper, we proposed a novel
spatial and temporal aware Graph Convolution Network (ST-
GCN) for flood prediction, which is capable to extract spatial-
temporal information from raw flood data. Moreover, a temporal
attention mechanism is introduced to weight the importance of
different time steps, thus involving global temporal information
to improve flood prediction accuracy. Compared with the existing
methods, results on two self-collected datasets show that ST-GCN
greatly improves the prediction performance.

Index Terms—flood forecasting, GCN, attention mechanism,
data-driven model

I. INTRODUCTION

Natural disasters, especially flood, are gradually becoming
one of the most important issues affecting our social and
economic development. Due to global warming, flood events
have occurred more frequently than before since the 1980s.
Consequently, researchers in both hydrological and machine
learning communities focus on improving our ability to fore-
cast and prevent flood disasters.

Flood flow forecasting could offer future hydrological in-
formation on the basis of former hydrological and meteoro-
logical data. It’s of great significance to predict flood events
effectively and efficiently. However, the formation of flood is
a complicated process, which is affected by topography, pre-
cipitation and other characteristics. Several approaches have
been proposed to tackle the flood forecasting problem. These

∗ indicates corresponding author

methods fall into two different categories, i.e., physical and
data-driven model. The first category relies on hydrological
prediction for specific rivers using physical mechanisms [1],
which is quite sensitive to its internal parameters. Therefore,
such physical models can be only applied in specific rivers.
On the other hand, data-driven techniques have extensively
been applied to the stream-flow forecasting [2], which achieves
better performance in prediction accuracy by using machine
learning approaches to capture temporal hydrological informa-
tion.

Compared with traditional time series forecasting, flood
prediction faces greater challenges, since it not only requires to
consider temporal features, but also comprehensively takes a
variety of hydrological related information into consideration.
Among these information, spatial information makes great
contribute to accurate prediction of floods. Take the upstream
and downstream of the same river as an example, the runoff of
the upstream will directly affect the runoff of the downstream.
In the same river basins, the precipitation of different regions
with close geographical location also has high similarity. In
the process of construction of the intelligent flood prediction
model, the spatial distribution of various hydrological moni-
toring stations should be considered.

Time-varying characteristics of flood requires researchers
to consider flood as a dynamic process. In other words, the
influence of related factors on flood should be different in
various time periods of flood. For example, soil moisture,
one of the flood factors, has a great influence on the run-
off values at the initial stage of flood. After middle stage of
flood, soil can be filled with water and factor of soil moisture
keeps consistent. In other words, we should assign a higher
weight to factor of soil moisture at the beginning, meanwhile
offering a quite small weight to it in middle or final stage of
flood. Therefore, it can be seen that the impact of the same
hydrological features on the same flood may also change at
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different times.
However, most data-driven models can only capture tem-

poral dependency, and fail to describe spatial and temporal
dependency . For example, long short-term memory (LSTM)
network effectively retains the long-term hydrological charac-
teristics so that successfully capture the temporal feature, but it
cannot realize spatial relationship modeling. In this paper, we
propose to firstly build a hydrological spatial node map, which
is composed of geographical and statistical characteristics of
hydrological stations. Based on the constructed node graph,
we propose a spatial-aware graph convolution neural (S-GCN)
network, which adopts GCN to extract distinguish spatial
features. After the spatial modeling of GCN, we use LSTM
to capture the hydrological temporal dependency. It’s noted
that GCN can extract spatial features form hydrological spatial
node map, meanwhile LSTM can capture temporal features.

For the problem of dynamic feature extraction, attention
mechanism is used to effectively capture the dynamic varia-
tion characteristics of the long-term hydrological data, which
successfully assigns different weights to different temporal
features, resulting in more accurate correlation analysis. Our
main contribution can be concluded as follows:

• We propose a novel data-driven method to jointly learn
spatial features with GCN and temporal features with
LSTM for hydrological prediction. As far as we know,
this is the first time to jointly use GCN and LSTM for
flood prediction, which successfully model spatial and
temporal relationship for flood forecasting task.

• We introduce a temporal-aware attention mechanism to
describe the dynamics characteristics of floods, which
effectively improves the ability of the proposed model to
focus on informativeness ones of temporal information.

II. RELATED WORK

In this section, considering the relevance to the proposed
method, we summarize the state of the art in the field of the
data driven model for flood forecasting and discuss the related
literature on graph convolutional network and attention-based
models.

A. Data-driven Model for Flood Forecasting

Since the rapid development of artificial intelligence tech-
nologies in the 21st century, various data driven algorithms
have been widely used in flood forecasting. These methods
can be broadly categorized in two different categories. The
first category of work mainly utilizes the concept of probability
and statistics, such as Bayesian model. Wu et al. [3] proposed
to construct hierarchical Bayesian network to make a short-
term stream-flow forecast. Comprehensive consideration of
hydrology and statistics is of great importance to the prediction
of flow value. The second category of work includes Artificial
intelligence-based approaches using machine learning and
deep learning. Commonly used machine learning algorithms
include Support Vector Machines (SVM) [4], Decision Tree
(DT) [5] , and Back Propagation Neural Networks (BPNN)

[6], which solve the problem by abstracting actual flood fore-
casting tasks as non-linear regression tasks. With the massive
accumulation of hydrological data and meteorological data,
Long and Short-Term Memory (LSTM) has better applicability
and accuracy than the traditional neural network model by in-
troducing a gating unit to alleviate the gradient disappearance.
Liu et al. [7] proposed a context and temporal aware attention
LSTM network model, using the attention module in each step
of LSTM, so as to achieved a high prediction accuracy based
on the collected characteristics of various hydrological data.

B. Graph Convolutional Network

The convolutional neural network (CNN) is a novel method
for deep learning of graph data developed in recent years. The
reason why CNN can be successfully applied in the field of
computer vision is that it can extract spatial features well. The
main function of GCN is also to extract spatial features, but
different from traditional CNN, GCN mainly deals with graph
data.

Bruna et al. [8] proposed the first graph convolutional neural
network in 2013. The core of spectral domain graph convo-
lution is to use a symmetric normalized Laplacian matrix. In
the field of natural language processing, Marcheggiani et al.
[9] proposed to use GCN model to act on syntactic depen-
dency graphs and super-impose them with long and short-term
memory networks. In the field of traffic prediction, Sun et al.
[10] comprehensively considered various factors, constructing
a Multi-View Graph Convolutional Network (MVGCN) for
pedestrian flow prediction. At the same time, this method
designed a fusion module that took into account both temporal
and spatial characteristics. Temporal and spatial characteris-
tics needs to be considered comprehensively in hydrology
(different monitoring stations on the same river have spatial
connections). In this paper, we use GCN to mine spatial
features in the node graph of the hydrological monitoring
stations.

C. Attention-based Models

Human vision systems contain complex information pro-
cessing mechanisms that can always quickly locate important
target areas for detailed analysis. Relying on this powerful
visual system, human process various data from the outside
world into images, and they can quickly focus on the important
target area, so that put more attention to the target area. This
signal processing mechanism can enable human to acquire
valuable information more efficiently so that greatly improves
the efficiency and accuracy of human visual processing.

The attention mechanism is similar to human selective
visual information processing systems in the field of deep
learning. The core of this mechanism is to select information
that is more critical to the current task goal from a large
amount of information. With this advantage, it is widely
used in image description, natural language processing and
other fields. Choi et al. [11] proposed a fine-grained attention
mechanism, so that improves the translation quality of BLEU
scores and reveals how the fine-grained attention mechanism



Fig. 1. After data preprocessing by ¬ spatial graph generation module and batch normalization, data will be input into the intelligent model we built for
processing, which consists of  GCN module, ® LSTM module and ¯ Hydrological Attenion module.

utilizes the correlation of context vectors. The accuracy of
stock time series prediction is very important in the field of
finance. Cheng et al. [12] proposed a hybrid model consisting
of empirical mode decomposition and attention-based long-
term and short-term memory network,which can effectively
decompose the financial time series into multiple levels of
inherent mode functions. The linear regression analysis of
stock market index verifies the prediction performance of the
proposed model.

The attention mechanism can effectively capture the dy-
namic change characteristics of the data, making the corre-
lation analysis more accurate. In this paper, we introduce
the hydrological attention mechanism based on Spatial and
Temporal aware Graph Convolutional Network (ST-GCN) ,
with the aim of improving the selection of ST-GCN network
for historical information, thus screening out information with
higher value.

III. THE PROPOSED METHOD

This part will introduce the details of the proposed frame-
work for flood prediction with four categories: 1)Overall
structure; 2) Hydrological spatial graph generation module;
3) Graph convolutional network module; 4) S-GCN module;
5) Hydrological attention module.

A. Overall Structure

Take Tunxi river and Changhua river as examples, we
describe the steps to predict and analyze the hourly flood using
the proposed method. For the purpose of flood forecasting, our
model (ST-GCN) consists of four components. The structure
of our model is shown in Fig. 1. A necessary step for flood
forecasting is data preprocessing, consisting mainly includes
spatial map generation and data normalization processing. We
use various hydrological values as the input data of the model,
including rainfall data, evaporation data, river-flow data and
hydrological distance data.

It = D(v) (1)

St = M(d, s) (2)

where v denotes the first three types of data, It denotes
the result after the normalization of D at time t.We extract
statistical features s from data v . Then we use s and distance
data d to generate a spatial node graph St after processing
M() . Then they are input into our model for processing.

The S-GCN module, consisting of GCN cell and LSTM
cell, can effectively solve the problem of learning temporal and
spatial features at the same time. First, the spatial features of
the data are processed by GCN, and then the obtained values
are input into the LSTM cell to learn temporal features. The
above workflow is described as follow:

F (It, St) = LSTM (It, GCN(St)) (3)

where F () denotes the procedure of S-GCN , GCN() is the
convolution operation at GCN cell, LSTM() is the sequen-
tial operation at LSTM cell. However, this cannot make S-
GCN able to determine whether the retained information is
useful. Our model uses the hydrological attention module to
selectively focus information, so the model can process useless
and retain useful information, thereby obtaining more accurate
output prediction results. ht is the hidden state of S-GCN cell.
Here, we use the attention function to assign different scores
to ht at each moment.

A(F (It, St)) = FCL (C(ht)) (4)

C() is the operation that can get a state vector that represents
development trend information of flood process. FCL() is
fully connected layer, and A() is the operation of hydrological
attention mechanism.

Model(v, s) = L (R) (5)

Finally, we utilize the logistic regression classifier connected
to get flood prediction value. R is the result after hydrological
attention mechanism, L() is the logistic regression classifier.

B. Hydrological Spatial Graph Generation Module

First of all, we need to construct the topology of the
hydrological station to explore the spatial correlation of flood
flow. The spatial correlation we describe here mainly refers



to the spatial connection between hydrological stations. Due
to river flow states vary over time, it is better to let the
graph nodes possess the varying river flow states and keep
the graph structure fixed. Thus, to ensure the consistency
of the definition in a graph, we use nodes to represent the
hydrological stations, which can be rainfall stations or river
gauging station. Then, the edges in a graph represent the
strength of relationship between stations. The hydrological
network and the relationship between hydrological stations
can be described as an undirected graph G = (V,E), where
V = {v1, v2, . . . , vN} is a set of nodes, N is the number of
hydrological stations, and E is the set of edges.

The question of how to generate topological diagrams
requires comprehensive consideration of relevant knowledge
in the field of hydrology and statistics. Here we construct
two different graphs to show the relationships between hy-
drological stations. Firstly, from the hydrological point of
view, if a station is in the same river as another station, the
similarity of the water flow between the two stations will be
high due to their hydraulic connections [13]. Secondly, from
the statistical point of view, we need to calculate the degree of
correlation between various stations based on the multi-year
data of hydrological stations.

1) Hydrological Distance Graph: The hydrological connec-
tion between hydrological stations is estimated with regards
to Digital Elevation Model (DEM). Here, the hydrological
distance graph is mainly based on the flow distance between
two stations. In the case where the water path of the upstream
station (e.g., Si) passes the downstream station (e.g., Sj), the
hydraulic distance is the length of the flow path between the
two stations (di,j).In other words, di,j is the length of the river
between two stations i and j. If they have no hydrological
connections, the di,j is ∞. The adjacency matrix of Pearson
correlation graph is AD:

AD =



1 · · · 1
d1,j

· · · 1
d1,N

1
d2,1

· · · 1
d2,j

· · · 1
d2,N

...
...

...
1

di,1
· · · 1

di,j
· · · 1

di,N

...
...

...
1

dn,1
· · · 1

dn,j
· · · 1


(6)

2) Pearson Correlation Graph: In this paper, we not only
consider the distance, but also calculate the correlations be-
tween the stations based on the flow rate per unit time for the
last five years. Here we use the Pearson correlation coefficient
to calculate the correlation. The adjacency matrix of Pearson
correlation graph is AP :

AP =



1 · · · p1,j · · · p1,N

p2,1 · · · p2,j · · · p2,N
...

...
...

pi,1 · · · pi,j · · · pi,N
...

...
...

pn,1 · · · pn,j · · · 1


(7)

where pi,j is the Pearson correlation result between station
i and station j.

3) Hydrological Spatial Graph : Finally, we need to merge
hydrological distance graph and Pearson correlation graph into
one graph. We combine these two graphs by the weighted
summing their adjacency matrices at the element level.

am,k =

{
1, m = k
α ∗ 1

dm,k
+ β ∗ pm,k, m 6= k (8)

where αm,k is the elementary of the mth row and kth
column in the adjacency matrix A. Considering hydrological
knowledge and statistical knowledge comprehensively, here we
take the values of α and β as 0.5 and 0.5 respectively. Now,
we can get the adjacent edges and nodes of the graph through
the matrix A, thus generating the hydrological topology graph.

C. Graph Convolutional Network Module

Acquiring spatial correlation has an important influence
on hydrological status value. In this section, we use graph
convolutional network to capture the spatial features from
the hydrological information. The existing graph convolutional
neural networks are divided into two types: spectral convolu-
tion [8] and spatial convolution [14]. The former was applied
in this study, because it is more universal and does not require
complicated calculations.

The spectral method uses the convolution theorem on the
graph to define graph convolution from the spectral domain.
The main idea of the convolution theorem is that the Fourier
transform of signal convolution is equivalent to the product of
the signal Fourier transform.Using the convolution theorem,
we can multiply the signal in the spectral space, and then
use the inverse Fourier transform to convert the signal to the
original space to achieve graph convolution. For the reason
that the original spectral method has a disadvantage of high
temporal and spatial complexity, Kipf et al. [15] parameterized
the convolution kernel in the spectral method, which greatly
reduces the temporal and spatial complexity:

xm+1
j = h

(
p∑

i=1

θD̂− 1
2 ÂD̂− 1

2xmi

)
(9)

where j = 1, . . . , q;xmi ∈ Rn represents the i-th input
feature of the node in the m-th layer on the graph; A is the
adjacency matrix, Â is a matrix with self-connection structure;
D̂ is the degree matrix corresponding to Â; p is the dimension



of the input feature; θ is the parameter to be learned; h is the
activation function.

In the field of hydrology, the distribution of various stations
is uneven, and spatial dependence needs to be considered. In
this study, we use the GCN model to learn spatial features
from hydrological data, mainly by obtaining the topological
relationship between hydrological stations and surrounding
stations. A 2-layer GCN model can be expressed as:

f (Xt, A) = σ
(
D̂− 1

2 ÂD̂− 1
2 Relu

(
D̂− 1

2 ÂD̂− 1
2XtW0

)
W1

)
(10)

where Xt is the feature matrix, σ (), Relut() is nonlinear
transformation, W0 represents the weight matrix of first layer,
W1 represents the weight matrix of the second layer.

Fig. 2. The structure of S-GCN.

D. S-GCN Module

To fully exploit the spatial and temporal correlations of the
hydrological flow data, spatial aware GCN for flood prediction
(S-GCN) was proposed, based on Graph convolution network
and LSTM network. The memory cell unit structure in the
hidden layer of S-GCN is shown in Fig.4.

it = σ (Wi (f (A,Xt) , ht−1)) + bi (11)

ot = σ (Wo (f (A,Xt) , ht−1)) + bo (12)

ft = σ (Wf (Xt, ht−1)) + bf (13)

gt = tanh (Wg (f (A,Xt) , ht−1)) + bg (14)

Ct = ft � Ct−1 + it � gt (15)

ht = tanh (Ct)� ot (16)

where f (A,Xt) represents the operation of GCN. For
details, please refer to equation (10). And it is the input gate
at time t that decides how much new input information is
added to the next step, ot is the output gate at time t which is
responsible for whether the current cell value is output, ft is
the forget gate at time t that decides whether the current cell
state is abandon. All three of them are calculated by activation
function σ (). Wi, Wo and Wf is the recurrent weight matrix
from the input, output and forget gates to the hidden layer,
respectively. Similarly, bi, bo and bf represent the bias. Xt

denotes the input of the current cell and ht is the output state
vector at time t. ht−1is the state of the hidden layer at the
previous moment. gt is the result obtained by activating the
tanh activation function, after performing element-wise point
multiplication on Xt and ht−1, respectively. Ct−1 and Ct are
the state variables of the memory cell passing through the
memory cell unit at the previous moment and t moment.

Fig. 3. The structure of our ST-GCN model.

E. Hydrological Attention Module

In this part, we introduce the temporal attention mechanism
based on S-GCN model. This attention mechanism calculates
state vector that express the overall development trend of flood
flow, after uses the multilayer perception (MLP) to solve the
importance of hydrological information at every moment, so
as to take the obtained value as the modeling object of the
time series model. The model with the attention mechanism
is shown in Fig. 3.

ek = σ (Wk (σ (WmHt + bm)) + bk) (17)

Here, let hk (k = 1, 2, . . . , n) represents the hidden states
at different moments, and Ht = {hk | k = 1, 2, . . . , n}. Let
ek represents the score of the relationship between hm and
hk (m, k = 1, 2, . . . , n), and the higher value denotes the
higher correlation. Wm and Wk denote the weights matrix
of the first and second layers respectively. Similarly, bm and
bk denote the bias vectors matrix of the first and second layers
respectively.

ak =
exp (ek)∑n

i=1 exp (em)
(18)



St =
n∑

i=1

akhk (19)

where ak is the attention coefficient corresponding to ek,
it can be calculated using a softmax function. Then, the
attention coefficient ak is assigned to different hidden layer
states hk, and the state vector St, denoting the overall devel-
opment trend of flood flow, is obtained by summation. Finally,
the state vector St calculates the predicted value through
the fully connected layer. This hydrological attention model
can self-judge the specific important time series information
through this attention mechanism, and increase the weight of
the influence of this part of the information on the result, so as
to achieve the purpose of improving the prediction accuracy.

IV. EXPERIMENT

We have six models, KNN, DTree, LSTM, IndRNN, S-GCN
and ST-GCN to compare and analyze in our experiments. This
part will introduce the details of experiments, which includes
dataset and measurement, implementation details and results.

A. Dataset and Measurement

In order to better prove the validity of the experiment,,we
chose two watershed data as the data set of this experiment,
namely Tunxi watershed and Changhua watershed.

We have collected floods happened from 1981 to 2003
except 2001 in Tunxi catchment as our original dataset. In
this study, we take the data of Tunxi from 1981 to 1999 as the
training set, and the rest as the test set. Moreover, at another
dataset, we take the data of Changhua from 1998 to 2003 as
the training set, and the 2004 and 2005 as the test set. Since
the hydrological data in the training set may have different
magnitide, we need preprocess the hydrological data of the
time series by using the method of Min-Max Normalization
to standardize the data to the range of [0–1]:

x∗ =
x−min

max−min
(20)

where x is the value of primitive variables, max and min
represent the maximum and minimum values in input values,
respectively.

Here two evaluation indicators are used to evaluate the
prediction performance of the model, Relative Mean Square
Error (RMSE) and mean absolute error (MAE), which are used
to measure prediction error.

MAE =
1

n

n∑
i=1

∣∣ytesti − yprei

∣∣ (21)

RMSE =

√∑n
i=1 (ȳprei − ytesti )

2

n
(22)

In equation (21) and (22), ytesti is the actual observed value
of the i-th sample river water flow, yprei is the i-th sample
river water flow prediction value, ȳprei is the average value of
the i -th sample river flow forecast, and n is the number of
test samples. The smaller the value of RMSE and MAE are,
the more accurate the prediction is.

(a) Tunxi river dataset (b) Changhua river dataset

Fig. 4. The map of various types of hydrological stations in Tunxi and
Changhua. Note that the Tunxi River station and Changhua River station
are represented by red triangles, and other rainfall stations are represented by
green dots.

B. Implementation Details

This system uses Python language as the actual coding
language. All experiments are carried out on a Linux server
equipped with 2.10GHz 8-core Xeon CPU, 60GB RAM and
Nvidia GeForce GTX 1080 Ti. For LSTM , IndRNN model,
S-GCN model and ST-GCN model, the number of cycles is set
to 32, the learning rate was set to 0.001. Besides, the maximum
depth of Dtree we choose is 7 . Our model and baseline
are implemented in the environment of TensorFlow [16]. By
inputting 32 samples at a time, the error back propagation and
parameter update are completed, and the epoches are set to
500 to converge to reach the final prediction target.

C. Ablation Experiments

This part will list the performances of KNN, DT, LSTM
network, IndRNN network model and S-GCN model, ST-GCN
model. Note that we implement some baseline models for
comparison. Firstly, we use the K-Nearest Neighbor (KNN)
algorithm, which is a classic regression algorithm. The second
one is Decision Tree (DT), which is widely used in the
field of hydrological prediction . The third one, Long Short-
Term Memory (LSTM), is a time cyclic neural network,
which is specially designed to solve the long-term dependence
problem of general RNN. There are many scholars who use
LSTM to solve hydrological prediction problems. The next
one is Independently Recurrent Neural Network (IndRNN)
[17], which can retain long-term memory and handle long
sequences. Its biggest advantage is that it can stack multiple
layers to build a deeper network than traditional RNNs. More-
over, to emphasize the importance of the temporal information
judgment ability of the flood forecasting intelligent model, we
also import S-GCN model in our experiment.

The Table 1 and Table 2 shows in detail the comparison
between our proposed ST-GCN network and other networks.
In this study, we adjust the parameters to make various models
achieve better results. From the average column , the top four
models in the table are baseline models, and the bottom of the
table is our model. Compared with the other models, our model
has a lower average value of both RMSE and MAE, it indicates
the performance of our network structure has obvious advan-
tages over all the other baseline models. Besides, we clearly



TABLE I
PERFORMANCE OF DIFFERENT MODELS AT TUNXI DATASET

Model T+1 (Hour) T+3 T+6 T+9 Average
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

KNN 82.07 17.13 124.08 35.09 177.54 55.23 222.28 67.48 151.69 43.73
Dtree 49.60 13.29 127.71 37.97 193.42 58.60 236.03 70.73 151.69 45.15
LSTM 39.12 23.81 96.78 26.45 128.22 38.89 179.89 51.84 101.01 35.25

IndRNN 21.60 12.89 92.05 36.07 154.48 41.59 205.98 55.60 118.53 36.54
S-GCN 45.9 16.13 93.29 22.32 121.40 38.19 149.75 41.1 102.59 29.44

ST-GCN 47.84 19.95 89.20 21.44 117.24 32.61 136.73 39.20 84.76 24.67

TABLE II
PERFORMANCE OF DIFFERENT MODELS AT CHANGHUA DATASET

Model T+1 (Hour) T+3 T+6 T+9 Average
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

KNN 57.78 17.13 76.06 27.36 107.83 44.25 153.03 69.56 98.67 39.58
Dtree 42.74 13.56 87.06 29.39 130.58 49.45 151.506 65.46 102.97 39.47
LSTM 60.53 19.26 90.14 28.72 96.91 33.89 116.10 27.15 90.92 27.26

IndRNN 49.79 13.29 99.71 26.84 102.60 35.42 127.77 41.19 94.96 29.18
S-GCN 58.06 18.01 68.95 27.57 75.13 33.84 105.2 34.77 76.83 28.55

ST-GCN 60.23 18.31 70.07 28.83 73.93 28.88 97.71 32.89 75.84 27.22

Fig. 5. RMSE comparison of models performance at Tunxi.

Fig. 6. MAE comparison of models performance at Tunxi.

observe that DT model performs better than both LSTM and
our model for flood prediction at T+1, meanwhile performs
much worse than LSTM and our model for flood prediction
at T+3, T+6 and T+9, which means the deep learning model
based on LSTM conducted more accurate prediction in the
flood disaster. Because those models not only learn the timing
characteristics of the runoff sequence, but also retain long-term
dependency information.The effect of the attention model is
not obvious in the flood forecasting experiment with a short
forecast period. After T+3, our method’s RMSE and MAE
are basically the smallest of all comparison experiments. Our
model can be applied to the flood prediction, on the one hand,

Fig. 7. RMSE comparison of models performance at Changhua.

Fig. 8. MAE comparison of models performance at Changhua.

it can further explore the potential spatial relationship of the
known geographic information, and on the other hand, it can
enhance the ability to capture dynamic flood information over
time.

As shown in Fig.5 to Fig.8, our model has higher accuracy
and better robustness among the models after the first step.
For IndRNN, we could find it get higher accuracy labeled by
gray rectangles, when predicting at T+1. This model is more
suitable for single-step prediction, since the IndRNN model
of this time period deviate from the actual value due to the
calculation of the neuron weight independence. In addition,
from the perspective of time step analysis, the performance



(a) Result at T+3.

(b) Result at T+6.

Fig. 9. Take one flood as an example,the comparison of the ground truth flow
rates and predicted flow rates computed by ST-GCN, LSTM and IndRNN of
Changhua dataset.Note that the red rectangles indicates the time of flood peak.

trends of the six models change over time, with the best
performance in the less time steps and the worst in the more
time steps.

D. Performance Comparison

To further illustrate the performance of the deep learning
models more intuitively, Fig. 9 plots the predicted river flow
of a flood in the Changhua River Basin. In the process
of hydrological forecasting, the time of flood peak is very
important for that the delay of flood peak forecasting will bring
difficulties to flood work. We mark the peak time of the flood
with a red border in Fig. 9. Here we compare the results of T+3
and T+6. In particular, for LSTM and IndRNN methods, we
find that it is easy to make wrong prediction during flood peak.
Instead,ST-GCN model has better performance in predicting
the time of flood peak. Therefore, our model is suitable to
predict floods of rivers.

V. CONCLUSION

This paper has presented a deep learning approach based
on the use of Graph Convolution Network (GCN) and Long
Short-Term Memory Network (LSTM) for flood prediction to
predict the stream flow which is called S-GCN. The role of
GCN is to capture the spatial correlation of each feature in

the hydrological data and LSTM is use to record the temporal
information. Besides, our model imports the attention model to
consider dynamic variation of stream flow by assign weights
to adjust attention score in the hidden layer of the S-GCN
at every moment. Under the task of flood prediction, our
method achieves better predictive performance under different
lengths of prediction horizon compared to existing baselines.
For future work, we can use the attention mechanism to replace
the RNN model, that is to say, improve the novel Transformer
model to flood forecasting.
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