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ABSTRACT

Classifying human chromosomes from input cell images, i.e.,
karyotyping, requires domain expertise and quantity of man-
ual effort to perform. In this paper, we propose an end-to-end
chromosome karyotyping method, which can automatically
detect, segment and classify chromosomes from cell images.
During detection, we explore Extremal Regions (ER) to
obtain chromosome candidates in input images. During seg-
mentation, we segment overlapping chromosome candidates
by approximating chromosome shapes with eclipses. In clas-
sification, we first propose Multiple Distribution Generative
Adbvertising Network (MD-GAN) to effectively cover diverse
data modes and generate more labeled samples for data
augmentation. Then, we finetune pre-trained convolutional
neural network (CNN) to classify chromosomes with samples
generated by MD-GAN. We demonstrate the accuracy of
the proposed end-to-end method in detecting, segmenting
and classifying by experiments on a self-collected dataset.
Experiments also prove data augmentation with MD-GAN
could improve classification performance of CNN.

Index Terms— Chromosome karyotyping, Data Aug-
mentation, Generative Advertising Network

1. INTRODUCTION

Karyotyping refers to the process of classifying 23 pairs
of human chromosomes from cell images. Conventionally,
karyotyping is performed where the condensed chromosome
images are Giemsa stained. Efficiently karyotyping is re-
quired due to its widely use in cytogenetics analyzing chro-
mosome images to diagnose genetic disorders, birth defects
and cancers [1]. However, even after years of expertise,
doctors still need pay considerable manual effort and time to
produce desirable karyotyping results [2].

Automatically karyotyping is challenging due to the un-
predictable shapes and appearances caused by non-rigid na-
ture of chromosomes. Karyotyping usually consists of chro-
mosome detection, overlap segmentation and category classi-
fication. The most popular methods for detection are based
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on binarization using either the Otsu method [3] or a re-
thresholding scheme [4]. However, uneven Giemsa staining
may cause the fail of detection, since binarization is highly
related with thresholds. Inspired by [5] which explores Ex-
tremal Regions (ER) to detect character candidates, we detect
chromosomes candidates by utilizing ER. Due to the fact
that chromosomes may touch and overlap, research attempts
have been made to segment clusters of either touching [6] or
overlapping chromosomes [7], where geometric and intensity
based features have been used. During category classification,
earlier methods would first extract manually designed features
[8] and then apply learning structures [9] for chromosome
classification. However, traditional schemes result in low
accuracy due to the loss of useful information by manually
designing features and feature selection.

Deep neural networks have demonstrated the state-of-the-
art power for vision tasks [5, 10, 11], so that they have been
applied to chromosome karyotyping [12]. However, these
methods require a large amount of labeled data. Therefore,
it is a difficult task to classify images with multiple class
labels using only a small number of labeled examples. Chro-
mosome classification is a typical example, since the labeled
chromosome images are difficult to achieve due to the privacy
of individual. Therefore, researchers have proposed several
architectures to handle limited data scenarios [13, 14]. One
of the most successful methods is data augmentation using
GAN [15]. The key idea of GAN stems from the two-player
game designed by GAN, i.e., generator and discriminator,
which provides a simple but powerful way to estimate target
distribution and generate novel image samples. With this
power for distribution modeling, GAN is extremely suitable
to increase the size of training set for more efficient deep
learning [16, 17]. However, training GAN for particular
usage is challenging as it can be easily trapped into the mode
collapsing problem where the generator only concentrates on
producing samples lying on a few modes instead of the whole
data space [18, 19].

Based on these considerations, we propose a novel end-
to-end chromosome karyotyping method. Fig. 1 gives the
overview of the proposed method. Chromosome candidates
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Fig. 1. The proposed framework for end-to-end chromosome karyotyping.

are obtained from the input cell image by Extremal Regions
(ER) with several geometric and intensity filters. Next, we
segment overlapping and touching chromosome clusters to
individual ones. During classification, MD-GAN is proposed
to diverse data modes by utilizing multiple data distributions.
Based on the generated training samples, we finetune VGG-
16 network to achieve desirable classification results, which
are sorted into a standard karyotyping image.

The main contribution of the paper is to propose an end-
to-end chromosome karyotyping method. We explore ER
algorithm to detect chromosomes, which solves the problem
of false detection caused by uneven staining and avoids
time-consuming computation brought by adopting complex
features for detection. The proposed MD-GAN employs
a mixture of data distributions to generate diverse training
samples instead of using multiple generators, which not
only overcomes the mode collapsing problem, but also saves
computation and reduces complexity. By adopting generated
samples for training, we further prove data augmentation with
MD-GAN could improve classification accuracy.

2. METHODOLOGY

In this section, we describe the proposed method by chromo-
some candidate detection, cluster segmentation and classifi-
cation with data augmentation.

2.1. Chromosome Candidate Detection

It is true that chromosome in different cell images have
characteristics which play a prominent role in representing
chromosomes, namely, shape, contrast, uniform staining col-
or inside the chromosome. To exploit such features, we
explore Extremal Regions (ER) [21] to detect chromosome
candidates. For an input cell image, we generate chromosome
candidates, say {e;} of the input image I by detecting ER in
gray cell image. Due to background variations, ER cann’t
detect chromosome candidates accurately. We thus propose
the geometric and intensity filters for the output of ER.

1) Filter using geometric properties: Since nucleus or
small points are the main noise objects for chromosome
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Fig. 2. Chromosome candidates detection, where (a) is the
ER detection result, (b) are the chromosome candidates after
filters and (c) are the samples of chromosome candidates.

detection, we utilize Hough algorithm to detect whether there
exists an eclipse. In addition, this filter also uses Euler
number and area to delete false candidates.

2) Filter using intensity distribution: Inspired by the fact
that chromosomes have uniform intensity values, we propose
to discard the chromosome candidates which have high varia-
tion in intensity values. Supposed that ER with chromosome
inside should contain chromosome and background, we first
perform histogram operation on intensity values, then adopt
mean of the maximal and second-maximal values to calculate
the intensity variance V; of ER by
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where e; . and e; ;, represent the chromosome and background
of e; respectively, n is the number of pixels and M represents
the average value. The sample results of ER and filtering are
illustrated in Fig. 2, where we could notice the touching and
overlap chromosome candidates emerge as clusters.

2.2. Chromosome Clusters Segmentation

In this subsection, we aim to segment overlap and touching
chromosome candidates into individual ones.

Following [22], we propose to segment clustered and
partially overlapping chromosome candidates with a shape
that can be approximated with an eclipse. We present sampled
segmentation results in Fig. 3. Due to the adaptive design,
we find individual chromosome candidates remain the same



Fig. 3. (a), (b), (c) and (d) represent the segmentation for
individual chromosome candidates, successful segmentation
for chromosome clusters, failure cases requiring modification
tool, and failure cases requiring manual work, respectively.
Note blue rectangles indicate eliminated eclipses.

as shown in (a) and overlapping or touching chromosome
clusters are successfully segmented as shown in (b). Note
that we discard eclipses labeled by blue rectangles, if the
ratio between area of eclipse in image and area of the same
eclipse is smaller than a pre-defined threshold. We also find
some failure cases due to the complexity of touching and
overlapping as shown in (c) and (d). For failure cases in
(c) caused by over segmentation, we develop an intuitive
modification tool, which enables clicks among over-segment
parts to form as an individual chromosome. As for cases in
(d), we regard it as total failure ones and recommend doctors
to segment by hand. After segmentation, we could achieve a
set of chromosomes to be classified.

2.3. Chromosome Classification with Data Augmentation

Data augmentation with GAN could complement and com-
plete the data manifold, and find better margins between
neighboring classes. Essentially, chromosome classification
is a typical classification task with multiple category labels
and inadequate data. Data augmentation is thus appropriate
to effectively help enlarge the original dataset and increase
classification accuracy. Given the discriminator S' and gener-
ator G, the training of the original GAN as shown in Fig. 4,
can be explained to minimax the following objective function:

rrgn max Expyx)[log S(X)]+Ez~p,[log(1-5(G(Z)))] 2)

where x represents real data drawn from distribution Py, Z is
drawn from a prior distribution Pz (usually normal distribu-
tion) and the function G(Z) induces a generator distribution
to be utilized for data augmentation. GAN alternatively
optimizes S and G using stochastic gradient-based learning.
After discrimination on generated data, the optimization order
in Eq. 2 can be reversed, causing the minimax formulation to
become maximin. The reverse optimization thus force G to
map every Z to a single X that is most likely to be classified
as true data, leading to mode collapsing problem.
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GAN and classification with VGG-16 network.

To avoid mode collapsing problem, the most intuition idea
is to employ multiple generators instead of using a single one
as in the original GAN, which have been proved extremely
effective [20]. However, optimizing multiple generators are
complicated and cost large computations. We thus propose to
improve this idea by generating with multiple distributions,
which is the key idea of the proposed MD-GAN. Due to the
property of theoretically fitting any kind of distribution, gaus-
sian mixture model M is adopted to construct the distribution
generator D as follows:

Dj(Z;) = Pz(Z;) + M;(Z;),j = 1..K (©))

where K and j are the number of index of distribution
generators, Pz refers to the normal distribution, and Z;
represents the vectors of random samples values between 0
and 1. Note the size of Z; fits the size of the chromosome
images, which is a determined value after re-scaling to the
same size. Gaussian mixture distribution M is defined as:

My(Z)) = S 625 110.0) @
where ¢ represents the gaussian distribution, n; is the preset
number of formed gaussian distributions, ;. and o are
mean and variance parameters for the kth gaussian dis-
tribution. We believe more distribution generators would
lead to more diverse generation results. However, such
construction requires huge computation. We thus need keep
balance between computation and generation diversity. By
experiments, we set both K and n; as 8 for each class of
chromosome. Note that i and o are randomly sampled from
normal distribution but keep in a reasonable range.

After data augmentation, we propose to fine-tune the
VGG-16 network for classification based on training sets of
real data and generated data, which is presented as blue in
Fig. 4. Note that we keep earlier layers fixed and only
fine-tune some higher-level portion of the network. This is
motivated by the truth that earlier features of a CNN contain
more generic features that should be useful to many tasks
and prevent overfitting, while later layers should become
progressively more specific to chromosome classification by
learning information from training set.
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Fig. 5. The comparison results of generated chromosomes
and real chromosomes. Note that numbers below represent
the class labels corresponding to the chromosome images.

3. EXPERIMENTS

To conduct experiments, we have collected 120 cell images
and chromosome images of 119 persons (5474 labeled chro-
mosome images in total) from a hospital. We randomly
divided chromosome images into a group of 4600 and 874
for training and test sets, respectively. Essentially, the size
of real data is relatively a small number of training samples
for classification of 24 classes using deep learning. We thus
utilize MD-GAN to generate more training samples. Note
that we generate all classes of chromosome images using only
one specific MD-GAN. By comparison between generated
chromosomes and real ones as shown in Fig. 5, we could
find generated samples maintain acceptable visual fidelity
meanwhile share diverse modes.

We first compare the detection accuracy of the proposed
method with detection using Otsu binarization method. Due
to the uneven staining of cell images and the adoption of a
global threshold for binarization, we find Otsu method fails
in some cases of chromosome detection. Therefore, the de-
tection accuracy and recall achieved by the proposed method
is 95.9% and 94.8%, while Otsu method achieves 86.3%
and 87.2% for detection accuracy and recall, respectively.
For segmentation, we find the failure cases requiring manual
work takes only 2.6% of the total chromosome images, which
proves the efficiency and ensures the automatical ability of
the proposed method.

Table.1 gives the detailed statistics of classification results
on the collected chromosome images. We implement Multi-
Layer Perceptron (MLP) [23] with 2 and 5 layers as two
baselines for comparative study. To show the performance
improvement of data augmentation using MD-GAN, we de-
sign experiments that we first utilize MD-GAN to gener-
ate chromosome images of several persons, and then fuse
generated and real chromosomes for classification. Such
experiments are expressed as CNN+xGAN in Table. 1, where
x is the number of persons. Note that P* and P7 refer
to the precision of classification for one specific class of
chromosomes and for all chromosomes, respectively.

From Table.1, we can notice deep neural network achieves
much higher precision than two comparative methods, which
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Method PY%) | P%) | P2(%) | PT(%)
CNN 68.4 60.0 60.0 58.9
CNN+50GAN 69.6 72.0 62.5 63.5
CNN+150GAN 86.7 70.8 53.3 62.8
CNN+250GAN 63.6 60.0 50.0 60.5
Two Layer MLP 58.3 54.2 529 51.3
Five Layer MLP | 62.1 55.3 53.9 53.1

Table 1. Performance of chromosome classification on the
collected dataset.

proves the powerful distinguish ability of deep neural net-
work. By utilizing data augmentation for training, we find
the largest improvement in total precision 4.6% achieved by
CNN+50GAN comparing with the original CNN. However,
more generated examples not always help improve classifica-
tion accuracy, which could be proved by decrement of preci-
sion when comparing among CNN+50GAN, CNN+150GAN
and CNN+250GAN. For classification on a specific class
of chromosomes, we could view the decrement of precision
as well. Note that the inconsistent precision of the fourth
chromosome could be explained by the small size of testing
examples. Above all, we could draw a conclusion that the size
of generated data should be fit with size of original data. If
not, the generated data will be noises to confuse the classifier.
In our case of chromosome classification, the most suitable
size of generated chromosomes is 50, which is nearly half
of the size of the original training set, i.e., 100. Combined
with the above quantitative results, it is convincing that our
MD-GAN bring benefits for both training stability and mode
variety without the loss of sample quality.

4. CONCLUSION

We propose an end-to-end chromosome karyotyping method
by utilizing data generated by MD-GAN for classification.
Our further work includes utilizing MD-GAN for other ap-
plications, such as emotion classification and person identifi-
cation.
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