
FREESCUP: A NOVEL PLATFORM FOR ASSISTING SCULPTURE POSE DESIGN

Yirui Wu, Tong Lu*, Zehuan Yuan, Hao Wang

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210046, China

ABSTRACT

Sculpture design is challenging due to its inherent difficul-
ty in characterizing an artwork quantitatively, and few works
have been done to assist sculpture design. We present a novel
platform to help sculptors in two stages, comprising automat-
ic sculpture reconstruction and free spectral-based sculpture
pose editing. During sculpture reconstruction, we co-segment
a sculpture from real scene images of different views through
a two-label MRF framework, aiming at performing sculpture
reconstruction efficiently. During sculpture pose editing, we
automatically extract candidate editing points on the sculp-
ture by searching in the spectrums of Laplacian operator. Af-
ter manually mapping body joints of a sculptor to particular
editing points, we further construct a global Laplacian-based
linear system by adopting the spectrums of Laplacian oper-
ator and using Kinect captured body motions for real time
pose editing. The constructed system thus allows the sculp-
tor to freely edit different kinds of sculpture artworks through
Kinect. Experimental results demonstrate that our platform
successfully assists sculptors in real-time pose editing.

Index Terms— Sculpture design, FreeScup, pose editing

1. INTRODUCTION

Displaying sculpture artworks which thousands of people can
see is the dream of most sculptors. It is true that they have
benefited from the recent technologies such as 3D geometric
modeling[1] and artwork retrieval [2] in producing various
sculpture artworks. For example, in sculpture modeling, pre-
cisely defined and highly optimized shapes following a clear
underlying logic [3] are used in abstract sculpture design,
which results in several sculpture families with small physical
maquette or large-scale sculpture design [4]. Human-centered
interaction techniques have also been adopted, for examples,
in the ”See me, Feel me, Touch me, Hear me” project [5], a
trajectory crossing sculptures is crafted by combining textual
and audio instructions to derive directed viewing, movemen-
t and touching in a sculpture garden. In [6], Kinect is also
introduced to help produce 3D animations from physical ob-
jects. However, sculpture design especially in a virtual 3D
environment is still a very tedious process for most sculptors
[4].

Providing efficient and natural tools to inspire the ideas

Fig. 1. Sculpture artworks: (a) The Thinker and (b) The Age
of Bronze by Rodin, (c) Discobolos by Myron.

of sculptors is the target of this research. Generally, real-life
sculpture design consists of the following steps: 1) concep-
tion, 2) initial artwork design, 3) drafting using a small-scale
clay sculpture for observations and discussions, 4) molding
the full-size sculpture, 5) coloring, and 6) finalizing the art de-
sign. Among these steps, Step 1 to Step 3 are particularly time
consuming since even a tiny pose modification may require
the repetition of the design from the beginning. Although art
is always believed difficult to characterize quantitatively, we
find that sculpture design can be much easier to start with a
suitable initial shape and to make incremental changes with
a naturally pose editing tool on the shape. Take the classic
artworks in Fig. 1 as an example. The three sculptures seem
similar in their styles; however, they have very different artis-
tic emotions: unseen pressures are hidden in (a) through the
shrinking body gesture of the thinker, while the pose in (b)
is relax and stretchable, implying humans have been liberated
from an uncultured society. As a comparison, (c) shows the
vitality of humans through a nearly symmetrical shape ”S”. It
inspires us that pose editing actually plays an important role
in sculpture design. That is, if we provide a real-time and free
pose editing platform for sculptors using proper multimedia
devices, sculptors can be inspired by liberating them from te-
dious pose modeling either on a physical sculpture or using a
traditional geometry editing program.

Based on these considerations, we propose a novel sculp-
ture platform named FreeScup for assisting sculpture pose de-
sign. Fig. 2 gives the overview of the platform. The input is
a set of sculpture images captured from different views in a
real scene. It is because most sculptors learn to form his/her

Fig. 2. The proposed framework for assisting sculpture design: (a) inputting a set of multiview sculpture images captured
from a real scene, (b) a 3D mesh is reconstructed, (c) searching for candidate editing points on the sculpture, (d) Kinect input
processing, and (e) Kinect-driven sculpture pose editing.

own artistic style from imitating and modifying existing art-
works. A 3D mesh is then reconstructed from the input by
co-segmenting the images through a two-label MRF frame-
work. Next, our platform automatically searches for candi-
date editing points on the reconstructed sculpture. After map-
ping his/her joints to particular editing points, the proposed
Kinect-driven sculpture pose editing scheme allows sculptors
to edit the artwork in a free way through a Kinect device.

The main contribution of the paper is to propose a new s-
culpture design assisting platform that supports free sculpture
pose modifications. Sculptors are allowed to freely edit their
artworks through multimedia devices and the experimental re-
sults demonstrate the effectiveness of the proposed platform.
By this way, human burden can be greatly reduced either in
tedious clay molding or in geometry editing, which helps s-
culptors focus more on finding fantastic artwork ideas. To the
best of our knowledge, this is the first work towards assisting
sculpture artistic design by using multimedia techniques.

2. INITIALIZATION OF SCULPTURE DESIGN

In this section, we initialize sculpture design by two steps:
sculpture image co-segmentation and 3D reconstruction.

2.1. Co-segmentation from Different Views

The backgrounds in different view images tend to reduce the
quality in reconstructing the foreground sculpture. To solve
this problem, we perform image co-segmentation technique
on all the views simultaneously, namely, segmenting all the
images that contain the same sculpture by making use of the
similar foreground visual characteristics.

If we assign label 1 to the sculpture and 0 to backgrounds,
assuming that L is the binary pixel label of all the images,
the co-segmentation of the sculpture can be modeled by the
following two-label MRF framework:

E(L) =
∑
i

Ea(Li) +
∑
i

Ed(Li) +
∑
i,j

Ep(Li, Lj) (1)

where Ea encourages sculpture pixels to follow its global ap-
pearance, Ep is a potts model to assign penalties to differen-
t label combinations of two neighboring pixels in the same
image, and Ed introduces an objectness measurement [7] by
the reconstructed 3D shape and calibrated cameras, formu-
lating the intuition that the foreground pixel has a consistent
occurrence in all the input sculpture images. To solve it, an
alternated s-t minimized cut between updating foreground ap-
pearance model and performing labeling is adopted. We use
Photo tourism [8] to calibrate all the images, where camera in-
trinsic and external parameters are initialized by establishing
a two-view geometry model through matching sparse features
across images.

2.2. Sculpture Shape Reconstruction

We adopt an incremental 3D reconstruction method [9] to
generate the sculpture mesh M on different granularity over
these calibrated segmented images in real-time. The method
initializes a sculpture model by a set of uniformly distribut-
ed views and incrementally updates the mesh using new view
images by minimizing

E(M) = κEp(M) + Es(M) (2)

where Ep measures the photometric consistency of M with-
in all the images, Es enforces the smoothness of the recon-
structed sculpture, and κ balances the importance of the two
functions. E(M) will be minimized by conjugate gradient
descent to generate the desired 3D sculpture mesh.

3. REAL-TIME SCULPTURE EDITING

In this section, we aim at providing sculptors an efficient tool
for liberating them from tedious 3D pose editing. We first
automatically search for candidate editing points on the 3D
shape, and then edit sculpture poses in real-time freely by
mapping Kinect captured sculptor body motions onto partic-
ular editing points using a spectral-based method.

3.1. Construction of Laplacian operator

Spectrum is known as ’Shape DNA’ since it describes inher-
ent geometry features on a 3D shape [10], we thus introduce
a novel spectral method for sculpture pose editing, the mo-
tivation of which stems from exploiting abundant geometry
information in the spectral space for real time pose editing.

We define the following cotangent weighted Laplacian
operator for M:

Lc
ij =

 −1 i = j
wij (i, j) ∈ E
0 otherwise

(3)

where αij and βij are opposite orientations to edge (i, j), and

wij ∝ cotαij + cotβij (4)

The cotangent Laplacian Lc is an approximation of both sur-
face normals and curvatures, and its eigenvectors [ϕL

1 , ϕ
L
2 , . . .]

with an increasing order of eigenvalues [λL
1 , λ

L
2 , . . .] can serve

as an informative tool for shape analysis. In the follow-
ing subsections, we will introduce our novel Kinect driven
scheme by using the constructed Laplacian operator.

3.2. Searching for Editing Points

Basically, there are two kinds of editing points on the recon-
structed shape for pose editing, namely, the points on protru-
sion or prominent regions, and the points on joints or junction
parts. We search for such points by utilizing the first N eigen-
vectors {ϕL

i }Ni=1 in the spectral space as follows:

1. Searching for extreme points of eigenvector field-
s. Here {ϕL

i }Ni=1 can be treated as the fields defined
on the sculpture mesh manifold. Due to the intrinsic
harmonic behavior, the point that has a locally max-
imum/minimum field value exists on a protrusion or
prominent region on the sculpture.

2. Searching for maximum points on the gradient field
of eigenvectors. The gradient of eigenvectors {gL

i }Ni=1

can also be treated as the fields defined on the sculpture
manifold. The gradient field that has a large field value
is considered sensitive in indicating a local variation on
the sculpture surface. Such a local variation will be
considered as a joint on the sculpture.

3. Searching for saddle points on eigenvector fields. A
saddle point on eigenvector fields has the property that
its neighborhood is not entirely on any side of the tan-
gent space. For example, for a human-like sculpture,
saddle points most probably appear on the junction re-
gions of human limbs.

After selecting the editing points, a sculptor can manual-
ly add/delete/modify the editing points. We thus get a set of

candidate editing points {hj}Mj=0, where M presents the fi-
nal number of such points. We show the searched candidate
editing points on a Neptune sculpture in Fig. 3(a).

3.3. Kinect Input Processing

Kinect has been proved useful in producing low-cost multi-
media systems as it enables free human-machine interactions
without any kind of additional devices. In our platform, we
hope to capture body motions of the sculptor. The problem
here is that there may exist noises and occlusions, which of-
ten makes the capture of body motions inaccurate. We thus
apply two filters on the captured motion data:

1. Holt-Winters double exponential smoothing filter. It
helps predict new motions under a reasonable assump-
tion that there often exists a trend in the captured data.
By interpolating between the prediction and the cap-
tured motions, our platform is able to compute stable
joint positions and orientations to remove most jitters
and noises caused by Kinect.

2. Limbs filter. This filter is applied to prevent the jumpy
of limbs. Kinect can provide rough predictions for the
clipped motions; however, the inference can occasion-
ally be erroneous since it is based on a limited depth im-
age. We thus linearly interpolate the previous smoothed
joint positions and the inferred positions to predict new
positions for clipped limbs.

After filtering, the sculptor manually maps Kinect cap-
tured body joints to particular editing points of the sculpture,
the style of which can be either human-like or not. These
points are named as mapped editing points. This process is
represented by a conversion matrix MapM×25, where the en-
try from jth row and kth column of Map is set to 1 if the s-
culptor defines the mapping between the editing point hj and
the kth body joint, otherwise it is set to 0. The number of
25 here refers to the predefined maximal number of the body
joints that a Kinect device can recognize.

Formally, we compute the filtered body motions as the
difference of joint positions dtk = g(f(ptk) − f(pt−1

k)) and
the transformation of joint orientations rtk = orth(f(ok)

t ∗
f(ot−1

k)−1), where ptk and otk respectively denote the position
and orientation of the kth joint at time t, function f denotes
the filters, orth represents the orthogonal normalization that
achieves a rigid transformation, and g represents the motion
scale transform based on the size portion of Kinect input im-
age and sculpture size. We thus rewrite the motions of the
mapped editing points in matrix form as follows:

Ht = MapM×25S
t
25×3 (5)

where St is constructed from the filtered body motion set
{dtk}25k=1 and {rtk}25k=1, and each row of Ht represents the mo-
tion of one editing point, including the translations in x, y, z
coordinates and 4 ∗ 4 rotation matrix entries.

Fig. 3. Kinect-driven pose editing: (a) automatically searched
editing points, (b) extended regions from the mapped editing
points, (c) the example propagation from the left hand to the
whole sculpture in one spectrum, where Eigenvector values
from the maximum to the minimum are shown by different
colors from red to blue.

3.4. Kinect-driven Sculpture Pose Editing

We convert Kinect-driven sculpture pose editing problem to
the minimization of the variances of local shape features (i.e.,
curvature, normal and local rigidity) before and after editing.
We construct the following linear system to preserve these
features on the 3D surface during editing:

AX = b(X), with

A =

[
LD

Φ

]
and b(X) =

[
σ(X)
H

] (6)

where LD is the Dual-Laplacian operator [11] constructed
from the original sculpture before editing, σ(X) represents
the Laplacian coordinates that depend on the deformed vertex
positions X , and ΦX = H indicates that the minimization
problem is subject to the constraints of the mapped editing
points controlled by the sculptor using Kinect.

After defining the linear system, we need find appropriate
transformations for each vertex on the sculpture to make its
coordinates fit with the changes of surface orientations dur-
ing pose editing. We first expand the mapped editing points
to regions, which offer six degrees of freedom to reflect the
rotations and translations of the body motions of the sculptor.
Then, we propose a Kinect-driven propagation scheme to de-
scribe time-varying transformations. Real-time interactions
will be achieved by decreasing the size of the transformations
during editing. We illustrate the scheme in Fig. 3, where (b)
shows the editing regions extended from the mapped editing
points, and (c) gives example propagations from the left hand
to the whole sculpture in one specified spectrum.

Specifically, we first uniformly sample the spectrum ϕL
i to

calculate isolines {isoi,n}Kn=1, each of which is represented
by a black circle as shown in Fig. 3(c). Note that the vertices

on an isoline always receives the same value of transforma-
tions. The transformations associated with any calculated iso-
line are determined by the body motions captured by Kinect
in our scheme, while the rests are interpolated to support real
time pose editing. We thus compute the transformation values
of isolines induced by Kinect captured body motions Hk of
the kth joint by

sti,n =
w ∗Ht

k

|ϕi,n − ϕi,hj |
(7)

where si,n represents the transformation value assigned to
the nth isoline in the ith spectrum, ϕi,n and ϕi,hj denote
the eigenvector values of the nth isoline and the jth editing
points, respectively, and w is a preset parameter. For the spec-
trum in Fig. 3(c), the isoline that has a smaller eigenvector
value (near the left hand) gets a larger transformation value.

The transformation value s of vertex v that is not on any
isoline will be interpolated as follows:

stv =
i=N∑
i=1

θi ∗ δi,v ∗ sti,n + θi ∗ (1− δi,v) ∗ sti,n+1. (8)

where v is supposed between the nth and the (n+1)th isolines.
δi,v denotes a linear weight determined by eigenvector value
difference between v and its neighboring nth isoline, and θi
represents the weight of the ith spectrum as quadratic sum
of βX,i after Eigenspace projections, i.e., βX,i = X · ϕi in
x, y, z coordinates. Kinect captured body motions are firstly
propagated to the isolines by Equ.7, then are propagated to
each vertex by Equ.8.

Essentially, we apply isolines to decrease the size of trans-
formations, which are directly related with the Kinect cap-
tured body motions in the platform. After that, we only need
calculate a much smaller number of the transformations asso-
ciated with the isoline set during pose editing, which ensures
the editing with low computing cost and fast convergence.
The number of eigenvectors N and the number of isolines
K are empirically decided, and in our platform we set N = 8
and K = 15 through many tests. We thus rewrite the Kinect-
driven propagation scheme as Xt = W ·E·Ht in matrix form,
where E is a column vector constructed from the eigenvector
values set {ϕi,n} and {ϕi,hj}, and W is a weight matrix con-
structed from {θi,v} and {δi}.

To achieve real time feedback of editing, we adopt an iter-
ative Laplacian updating strategy [12], which provides inter-
mediate pose editing results guide artwork design. We itera-
tively and alternatively update S and X based on the current
deformed surface, and use the Kinect-driven scheme to update
Laplacian coordinates σ(Xt) based on the rotations of the tri-
angles that are crossed by isolines. Note that only S requires
to be updated during pose editing. The size of S is related
with the number of the triangles crossed by isolines. Com-
pared with the original transformation size, namely, the whole
mesh vertex nver × nver, S is much smaller after decreasing,

Group
Bear ChinaRed Armadillo

tr te nr ne nc ns P tr te nr ne nc ns P te ne nc ns P
A1 83.6 10.7 823 136 - - - fail 23.3 fail 471 - - - 19.6 395 - - -
A2 6.0 2.1 12 18 16 5 80 20.2 4.6 16 26 25 8 75 3.7 15 17 6 75
B1 121 18.2 1434 241 - - - fail 36.7 fail 889 - - - 27.6 527 - - -
B2 6.2 3.2 14 29 16 6 83.3 25.4 5.2 18 32 25 13 54.6 4.2 17 17 8 60

Table 1. User studies of FreeScup. Superscripts 1 and 2 denote using ZBrush and FreeScup, respectively. P is defined as
P = nc

s/ns, where nc
s represents the number of the mapped editing points. Duration is measured by minutes, while P is

measured by %.

Model nver ntri nc ns tp,1(s) tp,2(s) ˜tp,2(s) ti,1(ms) ti,2(ms) ni,1 ni,2

Bear 10233 963 16 6 1.04 1.03 0.271 63 9.03 64 17
ChinaRed 73539 1562 23 8 20.9 18.8 4.03 806 38.9 213 36
Armadillo 60000 1250 17 6 17.2 15.1 3.31 928 37.4 93 28

Feline 15744 1293 16 6 2.88 2.86 0.613 118 13.8 78 22
Raptor 25102 1339 20 6 6.31 6.08 1.21 173 20.8 173 34
Human 15154 1327 16 9 1.60 1.42 0.421 98 11.3 88 25
Neptune 28052 1312 16 8 6.57 6.38 1.23 190 21.7 98 28

Table 2. Subscripts p and i respectively refer to pre-computing and iterative updating, while subscripts 1 and 2 respectively
refer to Dual-Laplacian editing [11] and our method.

which significantly speeds the per-iteration updating and con-
vergence rate, resulting in real-time sculpture pose editions.

4. EXPERIMENTAL RESULTS

We have cooperated with 8 students majoring in sculpture for
more than one year. We conduct experiments on real sculpture
artworks by comparing the proposed way with a well known
3D sculpture modeling platform named ZBrush.

4.1. User Study for Assisting Sculpture Design

In this experiment, we conduct a series of user studies to e-
valuate the effectiveness of our platform by paying special
attention to the learning cost of 3D pose editing. We divide
the sculptors into two groups, namely, 4 sculptors who are
familiar with ZBrush are arranged into Group A, while the
rests who are not familiar with any 3D modeling software are
arranged into Group B. Both the two groups are asked to cre-
ate virtual 3D sculptures respectively with our platform and
ZBrush by imitating two existing clay artworks named as bear
and ChinaRed. In addition, they are asked to edit the pose of
an existing virtual 3D sculpture named Armadillo. We record
all the data of the 8 sculptors, such as the duration tr and the
interactions (e.g., mouse clicks and keyboard typing) nr for
creating the sculptures, the duration te and the interactions ne

for pose modifications, and the total number of candidate and
mapped editing points, i.e., nc and ns.

The results are shown in Table 1, from which we can see
that the creation of a 3D sculpture using ZBrush averagely

requires much more interactions. Another interesting phe-
nomena is that the sculptors in both Group A and B fail in
creating the ChinaRed sculpture, which is more complex than
the other sculpture artworks. For comparison, our platfor-
m achieves lower durations {tr,A2 , tr,B2} and fewer interac-
tions {nr,A2 , nr,B2} by comparing them with {tr,A1 , tr,B1}
and {nr,A1 , nr,B1}, illustrating the effectiveness of the recon-
struction of the two clay sculptures from multiview photos.
Essentially, the most time-consuming step of 3D reconstruc-
tion lies on the post refinement of the reconstructed 3D shape,
such as filling holes and removing noises. We also notice that
the manually created Bear sculpture by ZBrush only contains
with nearly 2,000 vertices averagely, while our reconstruction
offers a sculpture with nearly 10,000 vertices. Moreover, the
high precision P , which defined as P = nc

s/ns, is up to near
60%, proving that the automatically searched editing points
are acceptable for the sculptors.

In Table 1, we also notice that 3D pose editing by ZBrush
always requires more time {te,A2 , te,B2} and more interac-
tions {ne,A2 , ne,B2} comparing with the proposed platform.
That means only after time-consuming and repeatedly editing
on plenty of vertices, the sculptors can finally observe pose
editing effects. This is not good for inspiring fantastic ideas
during artwork design. It can also be found that ZBrush itself
is a complex 3D modeling environment for learning. This can
be proved by the more modeling duration tall,B1 and the more
interactions nall,B1 in comparison with tall,A1 and nall,A1 .
Note that we represent tall = tr + te and nall = nr +ne. For
our platform, the learning phase is quite short since the real-
time visual feedback helps the sculptors correctly understand

their interactions. We thus find a much smaller learning cost
of our platform by comparing tall,B2 and nall,B2 with tall,A2

and nall,A2 .

4.2. Computational Cost for Sculpture Pose Editing

In this experiment, we compare our spectral based pose
editing scheme with another editing algorithm named Dual-
Laplacian [11]. Dual-Laplacian is a baseline algorithm for 3D
pose editing, which also adopts an iterative Laplacian strate-
gy to solve the non-linear Laplacian coordinates minimization
problem. We test both the two methods on the 8 sculptures.
Table. 2 gives the detailed results of the two methods on a
1.7GHz i5 core2 PC with 6GB of RAM machine. In our plat-
form, W and L are pre-computed before editing, which will
not change during pose editing. We adopt a strategy by s-
toring these matrices for reusing to save the pre-computation
cost tp. We thus decrease tp,2 to a much shorter time ˜tp,2.
By decreasing the transformation size in each iteration, we
achieve a much lower iterative updating cost ti,2 and conver-
gency number ni,2 than ti,1 and ni,1 as shown in Table. 2, e-
specially in producing complex sculptures with a larger num-
ber of vertices.

Note that Kinect captures 30 frames per second, which
requires a pose editing algorithm reacts within about 1/30
seconds, else the sculptors may feel latency after his/her in-
teractions. In Table. 2, we find the iterative updating duration
ti,1 of Dual-Laplacian are not small enough to support real-
time editing feedbacks, while our method is proved effective
in such interactions.

5. CONCLUSIONS

We present a novel platform (FreeScup) for assisting sculp-
ture design. After reconstructing a sculpture from multi-
view images, we propose a spectral approach to help sculp-
tors freely edit different kinds of sculpture artworks through
Kinect through a novel iterative Laplacian updating strategy.
User studies and experimental results show the effectiveness
in both improving the efficiency and inspiring new ideas in
sculpture design of the proposed platform. Our further work
includes the imitations of sculpturing actions consisting of s-
moothing, pinching, cutting, beating and carving using mul-
timedia techniques.

Acknowledgments

The work described in this paper was supported by the Natu-
ral Science Foundation of China under Grant No. 61272218
and No. 61321491, and the Program for New Century Excel-
lent Talents under NCET-11-0232. We thank Guozhu Liang
and Longfei Qin for their working on experiments.

6. REFERENCES

[1] S. H. Carlo, “Computer-aided design and realization of
geometrical sculptures,” Computer-Aided Design and
Applications, vol. 4, no. 5, pp. 671–681, 2007.

[2] P. F. Sylvie, J. Michel, N. Laurent, and C. Jean, “Art-
work 3d model database indexing and classification,”
Pattern Recognition, vol. 44, no. 3, pp. 588–597, 2011.

[3] H. S. Carlo, “Sculpture design,” In: Proc. of Interna-
tional Conference on Virtual Systems and Multimedia,
2001.

[4] H. S. Carlo, “Art, math, and computers: news ways
of creating pleasing shapes,” Educator’s TECH Ex-
changes, 1996.

[5] L. Fosh, S. Benford, S. Reeves, B. Koleva, and P. Brun-
dell, “See me, feel me, touch me, hear me: Trajectories
and interpretation in a sculpture garden,” In: Proc. of
the SIGCHI Conference on Human Factors in Comput-
ing Systems, pp. 149–158, 2013.

[6] Robert Held, Ankit Gupta, Brian Curless, and Maneesh
Agrawala, “3d puppetry: a kinect-based interface for
3d animation,” in The 25th Annual ACM Symposium
on User Interface Software and Technology, UIST ’12,
Cambridge, MA, USA, October 7-10, 2012, 2012, pp.
423–434.

[7] Adarsh Kowdle, Sudipta N. Sinha, and Richard Szeliski,
“Multiple view object cosegmentation using appearance
and stereo cues,” in ECCV, 2012, pp. 789–803.

[8] Noah Snavely, Steven M. Seitz, and Richard Szelis-
ki, “Photo tourism: exploring photo collections in 3d,”
ACM Transactions on Graphics, vol. 25, no. 3, pp. 835–
846, 2006.

[9] Ze-Huan Yuan and Tong Lu, “Incremental 3d recon-
struction using bayesian learning,” Appl. Intell., vol. 39,
no. 4, pp. 761–771, 2013.

[10] Martin Reuter, Franz-Erich Wolter, and Niklas Peineck-
e, “Laplace-beltrami spectra as ’shape-dna’ of surfaces
and solids,” Computer-Aided Design, vol. 38, no. 4, pp.
342–366, 2006.

[11] Oscar Kin-Chung Au, Chiew-Lan Tai, Ligang Liu, and
Hongbo Fu, “Dual laplacian editing for meshes,” IEEE
Trans. Vis. Comput. Graph., vol. 12, no. 3, pp. 386–395,
2006.

[12] Jin Huang, Xiaohan Shi, Xinguo Liu, Kun Zhou, Li-Yi
Wei, Shang-Hua Teng, Hujun Bao, Baining Guo, and
Heung-Yeung Shum, “Subspace gradient domain mesh
deformation,” ACM Trans. Graph., vol. 25, no. 3, pp.
1126–1134, 2006.

