
Em-SLAM: a Fast and Robust Monocular SLAM
Method for Embedded Systems

Yirui Wu†‡*, Zhikai Li‡*, Shivakumara Palaiahnakote§, and Tong Lu‡
†College of Computer and Information, Hohai University, Nanjing, China

‡National Key Lab for Novel Software Technology, Nanjing University, Nanjing, China
§Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia

{wuyirui@hhu.edu.cn;lizk@smail.nju.edu.cn;shiva@um.edu.my;lutong@nju.edu.cn}

Abstract—Simultaneous Localization and Mapping (SLAM) is
difficult to deploy in the embedded systems due to its high com-
putation cost and stable input requirements. Building on excellent
algorithms of recent years, we present Em-SLAM, a monocular
SLAM method which is fast and robust in the embedded system.
We present Em-SLAM in three stages comprising initial pose
estimation, iterative pose optimization and correspondences, and
mapping with nearest frame queue. During the first stage, we
perform stable initial pose estimation based on the matched ORB
features extracted around the selected key points. Regarding
initial pose and corresponding key points as input, the second
stage of Em-SLAM iteratively optimizes these inputs values by
tracking key points in the new frames. At the last stage, we firstly
determine keyframes with the help of the proposed nearest frame
queue and then design a greedy search algorithm to find matched
ORB features between keyframes, which are adopted for compact
and robust map reconstruction. Due to the special designs for the
embedded systems, Em-SLAM demonstrates a high accurate and
fast performance on the embedded system for all SLAM tasks:
tracking, mapping and loop closing. We evaluate Em-SLAM on
he most popular datasets by comparing with one latest SLAM
method.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) [1], [2],
[3] is one of most active research areas in the fields of
pattern recognition and robotics. SLAM performs the task
of constructing a map of an unknown environment while
simultaneously estimating the pose of an agent via visual
clues. Recently, SLAM have attracted lots of attentions from
researchers and companies, since they can be deployed on
different types of automatic agents, from mobile robots to
drones, for navigation [4], map reconstruction [5] and so on.

We classify current SLAM methods into two categories,
namely direct methods [6], [7] and feature-based methods [1],
[8]. The main difference between two categories lies in esti-
mating poses and constructing map through corresponding pix-
els or matched features. Without additional feature extraction
and matching, direct methods have shown faster performance
than feature-based methods. Generally, run-time computation
cost of the direct method is linearly related with the number
of corresponding pixels, which is often a small value in direct
methods. However, the computation of photometric error, i.e.
the difference of the projected intensity values of one map
point in two successive frames, is sensitive, as it involves

* indicates equal contribution.

warping and integrating large image regions [3]. Wrong initial
pose estimation could lead the photometric error to reach
the local extremum, resulting in unreliable results. On the
contrary, the feature-based methods could offer a more reliable
pose estimation even with large inter-frame movement, due
to the availability of robust feature detectors and descriptors.
However, extracting and matching features between frames
requires large computation cost, making the feature-based
method not suitable for resource limited systems, such as the
embedded systems. Moreover, the camera shaking and large
inter-frame movement greatly affect the robustness during the
deployment of SLAM on embedded systems, since embedded
systems with smaller shape may behave in a more unstable
way than large robots. Therefore, either current feature-based
methods or direct methods can’t guarantee the fast and robust
performance in the embedded systems.

With the idea of utilizing the advantages of feature-based
and direct methods to improve the performance in the embed-
ded systems, we propose Em-SLAM, which utilizes matched
key points between frames to estimate the initial pose at
initialization, and performs fast tracking to compute the robust
results of both pose and reconstructed map at runtime. Since
key points extracted at initialization are adopted as the initial
correspondences for runtime tracking, the runtime computation
cost is linearly related with the number of extracted key points,
which is determined by several parameters. The proposed
method thus supports instant re-deployment on embedded sys-
tems with different computation resource by simply adjusting
parameters.

The main contribution of the paper is to propose Em-
SLAM, which could perform pose estimation and map recon-
struction in embedded systems by involving the strength of
both feature-based and direct methods. The proposed method
could achieve robust and fast performance in run-time, due to
stable initial pose estimation, fast iterative pose optimization
and reliable map reconstruction. The proposed method also
supports instant re-deployment on different embedded systems
by simply adjusting parameters. Moreover, we propose a
structure, named as nearest frame queue (short for NFQ),
which serves to find the matching keyframe with less time
and avoids the situation of loss tracking.

2018 24th International Conference on Pattern Recognition (ICPR)
Beijing, China, August 20-24, 2018

978-1-5386-3788-3/18/$31.00 ©2018 IEEE 1882

II. RELATED WORK

A. SLAM Problem Definition

SLAM is the problem of determine the robot poses si and
a map of the environment mi from the feature positions fj
and image feature measurements zij :

p(si,mi|fj , lij) (1)

where si denotes the robots pose at time i consisted by a robots
x-y coordinate in the plane and its heading direction, mi refers
to the reconstructed map at time t, fj represents the positions
of the features in the jth frame and lij represents the image
feature measurements - the observation of feature fj when
robot is with pose si. Applying Bayes’ rule to sequentially
updating si or mi, we could rewrite Equ. 1 as

p(si|fj , lij ,mi) and p(mi|fj , lij , si) (2)

The classical mapping methods can be found in [1], [9],
[10] and we mainly focus on the part of pose estimation. As
defined in [11], the best way to estimate pose is to construct a
probability model with the structure of a probabilistic Markov
chain, where si and fj are variables, and li,j are represented
by edges in the chain graph. In SLAM, this network will
continuously grow as new pose and measurement variables
are added at every time step, and new features will be added
whenever new parts of a scene are explored for the first time.

B. Monocular SLAM

Monocular SLAM methods could be classified as either
feature-based or direct method.

The standard approach of a feature based method is to firstly
extract and match a sparse set of salient image features in
nearby frames. After matching, the approach robustly recovers
and refines camera motion and map structure through epipolar
geometry and reprojection error minimization, respectively.
PTAM [8] is the most representative feature-based SLAM
algorithm that achieves robustness through camera tracking
and mapping quantity of features. PTAM is further improved
with edge features, a rotation estimation step during tracking
and a better relocalization method [12]. Recently, ORB-SLAM
[1], [13], which is currently the state of the art method, utilizes
the extraction of sparse ORB features from the input image
to carry out four tasks: tracking, mapping, relocalization and
loop closing. Note that ORB-SLAM could compute a sparse
reconstruction of the scene as well as to estimate the camera
pose with the help of employing local bundle adjustment and
pose graph optimization. However, directly deploying ORB-
SLAM in the embedded system could result in system crash
and lag performance, due to its high computation requirement.

Direct methods estimate the map structure and pose directly
from intensity key values among frames. The first approaches
[14], [15] utilize the filter to jointly estimate the map feature
locations and the camera pose. However, it has the drawbacks
of wasting computation in processing consecutive frames with
little new information and the accumulation of linearization
errors. Later methods [16], [17] use nonlinear least squares

Fig. 1. The framework of the proposed Em-SLAM consists of three steps: (a)
initial pose estimation, (b) iterative pose optimization and (c) mapping with
nearest frame queue.

optimization instead to estimate the surface normals of the
patches, which allows tracking a patch over a wide range of
viewpoints. Recently, Engel et .al [6] combines a fully direct
probabilistic model with consistent, joint optimization of all
model parameters, achieving real-time performance even in the
embedded systems. However, the photometric error of directed
method is large with strong inter-frame movements, results
in unstable pose estimation. Most relevant to our methods,
Forster et. al [3] propose a semi-direct monocular visual odom-
etry algorithm by coupling direct and feature-based methods,
which could obtain impressive results in quadracopters at high
frame-rates without requiring to extract features in frames.

III. THE PROPOSED METHOD

The structure of the proposed Em-SLAM is shown in Fig.
1, which consists of three steps, i.e. initial pose estimation,
iterative pose optimization and mapping with nearest frame
queue. Note that first step and the later two steps are performed
at initialization and at runtime, respectively. During the initial
time, the proposed method firstly finds key points by either
gradients or contrast, and then performs initial pose estimation
based on the matched ORB features, which are extracted
around key points in nearby frames. During the run time,
the proposed method tracks key points in input frames to
iteratively optimize the corresponding key points and initial
pose values, computed by the initialization step. After tracking,
the proposed method decides whether to accept it as a new
keyframe with the help of the proposed nearest frame queue.
If accepted, the ORB features of the new keyframe will
be matched with former keyframes with a greedy search
algorithm. All matched ORB features together construct a
robust and compact map. Besides, the new keyframe will be
used to detect a loop.

A. Initial Pose Estimation From Frames

In this subsection, the proposed method aims to estimate the
initial pose based on matching features from nearby frames at
initialization. The proposed method firstly finds key points by
either gradient or contrast, and then extracts ORB features
[18] around the key points. After extraction, the proposed
method adopts a constant velocity motion model [19] to

1883

Fig. 2. (a) An example of the extracted key points, where blue and yellow
points represent key points with high contrast and large gradient values; (b) An
example to represent the process of mapping, where red points refer to map
points, green lines represent the trajectory of the camera and blue triangles
represent keyframes.

perform pose initialization for one frame based on the matched
ORB features. To stabilize the initial pose estimation during
the shaking period of camera, the proposed method searches
matches in a wide range of nearby frames and constructs a
weight scheme to achieve a robust pose estimation.

Feature-based methods generally can’t achieve desirable
matching results among little texture or motion blurred frames,
since few features could be obtained on such frames. We
thus fuse points with either large gradients or high contrast
to construct the set of key points K as follows:

O ={p|
∑

x∈b(p)

|Is(x)− Is(p)| > εp,s, s = 1, ..., l}

∪
{q|Gs(q)−

1

c

∑
x∈b(q)

Gs(x) > εq,s, s = 1, ..., l}
(3)

where function b(p) and b(q) refer to a square window
centered at pixel p and q respectively, I and G refer to
the intensity and gradients map of the inputting frame, s
represents the scale level of the resized frames computed by
image pyramid, l is the level number of the pyramid (We
set l = 8 by experiments), c is the number of pixels inside
the window, and εp,s, εq,s are two region-adaptive thresholds
based on the mean value of intensity and gradient inside the
window, representing with εp,s = α · 1

c

∑
x∈b(q) Is(x) and

εq,s = β · 1c
∑

x∈b(q) Gs(x). It’s noted the parameters α and β
determine the number of key points. Recall that the runtime
computation cost of the proposed method is linearly related
with the number of the extracted key points, users could
adjust parameters α and β to modify the run-time computation
cost, making it fit with different types of embedded systems.
From Equ. 3, we could know p are pixels with high contrast
computed following the idea of FAST corner detection [20]
and q are pixels with larger gradients by comparing with the
mean gradient of the pixels inside the window. It’s noted we
utilize the intensity property of images and the first order
of intensity values to find p and q, respectively. With such
derivative operations, the proposed method could find more
key points with local maximal property, achieving more robust
pose estimation result. We show an example of the extracted
key points in Fig. 2 (a), where we could see the proposed
method successfully obtains key points even in plain regions.

After finding key points, ORB descriptors are computed on
O to represent the neighboring information around the key
points. The ORB descriptor is widely used in feature matching
due to its robust, fast and view-invariant performance. The
proposed method then uses a constant velocity motion model
to initially predict the camera pose based on the set of matched
ORB features in two successive frames, represented as Mi,i+1

where i represents the order number of the frames. However,
not enough matches lead to violated and unstable motion
model, resulting in wrong pose initialization results. We thus
propose to perform a wider search around key points in the
last frame to guarantee enough matched ORB features between
two successive frames.

Pose estimated by two successive frames may not be accu-
rate if the camera shakes, since the adopted motion model is
designed to compute the pose based on frames with constant
speed. We thus propose to search more matches in nearby
frames for robust pose estimation. Note that we achieve nearby
frames by the proposed nearest frame queue, which is efficient
in obtaining the set of nearby frames due to its basic structure
i.e. queue. After matching, we construct a weight scheme to
compute a convinced pose estimation ri for the ith frame
based on the poses estimated by nearby frames, which could
be represented as:

ri =
n∑

j=1

ωi,jfv(Mi,i+j) (4)

where n is the number of nearby frames (We set n = 10 by
experiments), function fv() represents the constant velocity
motion model, Mi,i+j represents the matched ORB features
between the ith and i+jth frame, and ωi,j refers to the weight
corresponding to the pose estimated based on the ith and jth
frame. Note that we generate ω by one-dimensional gaussian
weight function, which assigns larger weight value to the pose
estimated by closer frame. Finally, we stop the initialization
step until we achieve a stable pose estimation satisfying the
following criterion:

rini = {ri| |ri − ri−1| < γri−1} (5)

where γ is a preset and large threshold value.

B. Iterative Pose Optimization

In this subsection, the proposed method propose to track key
points in input frames to iteratively optimize the corresponding
key points and initial pose. During each iteration, we first
optimize pose based on the neighboring information of key
points and then optimize positions of corresponding key points
in new frame through alignment of the corresponding feature-
patches. Finally, we minimize the reprojection residuals to
compute the robust pose values.

Inspired by [3], we first compute the optimized camera
poses r̃i by minimizing the photometric error between the
input corresponding key points as follows:

r̃i = argmin
ri

1

2

∑
e∈Oi,i−1

∥ δ(ri, Pi(e)) ∥2 (6)

1884

where Oi,i−1 refers to set of the corresponding key points
between the i − 1th and ith frame, function δ() calculates
the photometric error as defined in [21], Pi(e) denotes small
reference pathes of 3 × 3 pixels around the input key point
e in frame Ii. Since Equ. 6 is nonlinear in r̃i, we solve it
in an iterative Gauss-Newton procedure. Note that we extend
the calculation regions for robust optimization and the input
ri and Oi,i−1 could be computed by either initialization or
optimization in the last iteration.

Next, we first perform Lucas - Kanade tracking [22] to
roughly compute the positions of corresponding key points
Oi,i−1 for the new frame, and then refine the positions by
minimizing the photometric error of the patch in the current
frame with respect to the reference patch in the keyframe:

m̃ = argmin
m

1

2
∥ Pi(m)−Ai · Pr(m) ∥, ∀m ∈ Oi,i−1 (7)

where m and m̃ are the positions of key point in set Oi,i−1

before and after refinement respectively, Ir refers to the
keyframe which observes point with the closest observation
angle and Ai is an affine warping matrix, which will be applied
to the reference patch Pr(m) due to its large size. Equ. 7 is
solved using the inverse compositional Lucas - Kanade.

Finally, we again optimize the camera pose ri to minimize
the reprojection residuals as follows:

r̃i = argmin
ri

1

2

∑
e∈Oi,i−1

∥ e− π(ri, pe) ∥2 (8)

where pe refers to a 3D point corresponding to the key point
e and π(ri, pe) is the projection function, which projects
pe to frame plain by the estimated pose ri. It’s noted that
function π() is determined by the intrinsic camera parameters
which are known from calibration. Equ. 8 is essentially the
well-known problem of motion-only Bundle Adjustment [11],
which is solved by using an iterative Gauss-Newton least-
squares minimization algorithm in the proposed method.

C. Mapping With Nearest Frame Queue
In this subsection, the proposed method utilizes the nearest

frame queue to help seek a proper frame as keyframe. Once a
keyframe is determined, we propose a greedy search algorithm
to find matched ORB features between keyframes for map
updating. Meanwhile, we adopt the new keyframe to check
whether a loop is detected.

To insert the current frame into the keyframe database, it
must meet the conditions about the number of key points
and similarity i.e. current frame must track at least 40 key
points and track less than 85% key points than any keyframe
in the keyframe database. It’s noted that we design simple
conditions to speed up the process of inserting keyframes. Due
to the settled low thresholds, the inserting could be robust to
challenging camera movements and typically rotations as well.

Direct applying such conditions requires the implements of
local culling, which is used by [1] and [10], to maintain a
small enough keyframe database so that a compact enough
map reconstruction. However, local keyframe culling is time-
consuming and may delete already reconstructed map points

when culling the corresponding keyframe. We thus propose
NFQ to help seek a proper frame as keyframe without such
culling scheme. The key idea of utilizing NFQ for searching
lies in the fact that nearby frames are similar in features so that
cullling is possible to occur in nearby frames. Pre-saving and
searching strategy relieve the repeated procedures of culling in
neighbourhood so that reduce the computing time. Moreover,
when camera shakes, the current frame may have a higher
degree of matching with the previous n-th frame (when the
relative movement is smaller). We thus utilize NFQ to find a
keyframe with proper matching degree without entering the
tracking loss situation. Specifically, we firstly put the current
frame into NFQ represented by N , whose size is settled before.
When NFQ is full, we search it to determine the set of new
keyframes Kn by measuring and selecting with:

Kn ={i|vi < 90%, where vi = maxfδ(Oi, Oj),

i ∈ N, ∀j ∈ N ∪Kref , i ̸= j}
(9)

where vi represents the similarity when comparing the ith
frame with other frames in the keyframe database and NFQ,
Kref and N are the sets of frames in the keyframe database
and NFQ respectively, Oi refers to the set of key points
corresponding to the ith frame, function fδ() counts the similar
ORB features extracted on two sets of key points.

Once there are an optimized camera pose and several
keyframes, an initial local map is reconstructed using the
covisibility graph of keyframes following the semi-dense 3D
mapping method proposed in [1]. We represent such process in
Fig. 2(b). After inserting a new frame into keyframe database,
the proposed method processes the new keyframe and per-
forms local BA [23] to achieve an optimal reconstruction in
the surroundings of the camera pose. New correspondences
for unmatched ORB in the new keyframe are searched in
connected keyframes in the covisibility graph to triangulate
new points. However, due to the existence of large inter-frame
movement, the feature descriptions of the projected pixels of
the same 3D map point may change greatly after long-distance
move, which makes the accurate matching between two long-
distance ORB features and further the robust and compact
enough mapping hard to realize. We thus introduce a greedy
search algorithm, represented in Algorithm 1, to find matched
key points in long distance. In Algorithm 1, function size()
get the size of the set, σ and τ refers to the index of keyframe

Algorithm 1 Greedy search for matched key points in long
distance
Input: New ORB feature zp, set of ORB features R = {Ri|i ∈
Kref}
Step1: Set S = zp and σ = size(Kref)
Step2: Search in ORB set of keyframe Rσ , compute φσ =
max fsim(S, zτ), ∀zτ ∈ Rσ and the corresponding zσ,τ
Step3: If φσ <= φσ−1, ..., φσ−x

σ = σ − 1 (if σ = 0, stop) and Go to Step2
Else σ = σ − 1 (if σ = 0, stop), S = zσ,τ , and Go to Step2
Output: New correspondence for mapping {zp, zσ,τ}

1885

TABLE I
COMPARISON OF TRANSLATION RMSE (CM) AND PER FRAME PROCESSING TIME (MS) ON TUM RGB AND EUROC DATASET WITH THE PROPOSED

METHOD, ORB-SLAM2 [13] AND LSD-SLAM [9].

Sequence
PC Embedded System

Rp,1 Rp,2 Rp,3 Tp,1 Tp,2 Tp,3 Re,1 Re,2 Re,3 Te,1 Te,2 Te,3

Fr1/xyz 0.9360 0.5927 fail 20.47 24.54 fail 0.9451 0.6012 fail 61.36 89.94 fail
Fr2/xyz 0.4252 0.2401 3.177 18.82 25.04 10.38 0.4278 0.2396 3.175 59.21 87.68 37.37
Fr2/desk 1.056 0.9730 fail 18.29 23.41 fail 1.173 0.9834 fail 53.48 82.95 fail
Fr3/office 1.180 2.328 13.18 18.56 30.86 9.651 1.219 2.349 13.16 58.12 109.0 34.74
MH01easy 4.379 4.399 13.25 19.62 39.91 15.24 4.432 fail 13.31 59.02 fail 54.86
MH02easy 3.180 3.857 11.41 21.26 38.87 15.23 3.276 fail 11.46 66.02 fail 53.34

MH03medium 5.213 4.091 fail 18.16 35.27 fail 5.250 fail fail 54.48 fail fail
MH04difficult fail 6.576 fail fail 35.35 fail fail fail fail fail fail fail

and ORB feature respectively, function fsim() computes the
similarity between two ORB features and x is the number of
searching depth (We set x = 10 by experiments). The key idea
behind Algorithm. 1 is an assumption of transmittal. In other
words, we have an assumption, i.e. if ORB features za, zb and
zc satisfy za = zb and zb = zc, then we can conclude za = zc.
Since directly matching between za and zc is difficult, we
could transform it by searching medial ORB feature zb in a
greedy sense. Moreover, once a new keyframe is inserted, we
propose to follow the idea of [1] to perform loop detection.

IV. EXPERIMENTS

A. Dataset and Evaluation

In experiments, we consider two databases, i.e. TUM RGB
dataset [24] and EuRoC dataset [25], to evaluate the pro-
posed method. Note that TUM RGB dataset is a well-known
benchmark dataset to evaluate the general performance of
the system including localization accuracy, map reconstruction
and processing time, while EuRoc dataset pay special attention
on performance with large scale scene and different levels
of difficulties. In fact, sequences from EuRoc dataset are
classified as easy, medium and difficult depending on cameras
speed, illumination and scene texture. Based on these data, we
utilize the absolute translation RMSE R, proposed in [24], to
evaluate the localization accuracy for one given sequence:

R =

√√√√ 1

n

n∑
i=1

∥ trans(ri, ri,g) ∥2 (10)

where n is the number of frames, ri and ri,g represent the
predicted pose values estimated by a SLAM method and
ground-truth pose for the ith frame respectively, and function
trans() calculates the translational components of the relative
pose error between the estimated and ground-truth pose. Note
that we follow the idea of [24] to only use translation RMSE
for evaluation, since comparing translation RMSE is enough
to prove that the proposed method is fast in performance.

B. Performance Analysis

We perform all experiments on an Intel Core i7-4700MQ
(4 cores @ 2.60GHz) PC with 8Gb of RAM and an ARM
Cortex-A9 (4 cores @ 1.60GHz) Embedded system with 2Gb
of RAM. Table. I gives the localization accuracy and the

Fig. 3. (a) and (b) represent the Trajectory (blue) estimated by the proposed
method and groundtruth (black) for EuRoC MH02easy and TUM RGB
Fr3/office.

time comparison, where subscripts 1, 2 and 3 correspond to
the proposed method, ORB-SLAM2[13] and LSD-SLAM[9]
respectively, subscripts p and e refer to performance on
PC and the embedded system respectively, R is utilized to
measure the localization error, T is the per frame processing
time to measure time performance, and the first four rows
and other rows correspond to sequences in TUM RGB and
EuRoC dataset. Recall that ORB-SLAM is a feature-based
method that achieves significant results on tracking, mapping,
relocalization and loop closing, while LSD-SLAM is able to
build large scale semi-dense maps using direct methods in real
time. The codes for two comparative methods are available
online so that we build them for experiments.

From Table. I, we find the proposed method are able
to process all the sequences, except for MH04difficult. In
MH04difficult, the camera shakes so greatly that the proposed
directly tracking with key points may lose. Meanwhile, LSD-
SLAM fails in four cases. In fact, we find LSD-SLAM is
not robust due to its high computation cost of generating
semi-dense map ORB-SLAM2 fails with four sequences from
EuRoC dataset when implemented in the embedded system.
This is due to the reason the computation cost of ORB-SLAM2
increase greatly so that the embedded system couldn’t support
its running when dealing with difficult sequences. The pro-
posed method introduces the fast iterative optimization on pose
and correspondences between key points to relieve the compu-
tation burden, which guarantees its flexibility especially in the
embedded system. Moreover, the iterative optimization leads
to the fast performance in running, which is proved by the
fact that {Tp,1, Te,1} achieved by the proposed method is much

1886

smaller than that achieved by ORB-SLAM2 {Tp,2, Te,2} and a
slightly larger than that achieved by LSD-SLAM {Tp,3, Te,3}.
In fact, steps of feature extraction and matching increase the
computation of the proposed method when comparing with
LSD-SLAM. On the other hand, such designs are helpful to
purge a more robust and accurate localization result, which
is presented by the statics that {Rp,1, Re,1} obtained by the
proposed method is nearly the same as that achieved by ORB-
SLAM2 {Rp,2, Re,2} and much smaller than that achieved by
LSD-SLAM {Rp,3, Re,3}. By extracting more types of key
points for optimization and design of the nearest keyframe
queue, we also notice more robust performance of the pro-
posed method comparing with ORB-SLAM2, which is proved
by Rp,1 obtained by the proposed method slightly increases
when dealing with easy, medium and difficult sequences form
EuRoC dataset. However, Rp,2 obtained by ORB-SLAM2
raises greatly when the difficulty level of the input sequence
increases. Fig. 3 shows examples of computed trajectories
compared to the ground-truth and more computation examples
are shown on the attached video.

C. Implementation

The proposed Em-SLAM incorporates three parallelled run-
ning threads, i.e. tracking, local mapping and loop closing,.
Recall the steps illuminated in Fig. 1, step (a), (b) and new
key frame decision module in step (c) could be implemented as
functions of the tracking thread. Local mapping thread refers
to the implementation of the mapping module in step (c),
while loop closing thread represents the implementation of
the loop closing module in step (c). Considering mapping and
looping threads might cause delay of the SLAM system during
runtime, we further propose a strategy, i.e. stop mapping and
looping if we find no more changes in the reconstructed map
druing a period of time. Using this strategy will make Em-
SLAM suitable for indoor environment with less computation.

V. CONCLUSION

In this paper, we propose Em-SLAM, a fast and robust
monocular SLAM method, specially designed for the embed-
ded systems. We firstly perform stable initial pose estimation
based on the matched ORB features. Regarding corresponding
key points as input, the proposed method iteratively optimizes
inputs values by tracking key points in the new frames. Finally,
we determine keyframes in NFQ and perform a greedy search
algorithm to find matched ORB features. Comparative experi-
mental results on a popular dataset illustrate the effectiveness
of Em-SLAM. Our future work includes the exploration on
dense map reconstruction with improved Em-SLAM.

ACKNOWLEDGMENT

This work was supported by the Natural Science Foun-
dation of China under Grant 61702160, Grant 61370091,
Grant 61672273, the Fundamental Research Funds for the
Central Universities under Grant 2016B14114, the Science
Foundation of JiangSu under Grant BK20170892, the Science
Foundation for Distinguished Young Scholars of Jiangsu under

Grant BK20160021 and the open Project of the National
Key Lab for Novel Software Technology in NJU under Grant
KFKT2017B05.

REFERENCES

[1] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A
versatile and accurate monocular SLAM system,” IEEE Trans. Robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[2] K. Tateno, F. Tombari, I. Laina, and N. Navab, “CNN-SLAM: real-time
dense monocular SLAM with learned depth prediction,” in Proceedings
of CVPR, 2017, pp. 6565–6574.

[3] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: fast semi-direct
monocular visual odometry,” in Proceedings of ICRA, 2014, pp. 15–22.

[4] M. Milford and G. F. Wyeth, “Seqslam: Visual route-based navigation
for sunny summer days and stormy winter nights,” in Proceedings of
IEEE ICRA, 2012, pp. 1643–1649.

[5] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” IEEE transactions on pattern analysis
and machine intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[6] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” CoRR,
vol. abs/1607.02565, 2016.

[7] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular
visual-inertial state estimator,” CoRR, vol. abs/1708.03852, 2017.

[8] G. Klein and D. W. Murray, “Parallel tracking and mapping for small
AR workspaces,” in Proceedings of International Symposium on Mixed
and Augmented Reality, ISMAR, 2007, pp. 225–234.

[9] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: large-scale direct
monocular SLAM,” in Proceedings of ECCV, 2014, pp. 834–849.

[10] W. Tan, H. Liu, Z. Dong, G. Zhang, and H. Bao, “Robust monocular
SLAM in dynamic environments,” in Proceedings of IEEE International
Symposium on Mixed and Augmented Reality, 2013, pp. 209–218.

[11] H. Strasdat, J. M. M. Montiel, and A. J. Davison, “Visual SLAM: why
filter?” Image Vision Comput., vol. 30, no. 2, pp. 65–77, 2012.

[12] G. Klein and D. W. Murray, “Improving the agility of keyframe-based
SLAM,” in Proceesdings of ECCV, 2008, pp. 802–815.

[13] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo, and RGB-D cameras,” IEEE Trans.
Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[14] N. Molton, A. J. Davison, and I. D. Reid, “Locally planar patch features
for real-time structure from motion,” in Proceedings of BMVC, 2004,
pp. 1–10.

[15] H. Jin, P. Favaro, and S. Soatto, “A semi-direct approach to structure
from motion,” The Visual Computer, vol. 19, no. 6, pp. 377–394, 2003.

[16] G. F. Silveira, E. Malis, and P. Rives, “An efficient direct approach to
visual SLAM,” IEEE Trans. Robotics, vol. 24, no. 5, pp. 969–979, 2008.

[17] A. Pretto, E. Menegatti, and E. Pagello, “Omnidirectional dense large-
scale mapping and navigation based on meaningful triangulation,” in
Proceedings of IEEE ICRA, 2011, pp. 3289–3296.

[18] E. Rublee, V. Rabaud, K. Konolige, and G. R. Bradski, “ORB: an
efficient alternative to SIFT or SURF,” in Proceedings of IEEE ICCV,
2011, pp. 2564–2571.

[19] C. C. De Wit, H. Olsson, K. J. Astrom, and P. Lischinsky, “A new model
for control of systems with friction,” IEEE Transactions on automatic
control, vol. 40, no. 3, pp. 419–425, 1995.

[20] E. Rosten and T. Drummond, “Fusing points and lines for high perfor-
mance tracking,” in Proceedings of IEEE ICCV, 2005, pp. 1508–1515.

[21] S. Baker and I. A. Matthews, “Lucas-kanade 20 years on: A unifying
framework,” International Journal of Computer Vision, vol. 56, no. 3,
pp. 221–255, 2004.

[22] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proceedings of IJCAI, 1981, pp.
674–679.

[23] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustmentła modern synthesis,” in International workshop on
vision algorithms. Springer, 1999, pp. 298–372.

[24] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in Proceed-
ings of IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2012, pp. 573–580.

[25] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The euroc micro aerial vehicle datasets,” I.
J. Robotics Res., vol. 35, no. 10, pp. 1157–1163, 2016.

1887

