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Abstract—Although deep learning has achieved great success in
object detection recently, scene text detection is still a challenging
task, due to inherent difficulties of locating texts in complex
scenes. Many approaches adopt inspirations from segmentation to
detect arbitrary shaped scene text. However, most segmentation
based methods have high computation cost and generally needs
a lot of refinements to get accurate results. To ease this problem,
we propose a novel single-stage method, i.e., PolarText network,
which detects text regions by generating contour points in polar
coordinates. PolarText not only relieves the burden of high
computation cost by directly regressing contour points instead of
pixels, but also fits with intrinsic characteristics of text instances
by centers and contours, thus suppressing mislabeling boundary
pixels caused by pixel-level labeling. To cope with polar represen-
tation, PolarText utilizes Polar IoU loss and polar centerness to
generalize effective paradigms from box representation for polar
representation. In addition, we add a dedicated bounding box
branch to work with text detection since most text instances are
approximately rectangular in shape. Compared with the existing
methods, the proposed method achieves superior results in both
accuracy and efficiency by testing on CTW 1500 and ICDAR
2015 datasets.

I. INTRODUCTION

The goal of scene text detection is to spot text regions

in images of natural scenarios, which is of great importance

for task of scene understanding. Even though deep learning

has made great progress in understanding images and videos,

it’s still challenging to know texts from scene images. The

difficulty comes in several ways. Firstly, the texture of text

regions and backgrounds in natural scenarios are complicated,

leading to quantity of miscalculations. Secondly, shapes of text

regions are arbitrary, resulting in hardness to accurately detect,

especially for curved and rotated text.

Facing these two difficulties, researchers have proposed

many methods to detect texts in the wild, which can be

classified into two categories, i.e., regression and segmentation

based methods. The former one aims to detect text instance

as a common object, meanwhile the latter one obtain masks

and bounding boxes according to text instances progressively.

Since regression based methods could detect horizontal objects

and non-horizontal objects with accurate performance, they

generally require additional algorithm design and computing

power to solve the problem of rotated texts. Segmentation

based methods are capable to deal with situations of oriented

and curved texts by generating pixel-level segmentation map

and mask, which makes segmentation based methods one of

the most progressing trend in solving challenges of locating

texts in scene.

Based on directly generating pixel-level labels or not,

we classify current segmentation based methods into two

categories, i.e., bottom-up and top-down. The former ones

regard text detection as a semantic segmentation problem by

directly assigning pixel-level labels to text or non-text regions.

For example, Wang et al. [1] proposed a novel Progressive

Scale Expansion Network (PSENet), which is designed as a

segmentation-based detector with multiple predictions for each

text instance. However, bottom-up methods could easily result

in mislabeling in boundary pixels due to sticky texts or low

distinguish ability of generated feature map.

Top-down methods transform text detection to task of in-

stance segmentation by detecting rectangular bounding boxes

containing texts at first, and then perform pixel-level segmen-

tation inside boxes. For example, Huang et al. [2] present a

new Mask R-CNN based text detection approach, which could

robustly detect multi-oriented and curved text from natural

scene images in a unified manner. However, bounding boxes

couldn’t work well when rotated text instances are close to

each other. Moreover, top-down methods have to use dense

anchors to refine bounding boxes, which brings quantity of

parameters to determine, thus greatly slowing computation

speed.

Facing disadvantages brought by both categories of

segmentation-based methods, this paper proposes a novel idea

to detect texts by directly generating centers and contour points

of text instances with polar coordinates representation. By

focusing on generating centers and contours of text regions,

the proposed method not only relieves the burden of generating

quantity of pixel-level labels in bottom-up methods, but also

involves efficient representation of text regions with center

and several contours rather than pixel-level labeling, fitting

with intrinsic characteristics of text instances. Compared with

top-down methods, we adopt one-stage structure without steps

to refine bounding boxes, which saves large computation

resource. To sum up, we believe the proposed polar coordi-

nates representation offers text-specified representation for text

instances with less target points to regress.
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We thus propose a novel single-stage method, i.e., PolarText

network, which is capable to detect text regions by generating

contour points in polar coordinates. By involving idea of

polar coordinates representation, PolarText not only relieves

the burden of high computation cost by directly regressing

contour points instead of pixels, but also fits with intrinsic

characteristics of text instances by centers and contours, thus

suppressing mislabeling boundary pixels caused by pixel-level

labeling. To cope with polar representation, we further propose

Polar IoU loss and polar centerness to generalize effective

paradigms from box representation for polar representation.

Since most text instances are shaped in rectangular, we addi-

tionally add a bounding box branch. To show the effectiveness

of our proposed method, we conduct extensive experiments on

several challenging benchmark datasets including CTW1500,

Total-Text, ICDAR 2015, ICDAR2017 and MSRA-TD500.

Our main contribution could be concluded as follows:

• The proposed PolarText accurately detects text regions

by generating their centers and counter points under

polar coordinates, which not only relieves burden of high

computation cost brought by pixel-level classification, but

also fits with intrinsic characteristics of text instances to

eliminate mislabeled boundary pixels.

• We specially design polar IoU loss function and polar

centerness, which helps fully take advantage of our polar

representation and enables us to generalize these effective

methods in polar representation, making our PolarText

easier and faster to train.

• We specially add a bounding box branch and design cIoU

loss function, which is very suitable for text detection.

Our auxiliary bounding box branch not only helps Po-

larText converge faster by considering aspect ratios as

factors, but also better locates the predicted bounding

boxes that have no overlap regions with ground-truth.

II. RELATED WORK

In this section we give an introduction to the related works

that inspire us. We divide them into two categories, i.e., scene

text detection and single-stage detection.

A. Scene Text Detection

To detect text in arbitrary shape, the mainstream methods

are based on segmentation. As mentioned in the above section,

we divide segmentation based methods into two categories,

namely, bottom-up and top-down. Both categories have their

advantages and disadvantages. Top-down methods mainly bor-

row the idea from object detections and instance segmentation,

an obvious example is Mask R-CNN[3]. Early, Mask R-CNN

firstly modify the step of ROI pooling to ROI align on the basis

of faster R-CNN, and then add a mask module for accurate

instance segmentation. Many methods built on top of Mask

R-CNN achieved good results. For example, Huang et al. [2]

proposed a new Mask R-CNN based text detection approach,

which could detect multi-oriented and curved text robustly

from images in natural scenarios in a unified manner. Xie et

al. [4] added spatial and channel attention mechanism to Mask

R-CNN in order to deal with complex scenarios. Although the

high accuracy of top down methods, the greatest disadvantage

is that they have a lot of computations on dense generated

predefined anchors, which greatly slows their speed. Further

more, top-down methods depend completely on the detection

boxes, which will affect the accuracy when rotated boxes are

close to each other [5].

Bottom-up methods regard text detection as a semantic seg-

mentation problem by directly assigning pixel-level labels to

text or non-text regions. In order to distinguish text instances,

these methods often use text center line. TextSnake[6] uses

ordered disks and text center lines to represent text instances,

which is able to model text in arbitrary shapes. PSENet [1]

uses FCN to predict text instances directly with multiple

scales, to reconstruct the whole text instance, a progressive

method is adopted to determine which text instance a pixel

belongs to. The accuracy of bottom up methods are mainly af-

fected by two folds, the accuracy of the output of the semantic

segmentation, the text instances reconstruction. Usually, it’s

challenging to accurately segment text instances directly, so

the effectiveness of bottom-up methods is not as high as top-

down methods [7].

Most recently, TextFuseNet [8] obtains richer text features

by fusing three different categories of features, i.e., character

level, word level and global level. Rich features enhance the

detection ability and environmental adaptability of their pro-

posed network. Owing to the guidance of semantic informa-

tion, SPCNet [9] propose to involve more context information,

resulting in stronger detection capabilities in complex natural

scenes. Afterwards, ContourNet [10] generates more accurate

anchors through Adaptive-RPN, and uses Local Orthogonal

Texture-aware Module model the local texture information in

two orthogonal directions, which successfully reduces false

positive results.

B. Single-Stage Detector

To relieve the high computation and optimization burden

brought by multiple stage detector, researchers are interested

in developing fast and accurate one-stage detector. Unlike two-

stage detectors like Mask R-CNN that can gradually refine

the predictions, directly generating detections in one stage

is a great challenge We introduce single-stage detectors for

predicting bounding boxes and masks respectively [11].

We first introduce single-stage methods that are used to

generate rectangular boxes. YOLO [12] is short for You Only

Look once, It divides an image into multiple grids and each

grid is responsible for predicting the boxes whose center is

located in that gird. SSD [13] stands for Single Shot MultiBox

Detector that does a dense prediction on the entire image

without the need of region proposals. FCOS[14] adopts a

divide and conquer strategy which makes different levels of

feature maps responsible for different sizes of boxes. However,

these methods could only be used to predict bounding boxes

in one-stage. Our proposed PolarText could generate both

bounding boxes and masks in one stage [15].
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Fig. 1. The overall network structure of PolarText, which consists of backbone, head, polar representation and results.

To generate instance masks in arbitrary shape, early, deep

Watershed Transform [16] first uses fully convolutional net-

work to predict the energy map of the entire image, and

then use the watershed algorithm to generate connected object

instances from the energy map. The recent YOLACT[17]

introduces a new concept called prototype masks that do no

depend on any individual instances. The resulting instances

are generated by the linear combination of these prototype

masks in real time. TensorMask [18] investigates the paradigm

of dense sliding window instance segmentation instead of

sliding windows bounding boxes, which makes the output

at every spatial location is itself a geometric structure with

its own spatial dimension. CenterMask [19] first predicts

bounding boxes together with box centerness on each location,

instances segmentation is based on these predicted bounding

boxes. To further improve the performance, a novel backbone

named vovNet was also proposed in this paper. SOLO [20]

reformulate the instance segmentation as a combination of

category prediction and instance mask generation, it generates

pixel segmentation masks instead of bounding boxes. Densely

predicting masks requires large computation, so the inference

speed of SOLO is very slow. Unlike existing methods that

generate instance masks with pixel level labeling, our Polar-

Text directly outputs masks with polar representation, thus our

proposed method reformulate mask generation as a regression

task instead.

III. PROPOSED METHOD

In this section we introduce our proposed method. We

firstly introduce our light-scale network architecture for the

task of text detection. Then, we introduce a task-specified

module to perform computation for representation in polar

coordinates. After that, we introduce our proposed assembly

module to generate text instances, using polar centerness

and polar distance regression. Finally, we describe the detail

information of the loss function design, including Polar loss

and cIoU loss design.

A. Network Architecture Design

Our proposed Polar Text reformulate text detection as two

sub tasks, locating the center of a text instance and predicting

the distance of the contour points from the text center. The

overall structure of the proposed PolarText is illustrated in

Fig.1, where we can notice the input image is firstly fed into

the backbone, typically ResNet[21]. After processing of the

attention module, we generate the feature maps on different

levels via FPN (Feature pyramid network) [22]. All these

processes can be defined as

F = Backbone(I), where F = {Fi, i = 1, ..., n} (1)

Where I is the input image, i refers to the level of the

output feature map via FPN, backbone refers to the backbone

operation with multiple levels.

Different sizes of instances are separated on different levels

of feature maps. Therefore, large feature maps that have more

global context information will be used to predict small text

instances while smaller feature maps that have coarse spatial

information will be used to predict large text instances. After

these results are fed into the head, we made predictions on

every pixel of the feature maps. There are 4 parallel branches

in our head, including classification, polar centerness, mask

and box regression:

For a feature map whose dimension is H × W × C, we

get a H ×W × nrays dimension Opolar and a H ×W × 4
dimension Obox, where nrays refers to the total number of

rays emitted from every pixel on the feature map, each of
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nrays dimensions correspond to a specific angle, the nrays
distances can be used to reconstruct the mask of a text

instance. Since most of the text instances are shaped like

rectangles, we still have a dedicated box regression branch.

The horizontal and vertical rays will be averaged with the

edges in the corresponding direction on the box. With this

help, our network will pay attention on specific angles instead

of treating all directions equally.

While in the classification branch, our output of classifica-

tion logits has the dimension of H ×W × k, where k is the

number of classes and equals to 2 in case of text detection.

In addition to the classification logits, our network can has a

parallel branch named polar centerness, whose dimension is

H × W × 1. Polar centerness is used to determine whether

a pixel is near the center of a text instance. We use polar

centerness and classification logits together to filter low quality

predictions, this will be discussed later. Our final classification

score which will be used for post-processing like NMS is the

multiplication of polar centerness and the classification logits:

Ofinal = Ocls ∗Ocenter (2)

where, Ofinal is our final classification score, ∗ denotes the

element wise product. To cope with polar representation,

PolarText utilizes Polar IoU loss and polar centerness to

generalize effective paradigms from box representation for

polar representation. After that, we assemble these results

together for post-processing, to get the final detection results:

R = A(Ofinal, Opolar, Obox) (3)

where A denotes our Assembly module, R = {Di, i =
1, 2..., N} is our detection results.

Supposing a training set with N pairs of Network predic-

tions and corresponding ground truth labels represented byDi

and Gi respectively, the overall network Loss function could

be defined as:

L(θ) =
1

N

N∑
i=1

Lcls(Di, Gi) + Lcenterness(Di, Gi)

+Lpolar(Di, Gi) + Lbox(Di, Gi)

(4)

where, Lcls, Lcenterness, Lpolar, Lbox are the loss functions

of classification logits, polar centerness, polar regression,

bounding box regression respectively, θ denotes the set of

network parameters.

B. Representation in Polar Coordinates

Inspired by PolarMask [23] to enhance feature representa-

tion for better object detection results, we believe it’s essen-

tial to offer abundant and enhanced representation in polar

coordinates for accurate text detection. We thus design a task-

specified computation module to perform such task.

We represent text instances as a set of contour points in

polar coordinates. The contour points can be determined by

the distance and angle from polar center and we can easily

reconstruct text instances via these contour points. Starting

Fig. 2. Representation in polar Coordinates: (a) Picture with text instance. (b)
The generated Text mask. (c) Calculate the coordinate of the contour point
with distance predicted. (d) Mask segmentation with polar representation

from the polar center, we emit n rays uniformly. The number

of rays is a hyper parameter (we set to 36) so these rays have

a fixed angle interval. Only distances are needed to generate

the contour points. With a polar center whose coordinate is

(cx, cy) and n different lengths, the coordinates of the contour

points (xi, yi) i = 1, 2, ..., n could be easily calculated:

xi = cos θi × di + xc (5)

yi = sin θi × di + yc (6)

where i denotes the ith contour point with the corresponding

angle θ. Figure 2 illustrates the process to represent a text

instance in polar coordinates. Where we first locate the polar

center, then we calculate the contour points corresponding to a

specific angle via the distance, then we repeat this n times to

get all the contour points for generating text mask in arbitrary

shape. To find regression targets for these rays, for each

ground truth, we sample a point and the emit rays from that

center, with these lines, we could get the crossover points with

the contour of the ground truth. The distance between these

crossover points and the sample point is the regression target.

If there are more than one point that intersect with the ray, we

simply consider the point that has the largest distance from

the sample point as the contour point for distance regression.

If the center point is located outside the mask, which is rarely

the case, we set the regression target as the minimum value.

A location is considered as a sample point only if it is near

the mass center of a text instance so we can make sure that

we always sample from the polar center, for those points away

from the mass center, we simply ignore them.

C. Assembly

We assembly the outputs of the heads to get the detection

results for post-processing. Thus, a total of H ∗ W text

instances with corresponding masks and bounding boxes will

be generated, where (H,W ) denotes the shape of the corre-

sponding feature map. The polar representation of text masks
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is introduced above, we emit rays to get contour points and use

these contour points to reconstruct our text masks. Bounding

box generation is similar, with a box center and the lengths

of different edges, the corresponding bounding boxes could

be easily determined. When locating a set of center points

of text instances, we can easily get a set of detection results

Di, i = 1, 2, ...N .

To determined the center points of text instances, our

network also outputs classification and centerness on each

pixel. To make the predicted points more consistent with

the regression targets, we consider only the pixels near the

mass center of text instances as positive examples, which is

approximately 1.5 × the stride of the corresponding feature

map. The output classification logit is the probability whether

the corresponding pixel is a positive sample, ie. located near

the mass center. Polar centerness is used to suppress a lot of

low-quality outputs which is defined as:

Polar Centerness =
√
dmin/dmax (7)

where dmin is the minimum length of the n rays and dmax

is the maximum, after that, we use square root to normalize.

We multiply the classification logits with the corresponding

centerness score to get the final scores. Then we use these

results to filter low-quality outputs by only keeping 1 k top-

scoring predictions at most on each feature map, any output

that is lower than 0.05 is also directly filtered. NMS then is

used to further filter outputs.

D. Loss Function Design with Polar Loss and cIoU Loss

Specifically, we use polar IoU loss for mask regression in

polar coordinates and cIoU loss for Bbox regression. Directly

applying mask loss on pixel level is not optimal. Since our

masks are represented in polar coordinates, it needs a lot of

computation to reconstruct the mask instances in pixel level

and calculate losses per pixel level. Smooth-l1 doesn’t consider

the prediction as a whole because it takes different rays

separately and overlooks the correlations among them. Thus,

we use a specially designed Polar IoU loss that fits in our polar

representation best. Given two sets d = {d1, d2, d3, ..., dn} as

the lengths of n predicted rays and d∗ = {d∗1, d∗2, d∗3, ..., d∗n} as

the n ground truth lengths. Polar IoU loss is an approximation

of IoU loss in polar coordinates, it is defined as:

LPolarIoU = log

∑n
i=1 max(di, d

∗
i )∑n

i=1 min(di, d∗i )
(8)

Since the shape of most text instances is close to a rectangle,

we also add a bounding box branch. Our Bbox branch is

parallel to the mask branch, we use cIoU loss [24] as our

Bbox loss. CIoU could consider the aspect ratios of bounding

boxes and help predictions with low overlap with ground truth

find targets to regress. The cIoU loss is defined as:

LCIoU = 1− IoU +
ρ2 (b,bgt)

c2
+ αv (9)

where b, bgt denote the center points of predicted boxes and

ground truth boxes respectively. ρ(·) is Euclidean distance, and

TABLE I
PERFORMANCE COMPARISONS WITH DIFFERENT STRUCTURE DESIGNS ON

CTW-1500 AND ICDAR2015 DATASET.

Dataset Method Precision Recall F FPS

CTW-1500

ResNet50a + IoU 81.3 73.1 77.8 13.3
ResNet101 + IoU 82.5 76.7 79.4 7.7
Attention + IoU 83.2 78.7 80.8 8.9
Attention + cIoU 83.5 78.8 81 8.6

ICDAR-15

resnet50a + iou 81.3 73.1 77.8 13.3
resnet101 + iou 82.5 76.7 79.4 7.7
Attention + iou 83.2 78.7 80.8 8.9
Attention + ciou 83.5 78.8 81 8.6

c denotes the length of diagonal of the smallest enclosing box

which could cover the two boxes. α is a trade-off parameter

and v measures the aspect ratio consistency of the two boxes.

They are defined respectively as:

v =
4

π2

(
arctan

wgt

hgt
− arctan

w

h

)2

(10)

α =
v

(1− IoU) + v
(11)

where w and wgt denote the width of predicted boxes and

ground truth boxes respectively. h represents the height.

IV. EXPERIMENT

In this section, we show the effectiveness and efficiency

of the proposed PolarText for Scene Text detection. We

first introduce dataset and measurements. Then, we conduct

ablation and parameter setting experiments to show designs

of PolarText is highly effective. Afterwards, two groups of

comparative studies on several public dataset are conducted

to demonstrate PolarText is effective in text detection. Finally,

we describe implementation details for readers’ convenience.

A. Datasets

Among all datasets for scene text detection, we choose five

datasets, including ICDAR15, ICDAR17-MLT, MSRA, Total

Text, SCUT CTW-1500. We also used Image-Net and MS-

COCO for pre-training. Annotations of ICDAR 15 are labeled

as 4 vertices at word level and annotations of CTW1500 and

Total text are labeled with boundary points, at text level.

Annotations of MSRA are labeled as rectangle boxes and the

corresponding angle, we convert it to vertices of quadrilaterals.

The evaluation metric used is similar to Pascal Voc, any text

instance that has an IoU larger than 0.5 with any ground truth

will be considered as positive, and any ground truth could have

only one positive example. We use precision, recall and the

F-value to evaluate the performance.

B. Parameter Setting Experiment

We conduct experiments to study the effectiveness of dif-

ferent components. Experiments on CTW-1500 and ICDAR-

15 are shown in Table I. On CTW1500 dataset, Attention

improves the performance by a large margin, it even out-

performs heavier backbones such as resnet101 with fewer

speed influence. Attention module works especially well on
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TABLE II
PERFORMANCE COMPARISON IN CONVERGENCE SPEED ON CTW1500

DATASET.

Method Epoch50 Epoch100 Epoch200 Epoch300
IoU 34.3 56.1 68.7 78.5
cIoU 34.6 60.2 76.2 80.7

TABLE III
PERFORMANCE COMPARISONS WITH THE EXISTING METHODS ON

CTW-1500 AND ICDAR2015 DATASET.

Datasets Method Precision Recall F FPS

CTW-1500

CTPN[25] 60.4 53.8 56.9 7.1

lSegLink[26] 42.3 40.0 40.8 10.7
EAST[27] 78.7 49.1 60.4 -

CTD [28] 74.3 65.2 69.5 -

CTD+TLOC[28] 77.4 69.8 73.4 13.3

DMPNet [29] 69.9 56.0 62.2 -

TextSnake[6] 67.9 85.3 75.6 8.2

PSENet[1] 80.6 75.6 78.0 3.9

LOMO[30] 85.7 69.6 76.8 4.4

Mask R-CNN a [3] 80.8 83.1 81.9 1.8

Ours 83.5 78.8 81.0 8.6

ICDAR-15

CTPN[25] 74.2 51.6 60.9 7.1

Zhang et al.[30] 70.8 43.0 53.6 0.5

PixelLink[26] 82.9 81.7 82.3 7.3

MSR[31] 86.6 78.4 82.3 -

EAST[27] 83.6 73.5 78.2 13.2
TextDragon[32] 84.8 81.8 83.1 7.5

PSENet[1] 81.5 79.7 80.6 1.6

PAN[33] 77.8 82.9 80.3 -

Mask R-CNN a [3] 86.3 81.5 83.8 1.9

Ours 88.1 80.2 84 8.7

CTW1500, we believe that it is because we need much more

information to get the context of complex shapes. On the

other hand, cIoU has little impact on the overall performance

but it could help the network train faster, comparisons of the

convergence speed between different IoU types are shown in

Table II, and we can conclude that cIoU converges much faster

and make the network easier to train. After epoch 300, the

whole network became over-saturated.

C. Comparative Experiment and Analysis

Comparison of results on different datasets are shown in

TableIII, IV respectively. On datasets like ICDAR15, where

most text instances are quadrilateral in shape, our proposed

method outperforms existing methods. Our method performs

particularly well and has a large edge on MSRA dataset

where most text instances are rotated. This indicates that

our method is rotation invariant. ICDAR17 dataset contains

multiple languages, which means its scenes are more complex

and diverse than any other dataset. Experiments show that our

method works well on this challenging dataset. On curved

text dataset like ICDAR15 and CTW1500 our method gained

TABLE IV
PERFORMANCE COMPARISONS WITH THE EXISTING METHODS ON

ICDAR2017, MSRA, TOTAL-TEXT DATASETS.

Dataset Method Precision Recall F FPS

ICDAR-17

He et al.[34] 76.7 57.9 66.0 -

Lyu et al.[35] 83.8 55.6 66.8 -

Pixellink[26] 70.9 61.7 65.4 7.3

Mask R-CNN a [3] 74.8 61.1 67.2 2.1

Ours 75.6 62.8 68.6 9.7

MSRA

SegLink[36] 86.0 70.0 77.0 -

East [27] 81.7 61.6 70.2 6.5

TextSnake[6] 83.2 73.9 78.3 1.1

Zhang et al.[30] 83.0 67.0 74.0 0.48

He et al. [34] 77.0 70.0 74.0 1.1

Pixellink[26] 83.0 73.2 77.8 3.0

Mask R-CNN a [3] 84.6 80.5 82.5 1.9

Ours 87.0 81.2 83.9 9.5

TotalText

SegLink[26] 30.3 23.8 26.7 7.7

EAST[27] 50.0 36.2 42.0 -

MSR[31] 83.8 74.8 79.0 4.3

TextSnake[6] 82.7 74.5 78.4 3.6

PSENet[1] 81.8 75.1 78.3 3.9

Mask R-CNN a [3] 82.3 84.5 83.3 1.5

Ours 82.4 76.6 79.3 7.9

comparable performance with Mask R-CNN. Our method

achieved an FPS of 8.8, which is at least 4 times faster than

Mask R-CNN. We think it’s because that Mask R-CNN is

a two stage method and needs to generate dense predefined

anchors and has a lot of computations, so it is slower than our

single stage method.

We have also noticed that, Mask R-CNN tends to have

higher recall than ours, since Mask R-CNN used a lot of

predefined anchors, text instances are less likely to be ig-

nored. On all datasets, our method outperforms Bottom-up

methods, like PSENet[1], TextSnake[6]. We think it’s due to

the difficulty to get a relatively good pixel level segmentation

and text instances that are close to each other are not easy

to distinguish. The overall experiments show that our method

works well in most cases. We show detection samples achieved

by the proposed method in Fig. 3 and 4, where we can notice

detecting texts in polar representation could greatly improve

performance on text detection.

D. Implementation Details

Our network is trained with stochastic gradient descent with

the initial learning rate set to 0.01. Warm-up policy is adopted

to prevent our method from getting stuck into local minimum.

The positive and negative IOU threshold is set to 0.4 and

0.5 respectively. Input images are resized so that the longer

side is no longer than 1280. During training, simple data

augmentation is used such as random resize, crop and clip.

We use Res-Net 50 as backbones and non-local networks as
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Fig. 3. Detection results on CTW-1500 dataset.

Fig. 4. Detection results on total text dataset

our attention module. All our experiments are conducted on 4

nvidia GTX 1080 TI gpus.

V. CONCLUSION

This paper proposes a novel idea to detect text by

directly generating contour points of text instances with

polar coordinates representation. Our polar representation

is specially fit for text detection with the characteristic of

rotation invariance. The proposed PolarText not only relieves

burden of high computation cost brought by pixel-level

classification, but also fits with intrinsic characteristics

of text instances to eliminate mislabeled boundary pixels.
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