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Abstract—To minimize the negative impacts brought by floods,
researchers from pattern recognition community pay special
attention to the problem of flood prediction by involving technolo-
gies of machine learning. In this paper, we propose to construct
hierarchical Bayesian network to predict floods for small rivers,
which appropriately embed hydrology expert knowledge for
high rationality and robustness. We present the construction
of the hierarchical Bayesian network in two stages comprising
local and global network construction. During the local network
construction, we firstly divide the river watershed into small
local regions. Following the idea of a famous hydrology model -
the Xinanjiang model, we establish the entities and connections
of the local Bayesian network to represent the variables and
physical processes of the Xinanjiang model, respectively. During
the global network construction, intermediate variables for local
regions, computed by the local Bayesian network, are coupled
to offer an estimation for time-varying values of flow rate by
proper inferences of the global network. At last, we propose
to improve the output of Bayesian network by utilizing former
flow rate values. We demonstrate the accuracy and robustness of
the proposed method by conducting experiments on a collected
dataset with several comparative methods.

I. INTRODUCTION

As one of the most common and largely distributed natural
diasters, flood happens and brings damage. If we could accu-
rately forecast flood by predicting its time-varying flow rate
values in advance, hundreds of lives and quantity of property
could be saved.

In the past decade, researchers from pattern recognition and
hydrology community have proposed a variety of methods
to construct accurate, robust and reasonable flood prediction
models. We generally category them into two types, namely
hydrology model [1], [2], [3] and data-driven model [4], [5],
[6]. The methods in the first group solve highly non-linear
systems, which describe the complex hydrology processes
from clues to results by functions. However, such methods
are extremely sensitive to parameters [7]. These parameters
require to be different from one river to the another for
good performance, while setting theses parameters requires
special research effort on quantity of historical hydrology
data when using hydrology model. The problem of sensitive
parameters could be more obvious when predicting floods for
small rivers, since small rivers are lack of special research
as well as exhaustive hydrology data. The methods in the
second group usually estimate the river flow rate based on

historical time series observation, i.e. former rainfall and river
runoff, by machine learning methods. Most of the data-driven
models ignore the detailed hydrology processes. However,
floods are complicated natural phenomena affected by multiple
factors. It’s hard to guarantee the rationality and robustness
by utilizing such data-driven methods without considering
hydrology processes.

In this paper, we pay special attention to the problem
of flood prediction for small rivers, whose catchments are
smaller than 3000 kilometers. Flood prediction of small rivers
is more complicated than prediction of large rivers, due to
the shortage of historical hydrology data and the varieties
in geographical and spatial-temporal features. To solve such
problem, we propose to predict floods for small rivers by
constructing a hierarchical Bayesian network with hydrology
processes embedded for high rationality and robustness. Our
key idea stems from the thought that we should properly utilize
the strength of hydrology model to improve the accuracy,
robustness and rationality of data-driven model. The hydrology
expert knowledge behind the hydrology model could relieve
the requirement for large amount of data, which coincides with
the purpose of predicting floods for small rivers. Essentially,
the proposed method designs the structure of hierarchical
Bayesian network, whose entities and connections correspond
to the factors and processes extracted from a hydrology model,
i.e. the XAJ model (short for the Xinanjiang model) [3], [8].

The main contribution of the paper is to propose a hierarchal
Bayesian network for flood prediction of small rivers, which
embeds hydrology process extracted from the XAJ model to
improve the accuracy, robustness and rationality. Involving
prior and expert knowledge extracted from hydrology model,
the prediction uncertainty of the proposed method could be
largely reduced for high robustness and robustness. Mean-
while, the size for training dataset could be reduced to meet
the requirement of predicting floods for small rivers. Moreover,
the hierarchal structure is proposed to handle the geo-spatial
characteristics of the inputting data in a proper way.

II. RELATED WORK

Considering the relevance to the proposed method, we
detailly describe the XAJ model and data-driven model in this
section.
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The XAJ Model. Floods could be represented as processes,
in which the spatial and temporal distribution of the rainfall
generally rules the flood waves formation [9]. The XAJ model
not only considers the rains and runoffs, but also take other
hydrology processes into account, such as evaporation from
water bodies and surface, rain infiltrated and stored by the
soil, and so on. Specifically, the runoff for a river is calculated
by the following four modules in the XAJ model. Note that
modules a, b, c are processes in local regions, while module
d represents the routing process in a global sense.

(a) Evaporation module: The actual evaporation of the local
region is computed based on the potential evaporation and the
soil tension water capability in three layers, i.e., upper, lower
and deep soil layers, where the tension water refers to soil
water storage capability in relation with drought.

(b) Runoff generation module: The local runoff is generated
according to the rainfall, evaporation and soil tension water
capability. The XAJ model implies that runoff is not produced
until the soil water content of the local region reaches its field
capacity, and thereafter the excess rainfall becomes the runoff
without further loss.

(c) Runoff separation module: The generated local runoff
is subdivided into three components, including surface runoff,
interflow runoff and groundwater runoff.

(d) Runoff routing module:The outflow from each sub-
catchment is finally routed by the Muskingum successive-
reaches model [3] to produce the outlet flow of the whole
catchment.

Although some insensitive parameters of the XAJ model
can be preset by experience, the sensitive parameters must
be calibrated based on quantities of historical streamflow
data using either a trial-and-error approach or an automatic
optimization algorithm. This makes it difficult to apply the
XAJ model on small rivers to achieve accuracy predicting
results, due to the shortage of historical data.

Data-driven Model. From the viewpoint of a decision
maker who should make a rational flood decision based on the
information provided by a data-driven model, the prediction
associated with the estimation of predicting uncertainty could
provide more valuable information. The operational flood
predicting system thus need provide convinced probability
distribution instead of a single value of estimate. Researchers
from the pattern recognition community have proposed a
quantity of methods to involve uncertainty into prediction-
s for enhancements of reliability and credibility, including
Bayesian-based methods [4], [11], [12], Neural Network [9],
deep learning methods [5], [6], [13] and so on.

Early, Krzysztofowicz et al. [11] introduce a Bayesian
predicting system, which interprets the basic principles of
Bayesian predictive inference and constructs numerical ex-
amples to show the quantification and integration of the
uncertainties. With their introduction, utilizing the Bayesian
theory for flood predicting has become possible and practical.
Reggiani et al. [12] construct a modified Bayesian predicting
system by involving numerical weather information to address
the spatial-temporal variabilities of precipitation during pre-

Fig. 1. Information about the Changhua watershed, where (a) is the map for
various kinds of stations and (b) represents catchment area corresponding to
the listed rainfall stations. Note that Station CH is not only a rainfall station,
but also a river gauging station whose river flow needs to be predicted. The
station SS is a rainfall station and evaporation station.

diction. Later, cheng et al. [14] perform accurate daily runoff
forecasting by proposing an artificial neural network based on
quantum-behaved particle swarm optimization, which trains
the ANN parameters in an alternative way and achieves much
better forecast accuracy than the basic ANN model.

Deep learning architectures have demonstrated the incredi-
ble power to solve different kinds of problems, such as object
detection [15], text detection [16], action recognition [17]
and so on. Due to high potentials of discovering effective
features from data, many researchers thus utilize deep learn-
ing architectures for flood prediction. For example, Bai et
al. [13] propose a multi-scale deep feature learning method
with hybrid models to deal with the daily reservoir inflow
forecasting. In their hybrid model, ensemble empirical mode
decomposition and Fourier spectrum are first employed to
extract multi-scale features and then represented by three deep
belief networks (DBNs) respectively. Zhuang et al. [5] design
a novel Spatio-Temporal Convolutional Neural Network (ST-
CNN) to fully utilize the spatial and temporal information and
automatically learn underlying patterns from data for extreme
flood cluster prediction. Liu et al. [6] proposes a deep learning
approach by integrating stacked auto-encoders (SAE) and
back propagation neural networks (BPNN) for the prediction
of stream flow, which simultaneously takes advantages of
the powerful feature representation capability of SAE and
superior predicting capacity of BPNN. However, the above
deep learning methods need to be trained on large datasets
and they simply use hydrology information as constraints and
ignore the hydrology processes. Without the prior knowledge
and reasonable inference extracted from hydrology processes,
they can’t predict floods successfully for small rivers.

III. THE PROPOSED METHOD

Take a typical small river, i. e. Changhua river for exam-
ple, we illuminate the steps to predict hourly flood runoffs
using the proposed hierarchy Bayesian network. The general
information about Changhua watershed is shown in Fig. 1,
in which we can see 7 rainfall stations, 1 evaporation station
and 1 river gauging station. In general, we aim to predict the

226



Fig. 2. The illumination of the proposed hierarchy Bayesian network. Note that step a, b, c and d refer to the specific module extracted from a hydrology
model, i.e. the XAJ model.

runoff at the river gauging station CH for next few hours by
utilizing various flood factors, including rainfalls observed at
the rainfall stations, evaporation observed at the evaporation
station SS and former river runoff observed at CH.

Considering the collected flood factors has sparse geo-
spatial and spatial-temporal attributes, we design the pro-
posed hierarchical Bayesian structure with Local and Global
Bayesian network as shown in Fig. 2. Note that we embed
the prior knowledge by designing such hierarchical structure,
which corresponds to the hydrology process of the XAJ model
described in the last section. During the Local Bayesian
Network stage, we aim to predict the runoff contribution
values in the local regions. We firstly divide the total river
watershed into small local regions based on hydrology prin-
ciples [18] and the locations of rainfall stations. The split
results of local regions are represented in Fig. 1 (b). We
then collect multiple kinds of inputs in each local region,
i. e. soil moisture T t

i , rainfall W t
i and evaporation Et

i by
interpolation based on observed flood factors, where i refers
to the index of local region. Recall that the calculation of
soil moisture T t

i is illuminated in the last section. Next, we
follow the first three modules of the XAJ model as discussed
in the last section, in order to embed the expert knowledge
about hydrology processes into the construction of the local
Bayesian network. Finally, the trained local Bayesian network
could compute several hydrology intermediate variables, such
as surface runoff S̃t+1

i , interflow runoff Ĩt+1
i and groundwater

runoff G̃t+1
i . In the Global Bayesian Network stage, we

utilize the last module of the XAJ model to construct the
global Bayesian network, which predicts the river runoff for
the nexth hours {Qt, ..., Qt+h} based on the output of the
local Bayesian network.

A. Local Bayesian Network

In this subsection, we firstly introduce the theory foundation
and novelty by modeling hydrology processes with Bayesian
Network for flood predicting problem. After that, we will
describe the construction of local Baysian network in detail.

Given data D, Bayesian theory can be used to determine
the posterior distribution of θ as follows:

P (θ|D) =
L(D|θ)P (θ)

P (D)
(1)

where L(D|θ) is the likelihood function and P (θ) is the prior
distribution of random variable θ. Note that the denominator
of Eq. 1 is a constant related only to the data set. During
the calculation of the posterior distribution P (θ|D), the most
important part is the choice of the prior distribution P (θ).
Selecting the prior distribution P (θ) requires considering both
the measured data and available prior knowledge. A prior
distribution obtained from the existing data and research
results is called data-based prior distribution, while non-data-
based prior distribution refers to a prior distribution resulted
from subjective judgments or theory.

Following the conception of Bayesian theory, we propose
to conclude the river runoff by construction proper prior
distribution and analyzing the likelihood between test data and
train data. Specifically, we achieve the prior distribution by
first extracting hydrology processes from the XAJ model as
non-data-based prior distribution and then extracting the data-
based prior distribution from the historic observation data.
By considering prior expert hydrology knowledge from the
predefined hydrology model - the XAJ model and the historic
observation data, we believe the proposed method could couple
the strength of hydrology model and data-driven methods to
improve the accuracy, robustness and rationality. Moreover,
the introduce of non-data-based prior knowledge could relieve
the requirement for large amount of data.

Bayesian Network offers an appropriate structure to joint
learn the posterior distribution with the prior knowledge.
Essentially, it expresses the conditional dependence structure
between variables by Directed Acyclic Graph (DAG). It’s
noted that each attribute represented by a node of the DAG
graph is independent with his non-children attributes under the
definition of the Bayesian Network. Specifically, the proposed
method considers the given observation data D is formed by
a set of hydrology attributes {Xi|i = 1...n} and the predicted
run-off value is a node of the Bayesian network, which could
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be further represented as an attribute X0. Therefore, we could
write down the joint distribution of {Xi|i = 0...n} as

P (X0, X1, X2, ..., Xn) =

n∏
i=0

P (Xi|ζ(Parents(Xi))) (2)

where function Parents() and ζ() represents the sets of
his directly precursor attributes and the corresponding joint
distribution, respectively. Based on Eq. 2, we can easily get the
conditional probabilities, i.e. posterior distribution, by the use
of magrinalization [19]. Furthermore, we could simplify this
problem to network-based dependency relations, which form a
Conditional Probability Table (CPT) to describe probabilities
between dependency attributes.

After explaining the theory and novelty of applying
Bayesian network, we describe the construction of local
Baysian network in detail. Considering the rainfall, soil mois-
ture, evaporation and other input factors are spatial-sensitive
distributions, hydrology models often divide river watershed
into smaller catchments based on the locations of rainfall
stations. We follow this idea and utilize a hydrology-related
division algorithm [18] to construct small local regions. Taking
the ith local region as an example, we present the structure
of the corresponding local Bayesian network in Fig. 2. We
can notice the local model adopt the potential evaporation,
the rainfall W t

i , the soil tension water capability T t
i , the

evaporation Et
i and the soil free water capacity F t

i as inputs.
Among them, the potential evaporation and W t

i are collected
by rainfall stations, while T t

i and F t
i are pre-set values between

a reasonable range and will iteratively be close to their real
values during the training.

Followed by hydrology process extracted from the XAJ
model, we firstly compute the evaporation Et

i following the
process of the evaporation module illuminated in the last
section. Next, we calculate local runoff Lt+1

i by establishing
the joint distribution among Et

i , W t
i and T t

i . During this step,
we not only utilizes the spirit of runoff generation module
of the XAJ model, but also iteratively modifies T t

i during
learning, which results in a more convinced T t

i . After that, we
utilize the soil free water capacity F t

i to divide the local runoff
Lt+1
i into three components, i.e. surface runoff St+1

i , interflow
runoff It+1

i and groundwater runoff Gt+1
i . This step follows

the spirit of runoff separation module of the XAJ model.
Finally, we involves these inputting variables to train learned
distributions, which could compute the results of the divided
components, i.e. the total surface runoff S̃t+1

i , interflow runoff
Ĩt+1
i and groundwater runoff G̃t+1

i . To sum up, we properly
embed the hydrology process and variables into the local
Bayesian Network and replace equations in the XAJ model
with the learning structures.

B. Global Bayesian Network

In this subsection, we first describe the construction of the
global Bayesian network and then offer several details for
implementing the hierarchical Bayesian network.

The structure of the global Bayesian network is presented
as the right part of Fig. 2, which adopts river runoff Qt−1,

Qt in former times and the output of the local Bayesian
network as input. We construct the global Bayesian network
to achieve rough predicting results of river runoff in the next
few hours {Qt, ..., Qt+h}. Note that the river runoff, like
Qt−1 and Qt, could only be measured by the river gauging
station. We firstly convert inputting variables of different local
regions, i.e. the total surface runoff S̃t+1

i , interflow runoff
Ĩt+1
i and groundwater runoff G̃t+1

i , into outflow Rt+1 with
the Muskingum successive-reaches method [3]. After that, we
fully-connect the inputtings and outputs of predicting variables
to learn the joint distribution.

During training, we use loopy belief propagation to estimate
the parameters of conditional probability table. Due to the
loopy structure of the network, it is difficult to check for
the convergence and we adopt the following trick: training
is terminated when 10 iterations of gradient decent go not
yield averagely improved likelihood over the previous 10.
Moreover, we discretizate the inputting variables of Bayesian
network for better generality. Recall the fact for the hydrology
model that the accuracy of the predicting is highly related with
its parameters, such as soil tension water T t

i and soil Free
water F t

i . However, the parameters of conditional probability
table corresponding to the proposed Bayesian network could
be modified iteratively to tend for their real values during
learning.

C. Bayesian Network for Flood Prediction

In this section, we develop a novel method by utilizing the
error of former predictions and observations to help hourly
flood prediction. Specifically, when intending to predict the
runoff for k hours later, we should utilize the former predicting
runoff values and observed runoff values of former ρ hours to
help forecast.

To utilize such information, we firstly define predicting
confidence α(a, b) as the confidence weight for the predicting
runoff at time b based on the predicting and observed data
starting from time a, which could be expressed as:

α(a, b) =
1

b− a− 1

b−1∑
k=a+1

P (a, k)−R(k)

R(k)
, where a < b

(3)
where P (a, k) represent the predicted run-off values for time
k when predicting at time a, and R(k) represent the observed
run-off values at time k. It’s noted α(a, b) adopts the relative
errors between the observed and predicting data as weight.
Then, a time-related weight γ(a, b) is defined to express
weight for predicting at different time during former ρ hours:

γ(a, b) = 1− ξ(b− a+ 1) (4)

where ξ is a preset time-related forgetting factor. Finally, we
could improve the predicted runoff value a achieved in last
section as

δ(a, b) =
τP (a, b) +

∑b−1
k=a−ρ+1 α(k, b)γ(k, b)P (k, b)

τP (a, b) +
∑b−1

k=a−ρ+1 α(k, b)γ(k, b)
(5)

where τ is a preset constant value.
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Fig. 3. Comparison with the ground truth runoff and predicted runoff
computed by the XAJ model, where the predicting time of (a), (b), (c) and (d)
are predicting in one hour, two hours, three hours and four hours, respectively.

IV. EXPERIMENTS

A. Dataset and Evaluation

We collect hourly data of 40 floods happened from 1998 to
2010 in Changhua river and utilize 8-folder cross validation
to evaluate our proposed method. We use standard quality
measures such as Root Mean Square Error (RMSE), Determin-
istic Coefficient (DC), Relative Error of the Flood Peak (REP)
and Error of the Flood Peak Appearance (EPA) for measuring
the quality of flood predicting given by the proposed method.
Note that the latter two measurements are specially designed
for flood predicting by emphasizing the appearance time and
values of flood peak, which often brings most serious damage
to persons and property. These four measurements could
be represented as RMSE =

√
1
n

∑n
j=1(yj − qj)2,DC =

1 −
∑n

j=1
(yj−qj)

2∑n

j=1
(yj−q̄)2

, REP = 1
n

∑n
j=1

|pj−rj |
rj

× 100% and

EPA = 1
n

∑n
j=1 |dj − sj | where n refers to the size of

dataset, yj and qj represent the predicted and observed runoff
value respectively, q̄ refers to the mean value of the observed
runoff during one flood, pj and rj represent the predicted and
observed flood peak value respectively, dj and sj represent
the predicted and observed flood peak appearance time re-
spectively. Note that larger DC value implies more convinced
the predict is, while smaller values of RMSE, REP and EPA
imply better performance the predicting achieves.

B. Experiments on Flood Prediction

We learn the parameters of the hierarchal Bayesian network
with Maximum Likelihood Method and do experiments on a
PC with Core i7 CPU (3.6GHz) and 16GB RAM. Due to
the complicated structure of the proposed Bayesian network,
the training process on Changhua dataset costs 10128s in
total. Once the parameters of conditional probability table
are determined, the average testing time for a sequence of
flow rate values is only 0.00693s. We firstly compare the
prediction results of the proposed method with the results
computed by a hydrology model - the XAJ model. Fig. 3
represents the comparison of the predicted runoff in different
predicting time, while Fig. 4 represents the comparison over
the Changhua dataset with different measurements. From Fig.
3, the hydrology model fails to predict flood peak values from

Fig. 4. Comparison with the predicted runoff of the XAJ model on Changhua
dataset evaluated by different measurements, where (a), (b), (c) and (d)
represent values of RMSE, DC, REP and EPA, respectively.

5th to 15th hour due to its sensitive parameters and lack
of data. Since decision makers mainly concern the predicted
runoff values during flood peak under the consideration of
its terrible damage, the hydrology model is not suitable and
operable to predict floods of small rivers. On the contrary, the
proposed method achieves nearly the same predicted runoff
as the ground truth runoff for 1 and 2 hours prediction, and
slightly different predicted runoff with the ground truth values
for 3 and 4 hours prediction during flood peak period. This
proves the efficiency and robustness of the proposed method
when predicting flood peak values for small rivers. In Fig. 4,
the proposed method achieves much better results in RMSE,
DC, REP and slightly better result than the hydrology model
in EPA, which proves the proposed method is more suitable
than the hydrology model to predict floods of small rivers. The
proposed method achieves a slightly decreasing performance
in RMSE and DC with large predicting time, which proves the
robustness of the proposed method by embedding hydrology
model. The discontinuous REP performance of the proposed
method is mainly caused by the small dataset.

Table. 1 gives the detailed statistics of the proposed method
and other data-driven based methods for the Changhua dataset.
It’s noted the predicting time is settled to 4 hours for all
methods. Among these comparative methods, the cores of Han
et. al [20], Dawson et. al [21], Chang et. al [22] and Lima
et. al [23] are SVM, Neural Network, Radical Basis Func-
tion Network and Extreme Learning Machine, respectively.
All these machine learning structures are popular to predict
floods in pattern recognition community. We implement these
algorithms according to the instructions given in their papers.
From Table. 1, we could see the proposed method achieves
the best performance in RMSE, REP and EPA, and the
second best performance in DC. The small values of REP
and EPA achieved by the proposed method imply our method
is more proper to predict the appearance time and runoff
values of flood peaks. This is because the embedded hydrology
processes and variables increase prior knowledge to predict
flood peaks, while other machine learning structures are short
of such prior knowledge. The proposed method achieves the

229



TABLE I
PERFORMANCE COMPARISON WITH COMPARATIVE DATA-DRIVEN METHODS ON CHANGHUA DATASET.

Methods DC RMSE REP EPA

Han et. al [20] 0.777 166.38 3.92 0.313

Dawson et. al [21] 0.745 164.99 4.10 0.19

Chang et. al [22] 0.806 152.57 4.23 0.263

Lima et. al [23] 0.701 155.35 4.19 0.19

The Proposed 0.785 149.55 2.96 0.176

smallest RMSE value, which proves the proposed method is
more appropriate to predict floods in small rivers than other
structures. The second best DC value obtained by the proposed
method implies our method could quantify uncertainty to a
certain extent, while Chang et. al [22] is better at quantifying
uncertainty by introducing uncertainty as a main factor in their
method. To sum up, coupling the strength of the data-driven
and hydrology methods helps predict floods of small rivers.

V. CONCLUSIONS

In this paper, we propose a novel and effective method to
predict floods of small rivers, which constructs a hierarchical
Bayesian network with hydrology processes embedded for
higher rationality and robustness. Experiment results on the
Changhua dataset show the proposed method outperforms the
XAJ model and several data-driven flood prediction methods.
Our future work includes the exploration on other hydrology
purposes with the proposed method, such as mid-term flood
predicting.
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