
User Portrait Technology Based on Stacking Mode

Yirui Wu
College of Computer and Information,

Hohai University
Nanjing City, China
wuyirui@hhu.edu.cn

Pengyu Yu
College of Computer and Information,

Hohai University
Nanjing City, China

jadesperwalker@qq.com

Abstract—Because of the differences in code styles and
programming levels among developers, it is prone to code
irregularities, poor readability, and security vulnerabilities.
Although developers can see their problems in the test report, it
is difficult to guarantee that they will not make mistakes on the
same problem. In this article, we propose a way to build a
programming level for developers. The proposed method
explores the Stacking model for building a programming level
for developers. First, cluster the problems that occurred during
the development process, give weight to the category
information, score the developer's programming level, and
divide the user groups into different categories. Then use the
word vector to extract the features of the code defect, generate
a feature matrix, and finally pass the feature matrix to the
Stacking classifier to classify the defect information and update
the developer's programming level portrait. Experimental
results show that it is effective in predicting defect code
information. In addition, a comparative study with the state-of-
the-art method shows that the method is superior to existing
methods in terms of classification rate, recall, precision and F-
measure.

Keywords—code defect, clustering, stacking model, user
portrait and code defect prediction

I. INTRODUCTION

In the traditional software development process, the
problem of code defects is usually sent to the corresponding
developers, and the analysis of the developer's programming
level and the correlation of code problems is not done from
the perspective of the developer. As a result, it's easy for
developers to still commit the same problem. The main reason
is that there is no correlation between the code problem and
the developer's own ability, which causes the developer to
ignore the code problem and not improve his own problem. In
addition, when evaluating the programming level of
developers, often relevant personnel need to manually collect
all the defect issues, and classify and score the defect issues.
Then score the developer's programming level based on the
code problems the developer has encountered. The process is
cumbersome and the degree of automation is low. In order to
solve the above problems, this work focuses on the
classification of code defect information and the construction
of developer user portraits to help developers improve their
programming skills.

User portrait is a model that describes user information
from multiple dimensions. User portraits are based on the
attributes and behaviors of users in real life, abstracting tags
from multiple dimensions to restore the user's true appearance
as much as possible. After the user is tagged, the enterprise
can accurately locate the specific user according to the tag, so
as to customize corresponding policies for different users and
reduce the cost of pushing.

Marquar et al. [1] used a multi-label classification method
to predict the user's gender and age. Cai Guoyong et al. [2]
analyzed the emotional connection between graphics and text
based on convolutional neural network, and it has a good
effect on the emotion prediction of graphics and text fusion.
Torres-Valencia et al. [3] used support vector machines to
analyze the emotional characteristics of users. Kuzma et al. [4]
extract user preference characteristics based on neural
network models. Mueller et al. [5] used multiple word
structure features to gender-identify Twitter username
information.

In 2001, Webb GI et al. [6] applied machine learning
algorithms to the construction of user portrait models, and
proposed that when constructing user portraits, problems such
as large data sets and user characteristic attributes that change
over time are required. In 2003, Degemmis M et al. [7] used a
text classification algorithm to extract the user's interest habits,
and successfully applied user portraits to personalized
recommendations. In 2010, Zheng Baoxin et al. extracted
targeted user feature information and targeted promotion of
opponent game players. In 2015, Liu Hai et al. used a
clustering algorithm to classify users, dig out potential
connections between consumers and products, and conduct
accurate marketing for consumers. Gu et al. proposed a
method of modeling linguistic and psychological
characteristics to dig out the relationship between the user's
personality characteristics and their behaviors, so that
business organizations can better serve the user population.
Wu Tongshui et al. used a decision tree algorithm to analyze
airline customers, which enables airlines to take
corresponding improvement measures for customer churn.

Chen Yan et al. [9] believe that when constructing user
portraits, two aspects of the timeliness of user data and the
dynamics of portrait data should also be considered. The user's
behavior will change over time. When constructing a portrait,
if you select some older user data and do not update the
portrait, the value of the portrait will be difficult to reflect.

Although many domestic and foreign scholars have
conducted in-depth research on user portraits, and their
application fields are also very wide, they are mostly used in
the personal customization, business analysis, precision
marketing, and user statistics of user groups. The lack of
programming is rarely involved and not researched enough. In
addition, in the traditional evaluation of developer
programming level, manual collection and experience
evaluation methods are often used, the degree of automation
is too low and it cannot objectively reflect the programming
level of developers. Therefore, it is necessary to develop a
method that is applied to the portrait of the developer user,
which can extract the characteristics of the defect information
and predict the developer's programming level.

Therefore, in this work, we propose a new method based
on the Stacking model and K-means clustering algorithm for

245

2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing,
Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress

978-1-7281-6609-4/20/$31.00 ©2020 IEEE
DOI 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00051

Authorized licensed use limited to: Hohai University Library. Downloaded on May 16,2022 at 11:40:04 UTC from IEEE Xplore. Restrictions apply.

building developer user portraits. K-means clustering
algorithm can automatically classify the defects of developers.
Then the relevant personnel give weights to the results of
clustering, and then score the developers' programming ability
according to the weight and defect information. Scoring builds
a portrait of the developer's programming level. The SVR
(Support Vactor Regerssion) algorithm, the RF (Random
Forest) algorithm, and the GBDT (Gradient Boosting
Decision Tree) algorithm are combined into a Stacking model,
and then the defects of the developer are predicted, and the
developer portrait is updated again. This is to remind
developers where to pay attention to when programming,
reducing the problems that developers have during the
programming process [10,11].

II. PROPOSED METHOD

In this work, there are three parts: clustering process,
training process and prediction process as shown in Fig.1. For
the clustering process, first perform data preprocessing on the
defect information, remove redundant and irrelevant data, and
then use the improved K-means algorithm to classify all the
defect information, then label the defect information with a
category label and give weight to the category information .
The developer's defect information and the category of the
defect information are scored, and finally the programming
level of the developer is classified to divide the user groups of
different categories. For the training process, feature
extraction is first performed on the defect information with
categories, and then the feature matrix is input into the
Stacking algorithm for training to obtain a Stacking
classification model. For the prediction process, first extract
the characteristics of the defect information, then input it into
the Stacking classification model for classification, evaluate
the prediction ability of the Stacking classification model, and
finally re-score the developer's programming level and update
the user group.

A. User Group Analysis Based on Improved K-means
For the division of developer user groups, we use the K-

means algorithm and optimize the K-means algorithm to
enable it to quickly and efficiently select clustering centers
and clustering results. For the selection of the initial center and
the optimization of the complexity of the K-means algorithm,
the maximum distance principle is adopted, and the object
with the largest distance difference is used as the cluster center.
The specific optimization steps are as follows.

1) For the data set ܵ_݊ = ,1_ݔ} ,2_ݔ … , {݊_ݔ , calculate
the distance between any two points, and select the two points
p and q with the largest distance from them. Note the first
cluster center,

x1 = ௣ݔ (1)

the second Clustering center.
2ݔ = ௤ݔ (2)

2) For a given sample point ݔ௜ and cluster centers x1 and
x2. if,

|x௜ − |1ݔ < |x௜ − x2| (3)

Then divide x_i into the class with x1 as the cluster center,
otherwise divide it into the class with x2 as the cluster center,
and finally divide the entire data set into S1 and S2 classes.

3) First calculate the Euclidean distance from the sample
points in the S1 set to the cluster center x1, and select the
sample point with the largest distance from it, satisfying
݀1 = ௜ݔ|} ݔܽ݉ − ,|1ݔ ௜ݔ ∈ ܵ1}, and then calculate the The
Euclidean distance from each sample point to x2, we get
݀2 = ௜ݔ|} ݔܽ݉ − ,|2ݔ ௜ݔ ∈ ܵ2} . Note ݀3 = ,1݀} ݔܽ݉ ݀2} ,
the sample point that meets this condition is x3, and x3 is used
as the third initial cluster center;

4) Repeat the above steps 2) and 3) until k initial cluster
centers are found;

5) Calculate the Euclidean distance between any two
initial cluster centers, and record it as d(ݔ௜, ;(௝ݔ

6) Traverse the sample points in the data set S, and
calculate the distance from each sample point to each cluster
center. For a given sample point x௝, the cluster center with the
smallest distance is selected, and the sample points are divided
into corresponding classes. For a given sample point x and two
cluster centers ݔ௣ and ݔ௤ , if

d൫x, ௣൯ݔ ≤
1
2

݀൫ݔ௣, ௤൯ݔ (4)

then

d൫x, ௣൯ݔ ≤ ݀൫x, ௤൯ݔ (5)

7) Repeat steps 5) and 6), iterating multiple times until the
objective function value converges, then the clustering
process ends.

Fig. 1. User portrait technology workflow based on Stacking model.

246

Authorized licensed use limited to: Hohai University Library. Downloaded on May 16,2022 at 11:40:04 UTC from IEEE Xplore. Restrictions apply.

B. Stacking-based Code Defect Prediction Model
When the prediction capability of a single model

encounters a bottleneck, it can be used as a basic model and
the ensemble learning method can be used to further improve
the prediction effect [12]. In order to further improve the
accuracy of the code prediction model, we propose a two-layer
ensemble learning algorithm model based on the Stacking
algorithm, as shown in Fig.2. In the first layer model, we use
the GBDT algorithm, Random Forest algorithm, and SVR
algorithm with better prediction capabilities to fuse, and fully
mine the feature information related to code defects. In the
second model, we used the LR (Logistic Regression)
algorithm to reduce overfitting problems during training.

For the training stage, in the first layer model, the Stacking
model uses the K-fold cross-validation method in the
prediction process of each base classifier. The training sample
set is divided into k copies. And one is selected as the
verification set. The others are selected as training sets. Since
the validation sets are different from each other, and each fold
is predicted on the base classifier, for a base classifier, after
using K-fold cross-validation, k unique prediction results can
be obtained. It can be found that after the stitching of the k
prediction results is the prediction result of the entire training
sample set. In the second layer model, the prediction results of
each base classifier are merged side by side to obtain a feature
matrix, and the real result of the training set is used as the
output matrix of the model, which is brought into the base
classification model of the second layer. Train to get the final
Stacking classification model.

For the test phase, in the first layer model, since the test
sample set is predicted at every fold in the training phase, for
a base classifier, the prediction results of k test sets can be
obtained. Then add their parts and take the average to get the
average prediction result of the test set. In the second layer
model, the prediction results of each base classifier are merged
side by side to obtain a feature matrix, and the stacking model
obtained during the training phase is used to test the test
sample set.

The algorithm described in the above steps is shown in
Table I.

TABLE I. ALGORITHM OF USER PREDICTION MODEL BASED ON
STACKING ALGORITHM

Algorithm of user prediction model based on Stacking algorithm
Input:
Training set T = ,ଵݔ)) ,(ଵݕ ,ଶݔ) ,(ଶݕ … , ,௡ݔ) ((௡ݕ
Base classifier GBDT, RF, SVR
Meta Classifier LR
Output
Classification model Stacking Model

ଵܶ, ଶܶ, … , ௞ܶ = ,ܶ)݈݀݋݂_݇ ݇)
meta_T={}
foreach ௝ܶ in { ଵܶ, ଶܶ, … , ௞ܶ}:
GBDT[j] = GBDT(T- ௝ܶ)
SVR[j]=SVR(T- ௝ܶ)
RF[j]=RF(T- ௝ܶ)
foreach ݔ௜ in ௝ܶ:
(௜ݔ)௜ଵ=GBDT[j].predictݕ
(௜ݔ)௜ଶ=SVR[j].predictݕ
(௜ݔ)௜ଷ=RF[j].predictݕ
 meta_T.append((ݕ௜ଵ, ,௜ଶݕ (ଵݕ ,(௜ଷݕ
endfor
endfor
Stacking = LR(meta_T)

The design steps of the user prediction model based on the
Stacking algorithm are as follows:

1) Sample the code defect data after clustering to obtain
the code defect data training set and test set, and then use the
cross-validation method to divide the code defect data training
set into 5 parts;

2) Using random forest algorithm, GBDT algorithm, and
SVR algorithm to predict the cross-validation training set
respectively, the prediction results of the three basic models
can be obtained, and then the prediction results and
corresponding feature labels are combined to obtain the meta
feature vector;

3) The meta-feature vector is used as the new training data
set, and the meta-feature vector is trained by the LR algorithm
to obtain the final Stacking classification model;

4) Use the Stacking classification model to predict the test
samples.

III. EXPERIMENTAL RESULTS

In this work, we will analyze the user group results of the
improved K-means algorithm and analyze the code defect
prediction model based on the Stacking algorithm

Fig. 2 Framework diagram of code defect prediction model based on Stacking model

247

Authorized licensed use limited to: Hohai University Library. Downloaded on May 16,2022 at 11:40:04 UTC from IEEE Xplore. Restrictions apply.

A. User Group Analysis Based on Improved K-means
The clustering algorithm is an unsupervised learning

algorithm [13]. When classifying defect information, the
number of classes and the meaning of each class cannot be
well determined. Therefore, we use SSE (Sum of the Squared
Errors) to evaluate the number of categories. The calculation
method of SSE is shown in equation (6).

SSE = ෍ ෍ ,ݔ)ݐݏ݅݀ ݉௜)
௫∈஼೔

௞

௜ୀଵ

(6)

Where k represents the number of clusters, C_i represents
the i-th cluster, x represents the sample points in C_i, m_i is
the cluster center of C_i, and dist represents the Euclidean
distance from the sample points to the cluster center.

First, select all the defect information appearing in the
developer for one year as the input features of the clustering
algorithm, and then set the range of the number of clustering
clusters k to an integer value between 2 and 20. Then perform
a cluster analysis on each cluster number. The value of the
clustering error SSE is obtained by calculation. Finally, the
relationship between the clustering error SSE and the number
of clustering clusters k is shown in the form of a line chart, as
shown in Fig.3.

In the evaluation of the number k of clusters, the number
of clusters can be determined by the elbow method. When the
number of clusters gradually increases, the sample will be
divided more and more finely, the degree of aggregation of
each category will gradually increase, and the clustering error
SSE will gradually decrease.

It can be found that when the number of clustering clusters
k is smaller than the number of real clustering clusters, as the
value of k increases, the clustering error will decrease rapidly.
When the number of clustering clusters k is larger than the
number of real clusters, as the value of k increases, the
clustering errors tend to be flat. When the number of clustering
clusters is 5, it is the true number of clustering clusters.
However, when the number of clustering clusters is set to 5
for clustering, there is very little information in one of the
categories. Therefore, we set the number of cluster clusters to
4, and then use the improved K-means algorithm to divide the
four types of defect information, as shown in Fig.4.

It can be found that the first type is mainly defect
information such as the io operation. When an error occurs in
this type, it will directly cause the function of the project to be
unavailable, which belongs to the severity level. The second
type is mainly the defect information related to the guide space
and the character space. For this type of error, the code
operation is not standardized, and the irrelevant third-party
component packages introduced are low-level errors. The
third type is mainly some unused variables and named related
variables or strings. For this kind of defects, mainly after the
code is written, some variables are not used, which is a
medium-level error. The fourth category is mainly file
processing and some function initialization operations. For
this type of error information, mainly the initialization of
functional modules and problems of test analysis are high-
level errors.

Therefore, the developer's defect information can be
classified and counted, and various types of defect information
can be given weights. Finally, the developer's coding level is
evaluated according to the various types of scores. A category
with a high proportion is defined as a category where users are
prone to problems, as shown in equation (5).

߱ଵ ∗ ݓ݋݈ ∶ ߱ଶ ∗ ݈݉݅݀݀݁ ∶ ߱ଷ ∗ ℎ݅݃ℎ ∶ ߱ସ ∗ ݏݑ݋݅ݎ݁ݏ (5)
Where ߱ଵ , ߱ଶ , ߱ଷ , and ߱ସ are the weights of low,

medium, high, and severe respectively. According to past
experience, the weights of each level are set to 1, 3, 9, and 27
respectively.

Finally, according to the proportion of each level,
developers can be divided into those prone to low-level errors,
intermediate-level errors, high-level errors, and severe-level
errors. Fig.5 shows the errors of personnel at all levels.

It can be found that when the defect type is given weight
information, the system will be more fair in scoring the
developer's programming, and it is no longer just to measure
a developer's programming level based on the number of
defect types. For developers prone to low-level problems, it is
necessary to improve their programming habits. Have a good
programming practice, on the one hand can enhance the
readability of your own code, and on the other hand, it is
convenient for others to quickly understand the function of the
code during maintenance. Developers who are prone to
intermediate-level problems need to use them in a timely
manner when declaring variables. If they are not used after
declaration, they need to be deleted when submitting code. For
C and C ++ programming languages, variables need to be
released in a timely manner when they are no longer used. For
developers who are prone to high-level problems, you need to
pay attention to the function completeness and initialization
issues. For developers prone to serious level problems, you
need to pay attention to whether the software crashes or exits
abnormally due to io operation or parameter interface call
errors.

Fig. 3. Polyline relationship diagram of clustering error SSE and the
number of clustering clusters k

Fig. 4. Classification of defect information

248

Authorized licensed use limited to: Hohai University Library. Downloaded on May 16,2022 at 11:40:04 UTC from IEEE Xplore. Restrictions apply.

B. Stacking-based Code Defect Prediction Model
For an ensemble learning algorithm, if the prediction

effect of the ensemble model is better than that of any basic
model, the construction of the ensemble model is considered
successful. The standard metrics (ie recall, precison and F-
measure) are used to calculate the metrics defined in equations
(6)-(8). True (TP) is the number of correct classifications and
belongs to the positive category; true negative (TN) is the
number of incorrect classifications and belongs to the negative
category. False positive (FP) and false negative (FN) are in the
positive and negative categories, respectively the number of
classification errors. With these definitions, we define the
following metrics:

precision =
ܶܲ

ܶܲ + ܲܨ
(7)

recall =
ܶܲ

ܶܲ + ܰܨ
(8)

F1 − score =
2 ∗ ∗ ݊݋݅ݏ݅ܿ݁ݎܲ ܴ݈݈݁ܿܽ

+ ݊݋݅ݏ݅ܿ݁ݎܲ ܴ݈݈݁ܿܽ
(9)

We first used the base classification algorithm to perform
category prediction of defect information. The base
classification algorithms mainly include LR algorithm, SVR
algorithm, RF algorithm and GBDT algorithm. Then, the
above-mentioned base classification algorithm is integrated
through Stacking to obtain a Stacking integrated classification
algorithm, and the Stacking integrated classification algorithm
is used to predict the category of defect information. The
evaluation results of the base classification algorithm and the
Stacking integrated classification algorithm on the
classification and prediction of defect information are shown
in Table II.

TABLE II. EVALUATION RESULTS TABLE

method precision recall F-measure

LR 0.742 0.749 0.735
SVR 0.727 0.672 0.794
RF 0.867 0.872 0.863

GDBT 0.868 0.891 0.846
Stacking 0.923 0.912 0.935

It can be found that for a single learner, the performance
of the random forest and GDBT algorithm on F1 value,
precison and recall is better than SVR and LR, showing the
advantages of integrated learning in classification prediction.
Compared with the detection effect of other learners, the
detection results of the SVR algorithm on accuracy are lower,
the main reason may be that when processing a large amount
of Chinese and English defect information, the parameter
setting of the SVR model is problematic. Therefore, a lot of
practice and exploration are needed in the future to make the
SVR model's effectiveness in predicting defect information
improve. For the Stacking integration algorithm, the F1 value,
precison, and recall are better than the base classification
algorithm, and it has a good ability to predict the category of
defect information.

For the Stacking integration model used above, the most
important parameters affecting the structure of the model are
the number of individual learners, the maximum depth of
GBDT, and the maximum depth of RF.

In ensemble learning, the number of individual learners
has a significant impact on the performance of the ensemble
model. When the number of samples in the training set is very
large, multiple individual learners can be selected to learn the
training samples, so that the integrated model can have better
results in prediction. Where the number of individual learners
is the number of K-fold cross-validation. We use 3-fold, 4-
fold, and 5-fold individual learners to perform prediction
experiments on defect code information. During the
experiment, the individual learner was iterated 300 times, and
the accuracy of the Stacking model was calculated with an
interval of 50 times. The accuracy of the Stacking integration
model under different iterations is shown in Fig.6.

It can be found that with a certain number of iterations, the
more individual learners, the higher the accuracy of the
Stacking integration model. With a certain number of
individual learners, the number of iterations and accuracy is a
gradually increasing relationship, and eventually stabilizes.

For the two basic models of GBDT and RF, if the two
basic models are debugged to the best performance first, and
then integrated through the Stacking algorithm, the resulting
Stacking integration model is not necessarily the optimal
model. Therefore, the parameters of these two models need to

Fig. 5. The errors of personnel at all levels.

 (c)high-level person (d)severe-level person

 (a)low-level person (b)medium-level person

Fig. 6. Accuracy of Stacking model under different iterations

249

Authorized licensed use limited to: Hohai University Library. Downloaded on May 16,2022 at 11:40:04 UTC from IEEE Xplore. Restrictions apply.

be combined and debugged together to obtain the optimal
Stacking integration model. For the GBDT base model, the
main influence parameter is the maximum depth depth_G, and
for the RF base model, the main influence parameter is the
maximum depth depth_R. The accuracy of GBDT's maximum
depth_G selection and RF maximum depth depth_R selection
in different combinations is shown in Table III.

TABLE III. ACCURACY OF DIFFERENT PARAMETER COMBINATIONS

depth_R=10 depth_R=15 depth_R=20 depth_R=25
depth_G=5 0.8614 0.9246 0.9142 0.9028
depth_G=6 0.8687 0.9265 0.9178 0.9135
depth_G=7 0.8543 0.9215 0.9035 0.9146

It can be seen that the optimal parameter combination of
GBDT and RF is [depth_G = 6, depth_R = 15]. It is better that
the maximum depth of GBDT and the maximum depth of RF
are not larger. The accuracy will decrease before reaching a
certain threshold.

According to the above experiments, it can be found that
the Stacking algorithm can give full play to the advantages of
each basic model, and can effectively make up for the
shortcomings of a single basic model in some aspects. As a
result, the Stacking integration model has a good effect in all
aspects, and the final prediction result is as close to the real
situation as possible.

IV. CONCLUSION AND FUTURE WORK
In this work, we propose a stacking model-based

developer user portrait model to classify developers'
programming levels. First, the developer's defects are
processed, the redundant and irrelevant information in the
defect information is removed, and then the improved K-
means algorithm is used to classify the defect information and
give weight to the category information to divide the
developer user group. The feature matrix is extracted from the
typed defect information, then the feature matrix is input into
the Stacking classification model for training, and finally the
defect information without categories is used to evaluate the
Stacking classification model. The experimental results show
that the method is superior to the existing methods in terms of
classification rate, recall, precision and F-measures. However,
the developers should be portrayed from multiple perspectives
to make the portrait information richer and the guidance of the
portrait stronger [14]. This is our future work to extend the
proposed method to improve results.

ACKNOWLEDGMENT

This work was supported by National Key R&D Program
of China under Grant 2018YFC0407901, the Fundamental
Research Funds for the Central Universities under Grant

B200202177, the Natural Science Foundation of China under
Grant 61702160, the Natural Science Foundation of Jiangsu
Province under Grant BK20170892.

REFERENCES

[1] ZHAO T, ZHANG Y, ZHANG D X. Analysis of big data application
technology and prospect of intelligent distribution network[J].
Power System Technology, 2014, 38(12): 3305-3312.

[2] CAI G Y,XIA B B. Sentiment prediction of graphic and text fusion
media based on convolutional neural network [J]. Computer
Application,2016,36(02):428-431+477.

[3] Torres-Valencia, Cristian, álvarez-López, Mauricio, Orozco-Gutiérrez,
álvaro. SVM-based feature selection methods for emotion
recognition from multimodal data[J]. Journal on Multimodal User
Interfaces,11(1):9-23,2017.

[4] Kuzma M,Andrejková,Gabriela.Predicting user’s preferences using
neural networks and psychology models[J].Applied
Intelligence,2016,44(3):526-538.

[5] ZENG J. Research on radvizvisualization technology measurement
model[D]. Beijing: Beijing Jiaotong University, 2011.

[6] Webb G I, Pazzani M J, Billsus D. Machine Learning for User
Modeling[J]. User Modeling and User-Adapted Interaction, 2001,
11(1-2): 19-29.

[7] Degemmis M, Lops P, Semeraro G, et al. Extraction of User Profiles
by Discovering Preferences through Machine Learning[M]. Springer
Berlin Heidelberg, 2003.

[8] ZHEN B X. Promotion of mobile game products based on user portrait
and signaling mining technology [C]. Guangdong Communications
Society,2010:133-136.

[9] SONG M Q,CHEN Y,ZHANG R. Review of User Portrait Studies [J].
Information Science,2019,37(04):171-177.

[10] X. Zhou and Q. Jin, “A heuristic approach to discovering user
correlations from organized social stream data,” Multim. Tools Appl.,
vol. 76, no. 9, pp. 11487–11507, 2017.

[11] W. Liang, X. Zhou, S. Huang, C. Hu, X. Xu, and Q. Jin, Modeling
of cross-disciplinary collaboration for potential field discovery and
recommendation based on scholarly big data,” Future Gener. Comput.
Syst., vol. 87, pp. 591–600, 2018.

[12] X. Zhou, N. Y. Yen, Q. Jin, and T. K. Shih, “Enriching user search
experience by mining social streams with heuristic stones and
associative ripples,” Multim. Tools Appl., vol. 63, no. 1, pp. 129–144,
2013.

[13] X. Xu, Q. Wu, L. Qi, W. Dou, S.-B. Tsai, and M. Z. A. Bhuiyan,
“Trust-aware service offloading for video surveillance in edge
computing enabled internet of vehicles,” IEEE Trans-actions on
Intelligent Transportation Systems, 2020,
DOI: 10.1109/TITS.2020.2995622.

[14] X. Xu, D. Zhu, X. Yang, S. Wang, L. Qi, and W. Dou, Concurrent
practical byzantine fault tolerance for integration of blockchain and
supply chain,” ACM Transactions on Internet Technology (TOIT),
DOI: 10.1145/3395331.

250

Authorized licensed use limited to: Hohai University Library. Downloaded on May 16,2022 at 11:40:04 UTC from IEEE Xplore. Restrictions apply.

