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Abstract—Object detection based on convolutional neural net-
works is a hot research topic in computer vision. The illumination
component in the image has a great impact on object detection,
and it will cause a sharp decline in detection performance
under low-light conditions. Using low-light image enhancement
technique as a pre-processing mechanism can improve image
quality and obtain better detection results. However, due to the
complexity of low-light environments, the existing enhancement
methods may have negative effects on some samples. Therefore,
it is difficult to improve the overall detection performance in
low-light conditions. In this paper, our goal is to use image
enhancement to improve object detection performance rather
than perceptual quality for humans. We propose a novel frame-
work that combines low-light enhancement and object detection
for end-to-end training. The framework can dynamically select
different enhancement subnetworks for each sample to improve
the performance of the detector. Our proposed method consists
of two stage: the enhancement stage and the detection stage. The
enhancement stage dynamically enhances the low-light images
under the supervision of several enhancement methods and
output corresponding weights. During the detection stage, the
weights offers information on object classification to generate
high-quality region proposals and in turn result in accurate
detection. Our experiments present promising results, which show
that the proposed method can significantly improve the detection
performance in low-light environment.

Index Terms—Low-Light Image Enhancement; Object Detec-
tion

I. INTRODUCTION

Object detection is one of the fundamental tasks in computer
vision. Various applications based on object detection methods
are hotspots in real world, such as autonomous driving [1]
and pedestrian detection [2]. Breakthrough progress has been
made in academic research of object detection especially after
the emergence of deep learning. However, images captured in
real world often have many quality problems, e.g., low light,
low resolution and color distortion, which significantly reduce
the performance of various detection algorithms. For these
problems, it is common practice to use some enhancement
methods to recover a high-quality image from the original
image first, and then detect objects in the recovered image.

Images captured in low-light conditions inevitably en-
counter the problem of quality degradation, such as low
contrast, massive noise and blurred edges and texture. These

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Different lighting types in low-light conditions, which demonstrates
the diversity and complexity of low-light environments. Examples are col-
lected from websites and search engines, where (a), (b) are extremely low
light environments; (c), (d) are weak illumination environments with blurred
or foggy objects; (e), (f) contain Visible light source and objects in dark place;
(g), (h) are bright but objects are in shadows.

problems will lead to object classification errors and inaccurate
localization in low-light images. If using the paradigm of
“enhancement first, detection later”, we will encounter many
difficulties. We summarize these difficulties of object detection
tasks in low-light environments from three perspectives as
follows:

1) Most of the existing low-light image enhancement meth-
ods are designed to improve the perceptual quality for
human eyes. These methods which perform well on
visual qualiy may not significantly improve the perfor-
mance of the object detection task.

2) The diversity of low-light environments (see Fig. 1)
makes it difficult for many enhancement methods to
cover all situations. In other words, different enhance-
ment methods may have different or even negative
effects on different samples.

3) Quality problems in low-light images are interrelated.
For example, the denoising method may simultaneously
blur the edges and texture of the object to be detected,
resulting in classification and localization errors.

To solve the first problem, We propose an end-to-end

2020 25th International Conference on Pattern Recognition (ICPR)
Milan, Italy, Jan 10-15, 2021

978-1-7281-8808-9/20/$31.00 ©2020 IEEE 5611

20
20

 2
5t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 P
at

te
rn

 R
ec

og
ni

tio
n 

(IC
PR

) |
 9

78
-1

-7
28

1-
88

08
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IC
PR

48
80

6.
20

21
.9

41
28

02

Authorized licensed use limited to: Hohai University Library. Downloaded on May 16,2022 at 11:37:18 UTC from IEEE Xplore.  Restrictions apply. 



framework that combines low-light image enhancement and
object detection tasks. For the problem of environmental di-
versity in low-light conditions, we use a dynamic enhancement
network to perform filtering on low-light images in a sample-
specific way, which is capable of adapting to different low-
light conditions. For the interrelated quality problems, we
use multiple parallel subnetworks to simulate different en-
hancement methods, generating enhanced images. A sample-
specific weight is used to selectively enhance the different
features in low-light images. The weighted fusion of multiple
enhancement methods can provide different views for the
model and enhance its representation ability, thereby solving
the interrelated image quality problems to a certain extent.

In this paper, we propose a novel method to combine the
low-light image enhancement and object detection tasks in
a end-to-end framework. In this way, our proposed method
is capable of dynamically enhancing the low-light images
to improve the object detection performance. Our quantita-
tive evaluation shows that the proposed method significantly
improves the detection performance without increasing the
computational cost too much. We demonstrate the effective-
ness of each part of the method and analyze the impact of
hyperparameter selection through the ablation study.

The main contributions of this paper can be summarized as
follows:
• We propose a novel framework for the end-to-end training

of low-light image enhancement and object detection,
which can significantly improve the detection perfor-
mance in low illumination environment.

• We introduce dynamic filter networks and adaptive ex-
posure module in enhancement stage, which can acquire
stronger feature representation based on the supervision
of existing enhancement methods.

II. RELATED WORK

We will briefly introduce two topics related to our work in
this section. The first part contains existing low-light image
enhancement methods. Most of them are designed to improve
perceptual quality but not object detection performance. The
second part shows several works similar to ours, where the
authors also seek to enhance images to improve the perfor-
mance of downstream visual tasks such as object detection,
image classification, etc.

A. Low-Light Image Enhancement

Low-light images taken in low-light conditions always
have poor quality. Researchers have been trying to recover
high-quality images from low-light images through image
enhancement methods. Traditional methods can be divided
into two categories: histogram-based methods and Retinex-
based methods. Histogram-based methods, such as adaptive
histogram equalization (AHE), map the histogram of the entire
image to a new distribution pixel by pixel. The idea of the
Retinex theory [3] is to separate the illumination from the
reflectance and the Retinex-based methods use the illumination
map to enhance the image. However, the performance of

traditional methods is poor due to the large amount of noise
in low-light images.

Recently, methods based on deep learning have shined
on many low-level vision tasks, such as denoising [4]. The
performance of deep learning in the field of low-light image
enhancement is also exciting. Lore et al. [5] proposed a deep
autoencoder-based approach to perform contrast enhancement
and denoising simultaneously for low-light images. Wei et
al. [6] combined the deep neural networks and Retinex theory
and proposed an end-to-end framework for decomposition and
illumination enhancement. EEMEFN in [7] employed a multi-
exposure fusion module and an edge enhancement module for
extremely low-light image enhancement.

Unlike the methods whose purpose is to improve image
quality for better human visual perception, in this paper, we
propose an end-to-end framework to enhance low-light images
dynamically in order to improve the performance of object
detection tasks. We mainly use the performance of object
detection to quantitatively evaluate the effectiveness of our
method, rather than considering it from the perspective of
perceptual quality.

B. Image Enhancement for Downstream Vision Tasks

In recent years, some studies have pointed out the impact
of image quality degradation on downstream visual tasks.
Karahan et al. [8] analyzed the impact of several image
quality degradations on the performance of CNN-based deep
face recognition methods. They showed that blur, noise and
occlusion will cause a significant performance degradation,
and the deep CNN model is robust to distortions such as color
distortion and color balance changes. Dodge et al. [9] reached
a similar conclusion after considering five types of quality
distortion. In real life scenarios, the images we captured cannot
always be assumed of high quality. Therefore, using image
enhancement techniques is a straightforward idea to improve
the performance of high-level vision tasks.

Similar to our work, there are some researchers aim to use
image enhancement techniques to help improve downstream
vision tasks, e.g., image classification [10], action recogni-
tion [11] and object detection [12]. Although the methods de-
signed in this way have limited improvement in the perceptual
quality of the image, they can significantly improve the perfor-
mance of downstream vision tasks. Costa et al. [10] considered
several types of noise and noise level and proved that these
denoising methods can improve classification accuracy for
noisy data.Kvyetnyy et al. [12] proposed an image denoising
method based on bilateral filtering and wavelet thresholding,
and a boosting method for object detection. Bai et al. [13]
focused on small object detection and proposed an end-to-
end generative adversarial network to improve the detection
performance for small-sized objects.

In this paper, we focus our attention on subfields of low-
light images and adopt a end-to-end framework. By combining
low-light image enhancement task with object detection task,
our proposed method can selectively learn good representa-
tions that can help the detector improve performance.
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Fig. 2. Our proposed end-to-end framework. We show the end-to-end framework of multiple enhancement subnetworks and the detector. I refers to the
input of the enhancement stage. I′1, . . . , I

′
N denotes the output of each enhancement subnetwork, which is supervised by different enhancement methods. The

architecture of the enhancement subnetworks is shown in Fig. 3. Note that the parameters of each enhancement subnetwork are not shared.

III. PROPOSED METHOD

In this section, we describe our proposed low-light image
enhancement method for object detection. It is important to
emphasize that our method does not pursue perceptual image
enhancement but aims to dynamically enhance the low-light
image features that is conducive to improving the performence
of a high-level vision task, i.e., object detection. We will first
introduce the general framework of our method, then we will
detail the two components of the framework. Finally, we will
demonstrate how to train the overall framework end-to-end.

A. Overall Framework

As is illustrated in Fig. 2, the proposed method mainly
consists of two stages: the enhancement stage and the detection
stage. We unify these two stages in one framework for end-
to-end joint optimization. In the enhancement stage, inspired
by [14], we use a dynamic filter networks to generate sample-
specific convolution kernels. These convolution kernels are
used to dynamically enhance low-light images. We employ
common enhancement methods to constrain the behavior of
each enhancement subnetwork so that the model can adap-
tively choose the most effective enhancement methods.

In the detection stage, we use a variant of Faster R-
CNN [15] to perform object detection based on the en-
hanced images generated by the enhancement stage. We assign
weights to the classification losses of RPN to improve the clas-
sification performance at this stage. The weight is calculated
from the losses in the enhancement stage, which represents the
importance of each enhancement subnetwork for each sample.

The network in the enhancement stage is composed of N
subnetworks of the same architecture in parallel. We denotes

the input RGB image as I , and the enhancement network will
output N images, i.e.,

I ′i = Ei (I) , 1 6 i 6 N . (1)

where I ′i is generated by the i-th subnetwork. Each subnetwork
Ei is supervised by a specific enhancement method. We train
the subnetwork by calculating the loss LEnhance

i between the
illumination images enhanced by the specific enhancement
method and the enhancement subnetwork Ei.

At the same time, we can get the weight corresponding to
each subnetwork in some way, such as softmax after negation
or the method we use later. Let the weight calculation method
be F , then the weight vector w can be calculated as:

w = F
(
LEnhance
1 , LEnhance

2 , . . . , LEnhance
N

)
. (2)

The i-th component wi of the weight w indicates the im-
portance of the i-th enhancement method. A larger weight
indicates that the corresponding enhancement method is more
conducive to improving the performance of the detector, and
vice versa.

The detector receives the output of the enhancement stage
as input, and finally generates bounding boxes and the corre-
sponding object categories. The detection stage is similar to a
standard two-stage object detection algorithm. The difference
is that we use the weights calculated in the enhancement
stage to produce higher quality proposals. In this way, we
can make the gradient in the detection stage backpropagate to
the enhancement stage and train end-to-end.

B. Stage I: Dynamic Enhancement
In essence, the enhancement stage actually simulates vari-

ous enhancement methods, and on this basis, enhance those
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Fig. 3. The architecture of the enhancement networks. The heights of the rectangles corresponding to different layers indicate the scale of the corresponding
feature maps. For clarity, we have omitted the reshape operations of the input and output of U-Net-like architecture. Convolution block consists of two
consecutive convolutional layers activated by ReLU. During the downsampling process, the number of channels of the feature map is continuously increased,
from 1 to 512, and the upsampling process is the opposite. The output image is finally obtained through a 1× 1 convolution layer, i.e., the exposure map.

features that can improve detection performance. We propose
a dynamic enhancement network composed of several subnet-
works which are independent of each other. In Fig. 3, we illus-
trate the detailed architecture of the enhancement network. The
enhancement network includes two components: the dynamic
filter generator and the adaptive exposure module (AEM). The
dynamic filter is designed to simulate a specific enhancement
method, and AEM is to further activate areas in the image that
are critical to improve detection performance. We proposed a
convolutional architecture based on U-Net [16] to combines
the two parts in one subnetwork. In this way, the two modules
can share the feature maps to reduce the computation cost.

Given a RGB image I ∈ Rh×w×3, the enhancement network
output the dynamic filter K ∈ Rm×m×1 and the exposure map
E ∈ Rh×w×1. Hereby, h and w indicate the original height
and width of the input image, respectively, and m denotes the
size of the dynamic convolution kernel. Concretely, we first
transform the input image into the luminance-chrominance
color space, obtaining the luminance component Y and the
chrominance components Cb and Cr, and the luminance
component Y ∈ Rh×w×1 is resized into a fixed shape. The
resized luminance component of image I is fed into the
downsampling part of U-Net and output feature maps of a
fixed size.

Based on these shared feature maps, the filter generator use
a fully connected layer to dynamically generate the filter K.

Through the upsampling part of the enhancement network,
AEM normalizes the output of U-Net with sigmoid function
and resize it into the original shape using bilinear interpolation.
The output exposure map E can be considered as the pixel-
wise exposure intensity. The significance of AEM is that it
provides more non-linearities for the enhancement network to
simulate those non-linear enhancement methods. Additionally,
AEM can alleviate the problem of edge blur caused by the
convolution operation in the dynamic filtering. In this way, the
enhancement network can even retain the potential to surpass
the performance of the baseline methods. Finally, we use the
enhanced luminance component Y , the dynamic fitler K and
the exposure map E to obtain the enhanced output, i.e.,

Y ′ = (Y ∗K) ◦ E , (3)

in which ∗ is the convolution operation and ◦ denotes the
Hadamard product. Note that Y ′ must not be clipped (e.g.,
0.0 to 1.0 or 0 to 255) because it will make the initial
gradient too small, which cause the enhancement network
to difficult to converge. After that, we combine Y ′ and the
two chrominance components and transform it back into RGB
color space. To train the enhancement network, we use the
mean squared error (MSE) between the filtered image Y ′ and
the target image T , where T is obtained from Y through
a specific image enhancement method, e.g., bilateral filter
and histogram equalization. We use N parallel enhancement
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networks to get N enhanced images, i.e., I ′1, . . . , I
′
N . The loss

of the enhancement stage is the sum of the losses of all the
subnetworks, i.e.,

LEnhance = γ ·
N∑
i=1

LEnhance
i = γ ·

N∑
i=1

MSE (Y ′i , Ti) , (4)

where γ is a hyperparameter we have to adjust. At the end of
the stage, we assemble the enhanced images and the original
image I into a minibatch and feed them into the detector in
the second stage.

C. Stage II: Object Detection
The detection stage is based on a variant of the original

Faster R-CNN [15] framework, which extracts feature pyra-
mids using FPN [17] and generates RoIs through RoIAlign
operation. The minibatch formed by the enhanced images in
the first stage will be fed into the backbone to extract features.
We train RPN on the N + 1 groups of different feature maps
and use the weighted classification loss for backpropagation
to improve the classification performence. The weights are
calculated based on the losses of the enhancement stage as
follows:

wi =

(
1− LEnhance

i∑N
k=1 L

Enhance
k

)
· N

N − 1
, (5)

where LEnhance
i is the loss of the i-th enhancement sub-

network. The more the output of the enhancement network
deviates from the basic enhancement method, the smaller the
weight is set. Note that, the parameters of RPN are shared
by these groups. In addition, there is a problem from which
group of feature maps should we extract RoIs. In our method,
we simply use the feature maps corresponding to the original
image. We try the different operations, but we finally found
that there are only marginal performance differences between
them and the original one provides the most stable results.

D. End-to-end Joint Optimization
For the end-to-end training of the N enhancement networks

and the detector, we add the enhancement loss LEnhance to the
detection losses and obtain a total loss as:

L = LEnhance +
1

N + 1
·

N∑
i=0

wiL
rpn cls
i

+
1

N + 1
·

N∑
i=0

Lrpn reg
i + Lcls + Lreg (6)

Note that, w0 is the weight corresponding to the original RGB
image and is invariably equal to 1. The regression losses of
RPN are not weighted because a weighted regression loss
will cause inaccurate object localization. Through the joint
optimization, the enhancement network can learn a sample-
specific transformation for improving detection performance.

IV. EXPERIMENTS

To quantitatively evaluate our proposed method, we conduct
all our experiments on a challenging low-light image dataset
named Exclusively Dark [18].

A. Dataset

The Exclusively Dark (ExDark) dataset is the only open-
access collection consisting entirely of low-light images with
object level annotations. The dataset contains 7363 images
with 12 object categories (3000 images for training, 250
images per class; 1800 image for validation, 150 images per
class; 2563 images for testing). These images are captured
in 10 different low-light conditions from the extremely low
illumination to twilight. Note that, this dataset does not provide
paired high-low exposured images, so it is difficult to apply
supervised enhancement methods.

The metrics used here are the same as the MS COCO [19]
to fairly evaluate the performance of the detector. i.e., AP is
the mean value of mean average precision (mAP) over 10
IoU thresholds from 0.5 to 0.95. AP50 and AP75 are the mAP
over the IoU thresholds of 0.5 and 0.75, respectively. AR100 is
the average recall given 100 detections per image. APS, APM
and APL are the AP for small, medium and large objects,
respectively.

B. Implementation Details

All our experiments were conducted on a server with two
Intel Xeon E5-2620 v4 (@2.1GHz) CPUs and four NVIDIA
GTX 1080Ti graphics cards. Our experimental codes are
mainly based on PyTorch framework,

We train all our models for 12 epochs using SGD optimizer
with an initial learning rate of 0.01. Weight decay is set to
0.0001 and the momentum is 0.9. Due to the linear warm up
mechanism, the learning rate increases from 1/3 × 0.01 to
0.01 in the first 500 iterations. The learning rate is decreased
to 0.001 after 8 epochs and 0.0001 after 11 epochs. We choose
ResNet-50 as the backbone of Faster R-CNN and the 5-level
feature pyramid extracted by FPN. We use an image scale of
800 and 512 RoIs per image as set in [17]. We apply data
augmentation by horizontal flip with 0.5 probability for both
baselines and our method.

C. Ablation Study

TABLE I
COMPARISON OF THREE WAYS TO FUSE ENHANCEMENT METHODS.

AP AP50 AP75 APS APM APL

Selection Network1 30.6 61.6 27.3 4.4 18.9 35.2
Raw Input2 31.6 61.6 28.5 3.7 18.6 36.4
Ours 32.1 62.1 29.9 3.6 20.0 36.9
1 Train a network to select a specific enhancement method;
2 Use the target images T and original image I as inputs of detector.

1) Fuse Various Enhancement Methods: We compare three
different ways to use the existing enhancement methods for
improving the performance of detector. We simply choose
histogram equalization and Image sharpening filtering as the
enhancement methods.

The first method is to train a network to select a specific
enhancement method or use the original image. However,
some technical issues prevent it from performing well. First,
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Fig. 4. Quanlitative results of the enhancement networks. The first row
mainly shows the detection result on the input image I , in which the red box
represents the ground truths and the green one is the result.

TABLE II
COMPARISON OF TWO USAGE OF WEIGHTS.

AP AP50 AP75 APS APM APL

Feature Fusion1 30.8 62.4 26.8 8.0 19.1 35.1
Weighted Loss2 32.1 62.1 29.9 3.6 20.0 36.9
1 Feature Fusion: weighted sum of feature maps;
2 Weighted Loss: weighted RPN classification loss.

the detection performance of an object is easy to evaluate but
the one of an image which contains various objects is not.
For example, one method has poor localization performance,
and the other has good localization but misses objects. We can
hardly judge which method performs better. Second, it causes a
serious imbalance of the ground-truth labels for the training of
selection network. For example, in our experiments, the two
enhancement methods only perform better that the original
image on few samples.

The second one is to directly use the images enhanced by
the existing methods as the input of the detector. In other
words, we do not use enhancement networks to simulate
these methods. The classifation loss is simply averaged, so
the enhancement network will not get feedback on which
enhancement method is better.

Compared to the two methods, ours can learn better rep-
resentations thanks to the well-designed enhancement subnet-
works, which are more cirital the improve detection result.
The end-to-end joint training helps our method dynamically
set the weights of different enhancement methods for different
samples, so that our method is more reasonale and outperforms
the two methods above (see Table I).

2) Feature Fusion or Weighted Loss: We use two methods
to explore the application of weights derived from enhance-
ment network. One is feature fusion. We use weighted sum
of the extracted feature maps, and then send them to the
RPN to generate proposals. Table II shows the results using

TABLE III
QUANTITATIVE RESULT OF THE IMPACT OF AEM.

AP AP50 AP75 APS APM APL

with AEM 32.1 62.1 29.9 3.6 20.0 36.9
without AEM 31.5 61.4 29.0 3.7 19.7 36.1

TABLE IV
COMPARISON OF DIFFERENT FILTER SIZES.

Filter Size AP AP50 AP75 APS APM APL

3× 3 31.5 61.9 29.1 5.3 18.9 36.3
5× 5 31.7 61.7 29.3 4.0 19.1 36.5
7× 7∗ 32.1 62.1 29.9 3.6 20.0 36.9
9× 9 31.8 61.5 30.5 4.1 18.9 36.4
11× 11 31.7 61.9 28.8 5.6 18.7 36.3

this method. The overall performance of feature fusion is
worse than the method using weighted loss, but the detection
performance of small objects is improved. In addition, it
can also reduce the computational cost required to generate
region proposals, although the cost of computation for RPN
is not large in absolute term. The other is to perform forward
propagation on these feature maps respectively, and calculate
the weighted average of the RPN classification loss. In this
paper, we use the second approach because it can bring about
a greater overall performance improvement.

3) Impact of Adaptive Exposure Module: We investigate
the impact of adaptive exposure module by removing the
upsampling stage of the enhancement network, which means
that it only generates filters and does not outputs exposure
maps. Quantitative result is shown in Table III. Results with
AEM are better than the one without it.

The filter generated by the dynamic filter generator is the
same for every position in the image, which is disadvantageous
for some scenes (e.g., shadow scene) with sharp luminance
contrast. Adding the AEM can alleviate this problem for two
reasons. First, this module provides more nonlinearity for the
enhancement process to better simulate the nonlinear enhance-
ment methods, while the convolution is a linear operation. In
the experiment, we find that after adding this module, the loss
of the enhancement stage has decreased significantly. Second,
this module can avoid texture and edge blurring problems that
occur caused by convolution operations.

D. Hyperparameter Selection

We investigate two critical hyperparameters that have an
effect on the experimental results, i.e., the size of the filter and
the weight γ of the loss of enhancement stage. As claimed
in [24] and [25], the choice of filter size depends on the
specific application. Intuitively, an excessively large filter size
will make the enhanced image too smooth, which reduce
the detection performance. Too small filter size will make it
difficult to fit the basic enhancement method. We modify the
last fully-connected layer of the filter generator so that it can
output filters of different sizes Too large or too small filter
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TABLE V
QUANTITATIVE EVALUATION OF THE PROPOSED METHOD.

Enhanced Channel(s)* AP AP50 AP75 APS APM APL

RetinaNet [20] - 27.6 52.7 25.9 4.5 16.0 31.8
Faster R-CNN w FPN - 30.4 61.0 27.3 4.3 18.8 35.2

Bilateral Filter (BF) Y 27.8 57.6 23.2 2.2 17.3 32.0
Guided Filter (GF) [21] Y 25.8 53.9 21.7 1.9 14.6 30.2
Histogram Equalization (HE) Y 28.4 57.4 25.6 2.6 17.6 32.7
Image Sharpening (IS) Y 29.0 59.2 25.7 2.9 17.2 34.0

Loh et al. [22] Y 29.0 58.4 25.4 5.2 17.4 33.2
EnlightenGAN (EGAN) [23] Y 29.2 59.7 25.5 4.5 18.1 33.6
Loh et al. [22] RGB 27.5 55.8 23.3 4.3 16.6 31.6
EnlightenGAN (EGAN) [23] RGB 29.4 58.8 26.1 6.8 18.6 33.8

Proposed Method (based on Loh et al.’s & EGAN) Y 31.6 61.7 28.8 7.4 18.5 36.3
Proposed Method (based on HE & IS) Y 32.1 62.1 29.9 5.4 18.8 36.4
* Enhanced channel means which channel we apply enhancement methods. Y denotes the illumination component in YCbCr color

space and RGB indicates all the channels in RGB color space.

size can affect the detection results to varying degrees, mainly
due to differences in the detection results of medium-scale
objects. We found that the filter of 7 × 7 achieves the best
overall performance.

For the choice of γ, our main goal is to make the loss of
enhancement stage on the same order of magnitude as other
losses. In our experiments, we found that γ in a certain range
(from 0.05 to 0.2) has little effect on the experimental results.
However, if γ is too large (e.g., γ = 1), it will cause the model
to be untrainable due to gradient explosion. Too small γ will
make it difficult for the enhancement network to converge. As
a result, we choose γ = 0.1 in all our experiments.

E. Qualitative and Quantitative Evaluation

Fig. 4 shows the qualitative results of the enhancement
stage. We demonstrate the intermediate results of the enhance-
ment network corresponding to two different enhancement
methods (Image sharpening Filtering and Histogram Equal-
ization), i.e., exposure map E, enhanced luminance image Y ′

and the results of the specific enhancement method (target
image T ). Fig. 5 shows the curated examples of the detection
results. All the quantitative results are shown in Table V.

First, we show the results of two classic one-stage and
two-stage object detection algorithms, i.e., RetinaNet [20] and
Faster R-CNN [15]. Without any enhancement to low-light
images, both of them have low detection performance.

Second, we independently compare the effects of several
image enhancement methods on the detection results. Specif-
ically, we feed all the images enhanced by specific enhance-
ment methods into the detector to evaluate the impact of each
method on detection performance. As is illustrated, the classic
filtering methods reduce the performance of the detector to
varying degrees, which shows that they are actually not good
for object detection tasks. Among them, the two methods
for denoising (Bilateral Filter and Guided Filter [21]) greatly
reduce AP. It may be due to the two filters blurring objects in
the images in low-light conditions, although they can suppress
noise well. We also compare our method with several trainable

methods [22], [23] proposed recently. It should be noted that
we can only compare the unsupervised methods, because the
dataset does not provide well-exposed images as supervision.
Intuitively, these methods have no explicit denoising process,
resulting in considerable noise in the detection results, which
is detrimental to localization.

Finally, we apply our method to untrainable and trainable
methods mentioned before. For the untrainable methods (HE
and IS), despite their poor overall performance, they still per-
formed well on some samples. The advantage of untrainable
methods is that they usually do not have a large computational
cost and do not require complicated adjustment for hyperpa-
rameters. Experimental results show that our method has good
compatibility with these methods and can further improve the
detection performance on the basis of them.

V. CONCLUSION

This paper presents an end-to-end solution for the object
detection in low-light conditions. The proposed method con-
sists of two stages: the enhancement stage and the detection
stage. The enhancement stage uses a convolutional neural
network to generate filters and exposure maps and obtain the
dynamically enhanced images. The detection stage is based
on a variant of Faster R-CNN, which is trained jointly with
the enhancement network. We demonstrate the effectiveness
of our proposed method on a new low-light image dataset
named ExDark. Experimental results show that the proposed
method significantly improves detection performance without
making too many modifications to the detector. We hope our
work can inspire more research on object detection in low-
light environments in the future.
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