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Abstract—To minimize the negative impacts brought by floods,
researchers from pattern recognition community utilize artifi-
cial intelligence based methods to solve the problem of flood
prediction. Inspired by the significant power of Long Short-
Term Memory (LSTM) networks in modeling the dynamics and
dependencies of sequential data, we intend to utilize LSTM
networks to predict sequential flow rate values based on a set
of collected flood factors. Since not all factors are informative
for flood prediction and the irrelevant factors often bring a lot
of noise, we need to pay more attention to the informative ones.
However, original LSTM doesn’t have strong attention capability.
Hence we propose an context-aware attention LSTM (CA-LSTM)
network for flood prediction, which is capable to selectively
focus on informative factors. During training, the local context-
aware attention model is constructed by learning probability
distributions between flow rate and hidden output of each LSTM
cell. During testing, the learned local attention model assign
weights to adjust relations between input factors and predictions
at all steps of LSTM network. We conduct experiments on a
flood dataset with several comparative methods to demonstrate
high accuracy of the proposed method and the effectiveness of
the proposed context-aware attention model.

I. INTRODUCTION

As one of the most common and largely distributed natural
diasters, flood happens and brings damage. If we could ac-
curately forecast flood by predicting its sequential flow rate
values in advance, hundreds of lives and quantity of property
could be saved. In the past decade, researchers from both
pattern recognition and hydrology community have proposed
a variety of methods to construct accurate, and robust flood
prediction models. We generally category them into two types,
namely hydrology model [1], [2], [3] and data-driven model
[4], [5], [6]. The methods in the first group solve highly
non-linear systems, which describe the complex hydrology
processes from clues to results by functions. However, such
methods are extremely sensitive to parameters [7]. Meanwhile,
adjusting theses parameters requires special research effort
on quantity of historical flood sequences, which prevents the
usage of hydrology model for flood prediction in rivers without
special research interest, e.g. small rivers. The methods in
the second group usually estimate the river flow rate based
on historical collected flood factors, e.g former rainfall, river
runoff and so on, without considering the detailed physical

* indicates equal contribution.

processes. Due to the complex mechanism of flood producing,
it’s efficient and costless to directly learn the relation between
flooding cues and flow rates, especially for rivers with few
research efforts.

Inspired by the significant performance [8], [9], [10] of
Convolutional Neural Networks (CNNs) and LSTMs, we in-
tend to utilize deep learning methods to discover the inherent
relations between flood factors and flow rates. However, floods
don’t happen frequently, which leads to the small size of flood
dataset when utilizing a flood as a training sample. Since deep
learning methods generally require large set of samples to train
for an highly effective feature representation, it’s difficult to
directly deploy deep learning methods on flood prediction.
Moreover, the collected factors are not all representative
and informative for flood prediction. For example, the water
retained in soil has great effect on floods in humid area, while
it’s not important for flood prediction in dry places [3]. This
is due to different capacities to contain water corresponding
to various types of soil, i.e. high and low capacity for soil in
humid and dry areas respectively. The informativeness degree
of a flood factor may vary over different floods and even
over different time points in the same flood. Therefore, it is
beneficial to selectively focus on the informative factors at
important time points and try to ignore the irrelevant ones,
since the latter contribute very little for flood prediction, and
even bring in noise that can decrease the accuracy of flood
prediction. This selectively focusing mechanism is known as
attention model, which has been demonstrated to be very
effective in various applications, such as speech recognition
[11], action recognition [12] and so on.

In this paper, we propose an context-aware attention LSTM
(CA-LSTM) network for accurate and robust flood prediction,
which has strong attention ability for flood prediction. We
first transform the original problem to predicting flow rates at
time points, which enables to use flow rates and flood factors
at various time points as training samples, thus increases
the size of dataset to fit the requirement of deep learning
methods. In the proposed CA-LSTM network, we describe
the context-aware attention by constructing several weight
schemes to assign weights based on both flood factors and
time points. During training, the local attention information
is extracted by learning probability distributions between flow
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rate and hidden output (representing contextual information
[13]) of each LSTM cell. During testing, the local attention
information, i.e. parameters of the learned distributions at all
steps, is fed to the network, thus the network can use it to
measure the informativeness weights of the new input factors
at all steps.

The main contribution of the paper is to propose a context-
aware attention LSTM network for flood prediction, which
retains the sequential modeling ability of the original LSTM,
meanwhile promoting its selective attention ability. To the
best of our knowledge, this is the first LSTM architecture
with explicit local context-aware attention as its fundamental
capability for flood prediction. The proposed context-aware
attention model is simple but effective, which fits the problem
of flow rate prediction by constructing probability distribu-
tion to represent the local context. The learned distribution
is further utilized as a weight scheme to clearly show the
informative factors at each time points of flood sequence,
which is reasonable to help discover and analyze inherent
patterns between factors and flow rate, especially for regions
whose flood mechanism is too complex to build a physical
hydrology model, such as small rivers.

II. RELATED WORK

Considering the relevance to the proposed method, we
detailly describe the data-driven model and context model in
this section.

Data-driven Model. With the development of artificial in-
telligence technologies, researchers from the machine learning
community have proposed a quantity of methods to predict
flood, including Bayesian-based methods [4], SVM [14], Neu-
ral Network [15], deep learning methods [5], [6], [16] and so
on.

Early, Reggiani et al. [17] construct a modified Bayesian
predicting system by involving numerical weather information
to address the spatial-temporal variabilities of precipitation
during prediction. Yu et al. [14] utilize the support vector
machine to establish a real-time forecasting model by applying
a two-step grid search method to find the optimal parameters
for SVM. Later, cheng et al. [18] perform accurate daily runoff
forecasting by proposing an artificial neural network based on
quantum-behaved particle swarm optimization, which trains
the ANN parameters in an alternative way and achieves much
better forecast accuracy than the basic ANN model.

Due to high potentials of discovering effective features from
data, researchers utilize deep learning architectures for flood
prediction. For example, Bai et al. [16] propose a multi-
scale deep feature learning structure with hybrid models to
handle the daily reservoir inflow forecasting. In their hybrid
model, ensemble empirical mode decomposition and Fourier
spectrum are first employed to extract multi-scale features,
which are then represented by three deep belief networks
(DBNs) respectively. Zhuang et al. [5] design a novel Spatio-
Temporal Convolutional Neural Network (ST-CNN) to fully
utilize the spatial and temporal information and automatically
learn underlying patterns from data for extreme flood cluster

prediction. Liu et al. [6] proposes a deep learning approach by
integrating stacked auto-encoders (SAE) and back propagation
neural networks (BPNN) for the prediction of stream flow,
which simultaneously takes advantages of the powerful fea-
ture representation capability of SAE and superior predicting
capacity of BPNN. Unlike the deep learning methods men-
tioned above, the proposed method performs context-aware
attention over all steps of the LSTM network to emphasize
the importance of informative factors for different kinds of
flood sequences.

Attention Model. Human perception focuses selectively on
parts of the scene to acquire information at specific places and
times. This kind of processes is named as attention model,
which has drawn increasing attentions to deal with languages,
images and other data. Early, Itti et al. [19] incorporate the
attention model for object detection by modeling it as saliency
maps, i.e. pixelwise weighting of image parts that locally stand
out, without learning process.

For deep neural networks, attention models is constructed
as a dimension of interpretability into their internal represen-
tations by selectively focusing on specific information, when
performing a particular task. Recently, attention models are
gradually categorized into two classes, i.e. hard attention [20]
and soft attention [21]. Hard attention makes hard decisions
on choosing parts of the input data as focuses, which results
in improper algorithms to be learned through gradient descent
and back-propagation. Mnit et al. [22] propose a recurrent
neural network model that is capable to extract information
from an image by adaptively selecting a sequence of regions
and only processing the selected regions at high resolution.

On the contrary, soft attention takes the entire input into
account by weighting each part or step of the observations
dynamically. The objective function is usually differentiable,
making gradient-based optimization possible. Sharma et al.
[12] proposed a recurrent mechanism for action recognition
from RGB data, which integrates convolutional features from
different parts of a space-time volume. Yeung et al. [23]
report a temporal recurrent attention model for dense labelling
of videos [43], which integrates multiple input frames and
soft predictions generated for multiple frames at each time
step. Recently, Liu et al. [13] propose Global Context-Aware
Attention LSTM for 3D action recognition, which recurrently
optimize global contextual information and further utilize it as
informative functions to assist accurate action recognition. The
proposed context-aware attention model could be classified
into soft attention using a recurrent scheme to optimize.
It describes local context information as a form of weight
scheme, which is reasonable to understand and analyze the
regression problem of flow rate prediction.

III. THE PROPOSED METHOD

In this subsection, we firstly describe the construction of the
proposed context-aware attention LSTM. Then, we describe
the context-aware attention Model in detail, which is capable
of selectively focusing on the informative factors and time
points in the flood sequence.
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Fig. 1. Illustration of the proposed context-aware attention LSTM network for flood prediction, where blue rectangles indicates the local context-aware
attention model.

Fig. 2. The map of various types of stations in Changhua river. Note that
Station CH is not only a rainfall station, but also a river gauging station
whose river flow needs to be predicted. The station SS is a rainfall station
and evaporation station.

A. Construction of CA-LSTM

Take Changhua river as an example, we describe the steps
to predict and analyze the hourly flood using the proposed
method. The general information about Changhua watershed
is shown in Fig. 2, in which we can see 7 rainfall stations,
1 evaporation station and 1 river gauging station. In general,
we aim to predict the flow rate at the river gauging station
CH for next m hours (represented by {pt+1, ..., pt+m}) by
utilizing various flood factors, including rainfalls observed at
the rainfall stations from former k hours, current evaporation
observed at the evaporation station SS, flow rates observed
at CH from former k hours and the overall estimated ranifall
for next m hours achieved directly from weather report. With
the objective of flow rate prediction, we design the proposed
context-aware attention LSTM network as shown in Fig. 1.
The input of the proposed LSTM network is a feature achieved
by concatenating all former mentioned flood factors. Then,
we adopt the layer of batch normalization to process the
input, in order to accelerate training with higher learning rates
and less careful parameter initialization [24]. We then follow
the conventional structure of LSTM cell to build each step
of CA-LSTM network. A typical LSTM unit consists of an

input gate ni, a forget gate nf , an input modulation gate
ng, an output gate ot, an output state ht and an internal
memory cell state ct. By utilizing the gating mechanism,
the unit can learn and memorize a complex representation
for long-term dependencies at memory cell ct among the
input sequence data. More detailed, the representation in ct is
constructed as a combination of former memory information
after forgetting and new information generated from input, i.e.
ct = nf

⊙
ct−1 + ni

⊙
ng, where

⊙
denotes element-wise

multiplication.
Inspired by [22] which considers the attention problem as

the sequential decision process of how an agent interact with
a visual environment, we design the proposed context-aware
attention model as defining ”interaction level” with the input
feature, where the ”interaction level” is essentially described
by weights assigned to variables inside the input feature.
Therefore, the normalized input I is fed to all steps of CA-
LSTM as the original description for flood factors, which is
kindly similar to the visual environment defined in [22]. Mean-
while, the context-aware attention model recurrently defines
the corresponding weights for the normalized input I , leads
to attentions on informative factors. Such weight scheme for
one step thus could be represented as:

gt = I · lt−1 (1)

where · represents the element-wise multiplication, gt is the
input for next step representing a feature with extracted
informative flood factors, lt−1 is the learned weight computed
by the proposed context-aware attention model. In a global
sense, the proposed CA-LSTM network involves combinations
of informative flood factors in all steps to achieve a more
accuracy and robust flow rate prediction.

Finally, we utilize the logistic regression classifier connected
to the last step of CA-LSTM to makes regression about
predicted flow rates for next m hours. The smooth L1 loss
function [25] to measure the difference between the true flow
rate values p̃ and the predicted result p, is defined as

loss(p̃, p) =
1

n

n∑
i=0

s(p̃i, pi) (2)
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TABLE I
COMPARISON OF RMSE ON CHANGHUA DATASET WITH CA-LSTM AND SEVERAL COMPARATIVE METHODS.

Method T+1 T+2 T+3 T+4 T+5 T+6 Average

CA-LSTM 37.24 46.44 52.37 61.10 74.16 88.36 59.95

LSTM 41.71 54.20 66.11 75.50 85.52 96.49 69.97

FCN 27.30 41.88 56.87 84.32 110.8 125.3 74.41

SVM 180.0 179.8 179.8 179.9 180.1 180.4 180.0

where pi and p̃i are prediction and ground truth vectors at time
i containing flow rate values for next m hours respectively, n
refer to the size of dataset which utilizes flow rates and flood
factors at various time points as training samples and function
s() is defined as:

s(p̃i, pi) =


0.5(p̃i − pi)

2 if |pi − pi| < 1

|p̃i − pi| − 0.5 otherwise

(3)

We use the back-propagation through time (BPTT) algorithm
to minimize the loss function. Note that we adopt smooth L1
loss function, since it make the loss value convergent in a
faster and more stable way comparing with using MSE as
loss function.

B. Context-aware Attention Model
Previous hydrology work [3] has already shown that there

is often a subset of informative factors which are important
as they contribute much more to generating floods, while the
other ones can be irrelevant (or even noisy) to the flow rate.
Consequently, to achieve a high accuracy for flood prediction,
we need to identify the informative factors and concentrate
more on their features, meanwhile trying to ignore the features
of the irrelevant ones, i.e., selectively focusing (attention) on
the informative flood factors is beneficial for reliable flood
prediction.

Hence we propose to introduce a context-aware attention
model to the LSTM network, which holds the local contextual
information for the flood prediction and can be fed to each step
of LSTM to assist the attention procedure. The context-aware
attention model is built around a recurrent neural network,
shown as blue rectangles in Fig. 1. At each step, it processes
the input data, integrates information over time, i.e. the infor-
mation contained in parameters, and decides how to weight the
flood factors at next time step. The key idea of the proposed
attention model stems from the the supposition that we could
encode the attention information extracted from training sets
by probability distribution and decode such information by
sampling and regarding as weights.

Specifically, the hidden output ht (representing contextual
information) is firstly fed into a fully-connected network,
transforming ht into a probability distribution based on the
learned parameters of the network. After generating distribu-
tion with fully-connected work, we adopt sigmoid activation

function to normalize the result distribution from 0 to 1,
leading the corresponding sample value to be proper as a
weight. Above all, the learned weight lt, utilized to construct
the weight scheme in the last subsection, is subject to the
learned distribution, which could be written as follows:

lt ∼ d(sig(fp(ht; θp))) (4)

where d refers to a distribution, function fp() and sig()
represents the fully-connected network and sigmoid activation
respectively and θp represents the learned parameters during
training.

In fact, the proposed context-aware attention model is fit
for dynamic environments due to the design of probability
description and simple one-layer structure. Moreover, unlike
former methods [22] requiring additional training process
to learn weights for attention model, the proposed attention
model could be optimized as part of CA-LSTM network
using BPTT method. For flood prediction, the result weight
generated by the proposed model is rational to discover and
analyze inherent relations between flood factors and flow rate.

IV. EXPERIMENTS

We collect hourly data of 40 floods happened from 1998
to 2010 in Changhua river as our original dataset. Recall
that we design to use flow rates and flood factors at various
time points as training samples to increase the size of dataset.
After such transformation, the number of samples is increased
to 8555. We utilize 8-fold cross validation to evaluate our
CA-LSTM network and comparative works. We use standard
quality measures, i.e. Relative Mean Square Error (RMSE)
for measuring the quality of flood predicting, which could be
represented as

RMSE =

√√√√ 1

n

n∑
j=1

(yj − qj)2 (5)

where n refers to the number of testing samples, yj and qj
represent the predicted and observed flow rates respectively.
Note that smaller values of MSE imply better performance the
predicting achieves.

We train the CA-LSTM network by defining its sequence
length as 32 and the dimension of hidden output as 128.
The learning rate, weight decay and batch size are settled as
0.00225, 10−6 and 100, respectively. We utilize 500 epoches to
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Fig. 3. Comparison of RMSE among CA-LSTM, LSTM and FCN when
predicting at different time points.

convergent for the final prediction results. The proposed CA-
LSTM network runs on a workstation (2.4GHz 6-core Xeon
CPU, 60G RAM, Nvidia GeForce GTX 1080Ti and Ubuntu
64-bit OS) for all the experiments.

Table. I gives the detailed statistics of the proposed
CA-LSTM network and several comparative methods for
Changhua dataset. Note that we implement the conventional
LSTM network, FCN (Fully-Connected Network) and SVM
for comparison. The structure and training parameters of
LSTM network is exactly the same as CA-LSTM except for
the context-aware attention model. The FCN is designed with
10 fully-connected layers and SVM is implemented with the
kernel of radial basis function. As shown in Table. I, CA-
LSTM network achieves the lowest RMSE values except for
prediction at T+1 and T+2. In fact, LSTM is designed to solve
the problem of long-term dependencies with the structure of
cell memory. In other words, LSTM based network is good
at handling and predicting important events with relatively
long intervals or delays. We thus observe that FCN performs
better than both LSTM and CA-LSTM for prediction at T+1
and T+2, meanwhile performs much worse than LSTM and
CA-LSTM for prediction from T+3 to T+6. The difference
of RMSE values between CA-LSTM and FCN is as large as
36.94 when predicting time is set as T+6. The RMSE values
corresponding to SVM is much larger than these achieved by
other three methods, which proves that deep models performs
better at flow rate regression problem than SVM. With the
context-aware attention model, CA-LSTM network achieves
much smaller MSE than that of LSTM network, which proves
the efficiency of the proposed context-aware attention model.
Essentially, it’s rational to focus only on the informative flood
factors, since the mechanism of flood in small rivers is too
complex to analyze and only few factors contribute to the
flood in small rivers.

We show the comparison of RMSE between among CA-
LSTM, LSTM and FCN in Fig. 3. We could find that CA-
LSTM and LSTM gets similar and stable performance, i.e.
slight raise, in RMSE when the predicting hour increases
from T+1 to T+6, while the RMSE of FCN changes greatly
when predicting time is increased. The stable performance of
CA-LSTM and LSTM proves that LSTM based network is
suitable for long-time prediction by learning and memorizing a

complex representation for long-term dependencies at memory
cell among the input sequence data.

In Fig. 4, we compare the flow rates prediction results
of CA-LSTM, LSTM and FCN with the ground-truth values
during a sample period of time. We could see the CA-LSTM
achieves nearly the same flow rates as the observed flow rates
for prediction at T+2, T+4 and T+6. For LSTM, we could find
it get obvious wrong predictions labeled by blue rectangles,
when predicting at T+4 and T+6. The areas to view wrong
predictions enlarge when predicting with FCN at T+4 and T+6.
In fact, we find wrong predictions are easy to occur during
flood peak period for both methods. Considering its terrible
damage, decision makers mainly concern the predicted flow
rates during flood peak. We could conclude LSTM and FCN
are not suitable and operable to predict floods of small rivers.

The average time to process a prediction for CA-LSTM is
0.302 ms, which is much smaller than 6.953 ms per prediction
achieved by the original LSTM network. The main reason
for much shorter processing time lies in the construction of
the context-aware attention model, which ignore some input
factors for faster computation since these factor are useless for
predicting. Moreover, original LSTM need to resize the input
for each LSTM layer increasing the number of parameters,
while the input of CA-LSTM is always the same, i.e. a feature
constructed by concatenating flood factors. The involve of
context-aware attention model also results in faster convergen-
cy and lower probability to overfit, since additional attention
information helps the network to be more task-specified.

V. CONCLUSIONS

In this paper, we extend the original LSTM network to
achieve a context-aware attention LSTM network for flood
prediction, which is capable to selectively focus on informative
flood factors. In the proposed CA-LSTM network, we describe
the context-aware attention by constructing several weight
schemes to assign weights based on both flood factors and time
points. During training, the local context- aware attention mod-
el is constructed by learning probability distributions between
flow rate and hidden output of each LSTM cell. During testing,
the learned local attention model assign weights to adjust
relations between input factors and predictions at all steps of
LSTM network. Experiment results on the Changhua dataset
show the proposed method outperforms several comparative
methods and the effectiveness of the proposed context-aware
attention model. Our future work includes the exploration on
other hydrology purposes with the proposed method, such as
mid-term flood predicting and flood frequency analysis.
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