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Abstract
With the rapid development of RGB-D cameras and
pose estimation techniques, action recognition based on
three-dimensional skeleton data has gained significant
attention in the artificial intelligence community. In this
paper, we incorporate temporal pattern descriptors of joint
positions with the currently popular long short-term mem-
ory (LSTM)–based learning scheme to obtain accurate and
robust action recognition. Considering that actions are
essentially formed by small subactions, we first utilize
a two-dimensional wavelet transform to extract temporal
pattern descriptors in the frequency domain for each sub-
action. Afterward, we design a novel LSTM structure to
extract deep features, which model a long-term spatiotem-
poral correlation between body parts. Since temporal pat-
tern descriptors and LSTM deep features can be regarded as
multimodal representations for actions, we fuse them with
an autoencoder network to achieve a more effective feature
descriptor for action recognition. Experimental results on
three challenging data sets with several comparative meth-
ods demonstrate the effectiveness of the proposed method
for three-dimensional action recognition.

KEYWORDS

long short-term memory, spatiotemporal analysis, video analysis, 3D
action recognition

1 INTRODUCTION

Nowadays, how to build smart environments for enhancing the quality of life has drawn increas-
ing attention from researchers.1-3 Among the topics in smart environments, one popular issue is
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understanding the meanings of users' actions, in order to decide how to react properly to users'
behavior.4-6 Recently, videos with three-dimensional (3D) skeleton data could be easily achieved
with the rapid development of low-price RGB-D camera, ie, Kinect and Intel RealSense, which
results in making 3D human action recognition a hot and new challenge in content-oriented
video analysis.7,8 Various methods for feature extraction and classifier learning thus have been
developed for 3D human action recognition.9-11

We generally group current 3D human action recognition methods into two categories,
namely, hand-crafted feature–based methods5,9,10 and deep neural network methods.11,12,13

Hand-crafted feature–based methods design various kinds of features, such as histogram of ori-
ented gradients (HOG),14 Cuboids,15 extended SURF,16 and so on, to visually and temporally
describe human motion sequences. For example, Wang et al17 proposed the conception of dense
trajectories to describe action sequences by a number of hand-crafted features focused on both
motion and appearance, which achieves desirable results on multiple data sets. Generally speak-
ing, hand-crafted features are clear in design purpose and easy to be interpreted as two-stage
methods of feature extraction and classification. However, such methods usually fail in discov-
ering hidden patterns from the quantity of 3D skeleton data, which can be beneficial for more
accurate and robust action recognition.

Another category, ie, deep neural network methods, learns spatiotemporal characteristics by
automatically extracting distinctive features from large data for accurate recognition.18,19 Among
the different neural-based architectures, recurrent neural networks (RNNs), which are specially
designed to handle sequential data with variable length, have achieved promising performances
in 3D action recognition.20,21 For example, Liu et al13 proposed a long short-term memory (LSTM)
network incorporating a tree structure to describe the relation of human parts, which successfully
utilizes the spatiotemporal characteristics of human actions for the recognition task and achieves
desirable accuracy on a large data set, ie, NTU RGB+D.22 Following on the thought of the model-
ing relationship of two concurrent domains, ie, spatial and temporal, Hu et al23 proposed a deep
bilinear framework to further describe such relationship, where their proposed modality pooling
layer and temporal pooling layer could pool the input action sequence along the modality and tem-
poral directions separately. By the different means of describing spatiotemporal characteristics of
human actions, hidden patterns of human actions are more clearly interpreted by researchers to
increase recognition accuracy. However, human actions are complicated to describe and variant
in patterns from one person to another. It is hard to guarantee rationality and robustness by only
utilizing deep features without considering expert knowledge from hand-crafted features.

In fact, utilizing an RGB-D camera for action recognition suffers from not only variances of
patterns of actors but also the fact that recognized skeletons cannot always be accurate due to illu-
mination variations, noise, occlusions, and so on. Therefore, it is not applicable for most of the
previous deep neural–based methods to deal with videos captured in real-life scenarios,24 since
they require reliable RGB-D input streams and only utilize information captured from a rela-
tively small number of people for training. To solve such a problem, we thus propose to couple
the strength of hand-crafted feature–based methods and deep neural network methods. The pro-
posed method essentially originates from the thought that expert knowledge behind hand-crafted
features could focus on the informative parts of action sequence and help utilize a small data set
for effective recognition, which is a beneficial complement to deep neural network methods fac-
ing difficulties of pattern variances and noisy input. In other words, the fusion of heterogeneous
features, ie, hand-crafted and deep neural features, could improve robustness of action recogni-
tion by analyzing the action sequence from different aspects, ie, an expert view and a data-driven
model view, respectively.
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FIGURE 1 Workflow of the proposed method for three-dimensional action recognition, which consists of (A)
preprocessing on the inputting of raw body joint data captured by Kinect, (B) utilizing a multiscale wavelet
transform to extract temporal patterns from subactions, (C) using the relation-aware long short-term memory
(R-LSTM) network to extract spatiotemporal features, (D) fusion of extracted multimodal features with an
autoencoder network, and (E) action recognition by performing classification on the fused features [Color figure
can be viewed at wileyonlinelibrary.com]

With the idea of utilizing the advantages of hand-crafted feature–based methods and deep
neural network methods, we design the workflow of the proposed method, as shown in Figure 1.
During Step (A), the proposed method performs data preprocessing on the captured raw 3D data
of the human body, which not only transforms and rescales joint point positions based on cam-
era view variations but also extracts key action frames to relieve the burden of high computation
and improve robustness in terms of noise input. Based on the stable preprocessed data, Step (B) of
the proposed method transforms subactions, ie, meaningful parts of the action sequence, into the
frequency domain and extracts the temporal features of subactions by a multiscale wavelet trans-
form. Since subactions can be regarded as local states of the action sequence, we thus describe the
action sequence in a local sense by representing action as subactions and learning relationship
between subactions. Meanwhile, Step (C) of the proposed method extracts deep spatiotemporal
features from the whole action sequence based on a novel LSTM network, which successfully
captures the relationship between human body parts in a relatively global sense. During Step (D),
the proposed method utilizes an autoencoder (AE)-based fusion network to not only model the
shared and informative components of hand-crafted and deep features but also involve their spe-
cific features with discriminative information for a better action representation, which is further
adopted for recognition purposes with a logistic regression method in Step (E).

There are three major contributions of this paper.

• Introduction of temporal pattern descriptors in the time-frequency domain extracted by a
multiscale wavelet transform, which describes the action sequence via local subactions and
is invariant to multiple unpleasant impacts, such as noise, temporal misalignment, and the
translation of the human body.

http://wileyonlinelibrary.com
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• Introduction of spatiotemporal features extracted from the proposed relation-aware long
short-term memory (R-LSTM) network, which discovers hidden patterns of actions from the
quantity of training samples and emphasizes the global modeling of joints relation factors.

• A highly efficient fusing method is introduced to fuse hand-crafted temporal pattern features
and deep neural features. The experimental results on several public data sets show that fusion
features outperform individual features on action recognition performance.

2 RELATED WORK

In the following subsections, we first review the approaches for 3D action recognition based on the
categories of hand-crafted feature–based methods and deep neural network methods. Afterward,
we introduce the most recent process of 3D action recognition by involving multimodal data,
which is closely related to our work.

2.1 Hand-crafted feature–based methods for 3D action recognition
Researchers have carefully observed the characteristics of human actions from different aspects.
Based on such observation, feature extraction for different purposes, such as descriptors on skele-
ton geometry and joint dynamic or appearance information, and associated classifier learning
approaches are utilized for 3D action recognition.25,26 We introduce several most popular and
related feature designs in the following parts, namely, skeleton geometry and joint dynamic
information.

Skeleton geometric information depicted in depth sequences can be used to characterize
action. For instance, Oreifej and Liu27 utilized the histograms of oriented normal within each
spatiotemporal depth cube to describe actions. However, a simple histogram representation can-
not provide sufficient distinguishing ability for complicated skeleton patterns. Later, Evangelidis
et al28 studied skeletal quads to assist in action recognition, which is actually a learned Gaussian
mixture model distribution over the Fisher kernel representation, which acts as a succinct skeletal
feature for action recognition and achieves remarkable accuracy. Meanwhile, Vemulapalli et al10

first represented skeleton configurations and actions as points and curves in a Lie group and then
utilized a support vector machine classifier to classify action categories, which offers an optional
framework to describe skeleton based on graph knowledge. Skeletal joints are also popularly mod-
eled as a tree-based pictorial structure.13,29 It is beneficial to model the spatial dependency of the
joints based on their adjacency tree structure, since a hidden representation of several joints such
as the neck joint could be more informative than that of other joints, such as the right- or left-hand
joints, which is generally the same as expected. It is noted that we follow such tree representation
to describe skeleton geometry due to its effectiveness and simplicity.

Human action can also be characterized by the dynamics of human poses utilizing time
domain analysis.30-32 Early on, Xia et al33 proposed a hidden Markov model–based method to
model the temporal dynamics of the actions over a histogram-based representation of 3D joint
locations. Still, a simple histogram representation cannot provide sufficient distinguishing ability
for dynamics of human poses. Later, an angular skeletal representation over the tree-structured
set of joints is then introduced in the work of Ohn-Bar and Trivedi,34 which calculates the simi-
larity of these features over temporal dimension to build the global representation of the action
samples. However, actions with the same meaning can be formed by different combinations of
subactions, with its simplicity of calculating similarity in the time domain, thus preventing its
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further usage in real-life applications. Later, Liang et al35 first extracted the time-domain features
of action sequences through hierarchical depth motion maps (LDM) and then extracted the spa-
tial domain features by a multiscale direction gradient histogram (HOG) operator. After feature
extraction, they utilized an improved sparse coding method to combine the extracted features
for classification of actions, which provides a simple but effective idea of involving both time-
and spatial-domain descriptors. Most recently, Fernando et al36 used a function-based temporal
pooling method to capture the latent structure of the video sequence data and how frame-level
features evolve over time in a video. In comparison, our method explores the collaboration and
naturally fusing among geometric and temporal information, and thus, the weakness of using
single information can be overcome by working collaboratively.

2.2 Deep neural network methods for 3D action recognition
Since the recent resurgence of neural networks invoked by Hinton et al,37 deep neural networks
have become an effective approach to extracting high-level features from massive data. Following
this trend, researchers from the artificial intelligence community have tried different categories
of deep neural models to purse a more accurate 3D action recognition.12,38,39 Since RNNs could
handle sequential data with variable length coinciding with features of action sequences of mul-
tiple persons, we pay special attention on such architecture and its modifications, ie, LSTMs, in
the following review.

Early on, a hierarchical bidirectional RNN40 applies bidirectional RNNs in a novel hierarchi-
cal fashion, such that they divide the entire skeleton into five major groups of joints and that each
group was fed into a separated bidirectional RNN. Because of the disadvantage of RNN-based
methods, ie, vanishing gradient problem, a special kind of RNN named LSTM has been popu-
lar in human action recognition, which utilizes a gating mechanism over an internal memory
cell to learn and retain both long- and short-term dependencies in sequential input data. For
example, Veeriah et al41 proposed a differential gating scheme for the LSTM neural network,
which emphasizes on the change in information gain caused by the salient motions between the
successive frames, which is similar in thought with the design of the proposed LSTM architec-
ture. Later, Shahroudy et al22 separated the memory cell to part-based subcells and pushed the
network toward learning the long-term context representations individually for each part, which
offers a novel idea on utilizing part-level time-domain information for action recognition. Focus-
ing on spatiotemporal information, ST-LSTM13 explores spatiotemporal domains to analyze the
hidden sources of action-related information within the input data over both domains concur-
rently, which represents the topology of the human body as a traversal tree structure and proposes
a novel trust gate to improve accuracy in terms of noisy input. Emphasizing on the co-occurrence
property of joints, Zhu et al12 proposed a mixed-norm regularization term to a deep LSTM net-
work's cost function, which successfully pushes the network toward learning the co-occurrence
of discriminative joints for action classification.

Most recently, several LSTM-based methods have been using different streams to perform
action recognition for higher accuracy and robustness. Wang and Wang42 proposed a novel
two-stream RNN architecture to model both temporal dynamics and spatial configurations for
skeleton-based action recognition, which provides a novel idea by utilizing two different architec-
tures for the description of temporal and spatial information. Moreover, the attention model,43,44

ie, the selectively focusing mechanism, is popular in 3D action recognition, in order to focus on
informative parts of joints or key frames. Song et al45 built their attention-based model on top
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of the LSTM architecture, which learns to selectively focus on discriminative joints of skeleton
within each frame of the inputs and pays different levels of attention to the outputs of differ-
ent frames. Furthermore, Liu et al46 proposed a global context-aware attention LSTM for RGB-D
action recognition, which recurrently optimizes the global contextual information and further
utilizes it as an informative function to assist in accurate action recognition. It is noted that the
high accuracy of deep neural network methods results in their wide usage in real-life applications,
which are specially designed for massive usage with technologies, such as cloud computing,47,48

edge computing,49,50 big data technology,51 and so on. Inspired by the work of Veeriah et al,41 here,
the proposed method takes the difference between the current frame and the previous one as the
input value to reduce the impact of body parts and thus tries to model differential relationship
calculation of each joint part between frames by LSTM to improve accuracy.

2.3 Multimodal 3D action recognition
We outline the methods that learn multimodal features for action recognition, since integrat-
ing multimodal features can generally improve the recognition performance. An intuitive way
to combine multimodal features is to directly concatenate them together.52 To mine more useful
information among multimodal features for better performance, researchers propose to explicitly
learn shared-specific structures among features.11,53

Early on, Liu and Shao54 utilized a genetic programming framework to improve not only
RGB and depth descriptors but also their fusion simultaneously through an iterative evolution.
Ni et al55 concatenated depth descriptor– and RGB-based representations of spatiotemporal inter-
est points for better RGB+D information fusion. Then, Song et al56 achieved accurate RGB+D
action recognition by tracking trajectories consisted of interest points and describing these points
via depth-base local surface patches. The work of Kong and Fu57 first applies projection matrices
to the independent spaces between RGB and depth modalities and then learns models by mini-
mizing the rank with their proposed low-rank bilinear classifier. Most recently, Shahroudy et al11

proposed a new deep AE-based shared-specific feature factorization network to separate input
multimodal signals into a hierarchy of components. Similar to the aforementioned work,11 we
apply an AE as a highly efficient fusing method to fuse hand-crafted temporal pattern features
and deep neural features for better robustness and accuracy.

3 VIDEO STREAM DATA PREPROCESSING

In this section, we first perform filter calculation and normalization to deal with the misalign-
ment, scaling, and view changing problems of an input raw stream, respectively. Afterward,
we extract key frames as input for later steps for the benefits of stability and less computing
complexity.

We utilize Kinect v2.0 to capture body actions, which tracks 25 body joints, and each joint i
has 3D coordinates 𝑗t

i = [xt
i , 𝑦

t
i , zt

i] at time t. Skeleton data acquired by Kinect have the advantages
of small size and well-structured data, but suffer from drawbacks such as instability and noise in
some situations. We represent some usual cases of disadvantages in Figure 2, where image (A)
refers to the ideal captured skeleton image, image (B) represents misalignments of body joints
caused by occlusions or the exceeding out of the sensor range, image (C) happens when the dis-
tance between the camera and the body gets larger, and image (D) is caused by view changes of the
camera. It is noted that body joint misalignments are the main noise source of captured sequences;
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FIGURE 2 Several usual undesirable cases of Kinect-captured raw skeleton data. A, The ideal captured image;
B, Misalignment cases of joints; C, Scaling problem of body joints; D, Side view cases of the skeleton image [Color
figure can be viewed at wileyonlinelibrary.com]

meanwhile, scaling and view changes of cameras could enlarge the intraclass dissimilarity of body
actions, thereby increasing the difficulty of action recognition.

To solve the problem of misalignments, we thus apply two filters on the captured raw data to
stabilize sculptor actions.

1. Holt-Winters double exponential smoothing filter. This filter applies Holt-Winters dou-
ble exponential smoothing to historical joint positions and orientations to get predictions on
upcoming action data under a reasonable assumption that there exists a trend in the cap-
tured action data. By interpolating between the prediction and upcoming action data, this filter
stabilizes joint locations and orientations to remove most jitters and noise brought by Kinect.

2. Limbs inferring filter. This filter is applied to the positions of occlusive limbs, aiming at
preventing the jumpy of limbs. Kinect can provide rough predictions for clipped limb joints;
however, the inference can occasionally be erroneous since it is based on a limited-depth
image. We thus linearly interpolate the previous smoothed joint positions and the inferred
positions to predict convinced positions for clipped limbs.

After stabilizing the raw input stream of Kinect-captured skeleton data, we normalize the coordi-
nates of joints to make the input stream invariant for orientation or scale invariants, which could
help solve the problem of scaling and view changes to a certain extent. Specifically, we first fit
the left shoulder and torso joints to the x-axis and then calculate the rotation angle during fitting.
After that, we fit bones between the head and torso joints to the xy-plane, where the rotation angle
is calculated and used to rotate rest bones. After such operations, we could achieve a stable and
less noisy input skeleton stream.

When humans try to recognize actions, we observe that they generally classify actions based
on information from key frames. Based on such observations, we believe that frames of action
sequence are redundant to achieve action recognition results. In other words, information from
key frames is sufficient to guarantee the accuracy and robustness of action recognition. Essen-
tially, key frame extraction could reduce the intern-class difference to decrease the difficulty in
recognizing the same category action performed by different persons. Moreover, key frame extrac-
tion not only helps eliminate the noise of action sequence, such as joint misalignment cases during
several intern frames, but also largely reduces the input size and, thus, decreases computation
cost during processing.

http://wileyonlinelibrary.com
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Following the general idea for key frame extraction of first merging frames into clusters and
then choosing the key frame from each cluster, we use the agglomerative hierarchical cluster-
ing algorithm to perform key frame extraction. Specifically, agglomerative hierarchical clustering
first initializes small clusters with a single frame and then calculates similarity between adjacent
clusters. Two adjacent clusters with the highest similarity are merged. This merging process is
repeated until clusters with a predefined key frame number are achieved. Considering the inher-
ent temporal characteristics of an action sequence, we utilize the dynamic time warping (DTW)58

distance for similarity calculation. After key frame extraction, we could achieve a set of positions
of body joints J = {𝑗t

i | t = 1, … ,nk, i = 1, … , 25}, where nk is defined as the number of key
frames.

4 CONSTRUCTION OF TEMPORAL PATTERN BY
MULTISCALE WAVELET TRANSFORM

This section gives a detailed description of our proposed temporal pattern feature, named wavelet
temporal pattern (WTP), which is extracted by a multiscale wavelet transform. It is true that
human actions have specific temporal structures.59 In other words, one action may contain sev-
eral consecutive subactions. For example, the “drink water” action may consist of two subactions,
namely, “raise the cup” and “drink.” By modeling the temporal relationship of subactions, we
can distinguish between similar actions. Based on this idea, we propose to adaptively divide each
action into combinations of subactions by DTW-based hierarchy clustering at first and then utiliz-
ing a two-dimensional wavelet transform to extract patterns of subactions in the time-frequency
domain. The whole process of WTP construction is shown in Figure 3.

Different from the work of Wang et al,59 which adopts pyramids to mechanically divide
each action into subactions, we suppose that actions can be represented as short-time sequences

FIGURE 3 Illustration of temporal pattern feature (wavelet temporal pattern [WTP]) construction, where (A)
represents dynamic time warping (DTW)–based hierarchy clustering to divide actions into subactions, and (B)
refers to a multiscale two-dimensional (2D) wavelet transform, which results in WTP features to describe the
temporal characteristics of extracted subactions [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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formed by key frames. In other words, we adopt key frames as the basic components of action. Fur-
thermore, we suppose subactions as clusters of key frames that are near in distance. This is true for
many types of actions, such as “drink water” and “pick up,” where the latter could be represented
as “bend the body” and “pick.” Although the constructed subactions share less semantic mean-
ings, we still argue that the components near in distance could be regarded as functional parts
to represent the inherent meanings of actions. Therefore, we model the temporal relationship of
actions with subactions. Based on such hypothesis, we utilize hierarchy clustering to iteratively
aggregate the components, ie, key frames, to form subactions. Since the actions are temporal tra-
jectories of body joints, we use DTW to calculate the distance between two components. Any two
nearby components that own the lowest distance will be emerged so that we can construct a clus-
ter tree from bottom to top. We adaptively decide on the number of clusters ns (the number of
subactions) by maximizing the silhouette value and a preset upper bound of ns. We thus get a set
of disjoint subactions S = {sj | j = 1, … ,ns ∧ sj ∈ J}.

Regarding a subaction as a signal where joint positions vary with time, the wavelet transform
helps transform the subaction into a time-frequency domain with different scales. We thus apply
a two-dimensional wavelet transform, represented as 𝜑(), to extract the low-frequency pattern of
subactions, with scales varying from 1 to nl, where nl represents the total level number. In other
words, we will abandon the high-frequency coefficients part for levels 1 to nl during transform.
We adopt the low-frequency parts as temporal patterns for subactions due to the fact that the
low-frequency part is often the fundamental part for the temporal sequence. After extracting, we
concatenate the transformed patterns in all scales to form the temporal pattern feature, ie,

Fw =
[
𝜑1(s𝑗), … , 𝜑nl (s𝑗) |𝑗 = 1, … ,ns

]
. (1)

Note that each level of wavelet transform adopts the strategy of half downsampling on results
computed by the last level. In other words, the size of levels decreases in half for all subactions.
Since the action is set to the determined size nk, the size of Fw will be determined as (nk + 1∕2 ·
nk + · · · + (1∕2)nl · nk).

5 CONSTRUCTION OF SPATIOTEMPORAL DEEP FEATURE

In this section, we aim to extract spatiotemporal deep features for action recognition based on the
proposed LSTM structure, which is named R-LSTM. In other words, we aim to extract features
from R-LSTM, which is designed based on differential thought between successive frames60 and
trained as a multilabel classifier to assign category labels for action sequences in the training set.

Recall that a typical LSTM unit consists of an input gate i, a forget gate f, an input modulation
gate g, an output gate o, an output state h, and an internal memory cell state c. By utilizing a gating
mechanism, the LSTM unit could learn and memorize a complex representation for long-term
dependencies at memory cell c among the input sequence data. More detailed, the representation
in c is constructed as a combination of former memory information after forgetting and new infor-
mation generated from input, ie, ct = 𝑓 t ⊙ ct−1 + it ⊙ gt at time t, where ⊙ denotes element-wise
multiplication.

Instead of keeping the long-term memory of the entire body's motion in the cell, Shahroudy
et al22 proposed a part-aware LSTM model, which keeps the context of each body part indepen-
dently. In this way, the output gate will be determined by the memory of body parts instead.
The idea of keeping the memory on body parts is intuitive due to the fact that body joints move
together in groups.22 This thus divides the body into five body parts, ie, body, left hand, right hand,
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left leg, and right leg. The modeling of interaction between body parts in the work of Shahroudy
et al22 could help improve recognition by first involving geometrical characteristics between body
parts and then modeling spatiotemporal relation61 with the help of the LSTM structure. We keep
the same idea with Shahroudy et al.22 Moreover, it is a fact that not all body parts are useful for
action recognition, since some of the body parts change little during an action. Inspired by this
fact, we involve differential values of the same body part between successive frames as input data,
which help eliminate useless body parts. We further model spatiotemporal relations based on the
differential values of body parts. It is true that human actions are consistent in magnitude and fre-
quency. In other words, there will be a trend in variations of position values. By describing trends
of actions with the differential values of body parts and keeping trend information in the memory
cell, the output of the R-LSTM unit could be more convinced and robust.

The structure of the proposed R-LSTM is represented in Figure 4A. Note that R-LSTM consists
of the relation-aware part R and the typical LSTM part N, where R is constructed to describe spatial
relations between body parts and represented in Figure 4B. Following the work of Shahroudy
et al,22 we divide the human body joints into five parts P = { pk | k = 1, … , 5}, where pk is the
set of corresponding body joints ji. The formulations for the R-LSTM unit thus could be written
as follows: ⎛⎜⎜⎜⎝

ni
k

n𝑓

k

ng
k

⎞⎟⎟⎟⎠ =
( Sigm

Sigm
Tanh

)⎛⎜⎜⎜⎝ W n
k

⎛⎜⎜⎜⎝
pt

k

pt
k − pt−1

k

ht−1
k

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ (2)

ct
k =

(
𝛼r𝑓k + (1 − 𝛼)n𝑓

k

)
⊙ ct−1

k + 𝛼
(

ri
k ⊙ rg

k

)
+ (1 − 𝛼)

(
ni

k ⊙ ng
k

)
(3)

o = Sigm
(

Wo ·
(

pt
1, … , pt

K , rt
1, … , rt

K , ht−1)T
)

(4)

ht = o ⊙ Tanh
(

ct
1, … , ct

K
)T
, (5)

where T refers to the transpose operation for the matrix, W n
k and Wo represent the learned weight

matrices, and 𝛼 is a preset weight for the relation-aware part R. Essentially, Equation (2) repre-
sents that, in the typical LSTM part N, input gate ni

k, forget gate n𝑓

k , and input modulation gate ng
k

corresponding to the kth body part are determined by the positions pt
k, the difference in positions

pt
k − pt−1

k between time t and t − 1, and former output state ht−1
k . Equation (3) describes that the

FIGURE 4 The structure of the relation-aware long short-term memory unit and its relation-aware part R are
represented in (A) and (B), respectively. Note that N denotes the typical long short-term memory part [Color
figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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retained information of the internal memory cell ct
k is a combination of the former memory after

forgetting, information generated from the spatial relation of body parts, and information gener-
ated from input. Meanwhile, Equation (4) computes the output based on positions pt

k, difference
in positions of body parts rt

k, and former output state ht− 1, which is determined by output o and
internal memory cell state ck in Equation (5).

The structure of the relation-aware part R is represented in Figure 4B, which can be formulated
as follows:

rt
k =

K⋃
i=1

tanh
(

W i
kpt

k − pt
i
)
,where i ≠ k (6)

⎛⎜⎜⎜⎝
ri

k

r𝑓k
rg

k

⎞⎟⎟⎟⎠ =
( Sigm

Sigm
Tanh

)⎛⎜⎜⎜⎝ W r
k ·

⎛⎜⎜⎜⎝
rt

k

rt
k − rt−1

k

ht−1
k

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ , (7)

where
⋃

represents the concatenate operation and W r
k is a learned weight matrix. We notice that

Equation (6) utilizes the weighted difference between the kth body part and other body parts to
form the spatiotemporal relation descriptor rt

k. Meanwhile, rt
k is adopted to construct the input

gate ri
k, forget gate r𝑓k , and input modulation gate rg

k of the relation-aware part in Equation (7).
The constructed ri

k, r𝑓k , and rg
k would affect the internal memory of R-LSTM, as illuminated in

Equation (3). After constructing the R-LSTM network, we extract the corresponding feature in
the softmax layer as R-LSTM feature Fl, which represents spatiotemporal relation between body
parts.

6 FUSION OF HETEROGENEOUS FEATURES BY
AE NETWORK

In this section, we propose to fuse heterogeneous features, ie, the constructed WTP and R-LSTM
features, to generate a more discriminative feature for action recognition. It is noted that we fuse
heterogeneous features due to the fact that objects usually have heterogeneous representations
and that researchers could learn their correlations at a “mid-level”62 to help improve the robust-
ness and correctness of recognition by fusing different representations of objects. Inspired by the
work of Wu et al,63 which fuses multimodal data, ie, RGB and depth, to learn a shared represen-
tation for gesture segmentation and recognition, we generate two different kinds of features from
raw skeleton data, ie, WTP feature Fw and R-LSTM feature Fl, to fuse a distinctive feature for
accurate action recognition.

Different from the work of Wu et al,63 which uses a 3D convolutional neural network and
stacked restricted Boltzmann machine/deep belief network to represent features before fusion, we
adopt R-LSTM and WTP instead, and the architecture of the proposed fusing model is presented
in Figure 5. The main reason for adopting an AE for fusion lies in the fact that an AE network is a
natural and highly effective way to encode and decode information, especially for multimodal and
heterogeneous features. During the process of encoding, the informative part of information can
be merged for a higher distinctive representation, which has been proved effective by many meth-
ods and applications.11,62 To speed up fuse operation, we argue that “prefused” weights could be
directly used as initializations for the AE network, due to goal consistency, ie, assigning labels to
human actions, between former steps and the fusing step. Specifically, we adopt a pretrained fully
connected network accompanied with a small data set D, which not only assigns initial weights
𝜔w for WTP but also helps reduce dimensions of the WTP feature for a compact representation.
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FIGURE 5 Architecture of the proposed fusion model, the basis of which being the autoencoder network. It is
noted that we adopt pretrained parameters for the wavelet temporal pattern before fusing, which helps increase
the convergence speed during training [Color figure can be viewed at wileyonlinelibrary.com]

In fact, the idea of adopting a fully connected network to settle initial parameters is similar to
the spirit of a fully connected layer of LSTM, which successfully helps in transforming the ini-
tial weighting process into being one fully connected layer. We also take the same operation on
the initial weights of R-LSTM 𝜔l, which is directly achieved from the previously trained R-LSTM
feature Fl.

Afterward, the joint training with the AE network adjusts the parameters to handle the hetero-
geneity and produces a more reliable estimate from the heterogeneous data. The whole process
of generating fusion feature Fs thus could be defined as{

F̃w(ei), 𝜔d
}
= 𝑓𝜏(Fw(ei);D) (8)

Fs(ei) = 𝑓𝜇
(
𝜔d,Fl(ei), 𝜔l, F̃w(ei)

)
, (9)

where functions f𝜏() and f𝜇() represent the logistic regression and AE network and F̃w refers to the
WTP feature after dimensionality reduction. Note that we keep F̃w and Fl similar in dimension for
equal representations. The training of the AE network ends when the validation error rate stops
decreasing. During experiments, we find that our fusing model could end in less than 10 epochs,
which proves the efficiency of our fusing model by adopting prefused weights. After fusing, we
apply Fs in a logical regression model to get the label of action as L = f𝜏(Fs(ei)).

7 EXPERIMENTS

7.1 Data sets
We evaluate our method on three public data sets, ie, UT-Kinect data set,33 Florence 3D actions
data set,64 and NTU RGB+D data set,22 where Table 1 offers the detailed descriptions of these
three testing data sets.

UT-Kinect data set collects data via a stationary Kinect depth camera at a frame rate of
15 fps, containing RGB, Depth, and 3D skeleton data. UT-Kinect classifies samples into 10 kinds

http://wileyonlinelibrary.com
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TABLE 1 Detailed information on UTKinect, Florence 3D, and NTU RGB+D data sets

Name Samples Categories Persons Views Description

UTKinect 199 10 10 1 RGB+Depth+3D Skeleton
Florence 3D 215 9 10 1 RGB+3D Skeleton
NTU RGB+D 56 880 60 40 80 RGB+Depth+3D Skeleton+Infrared Information

of daily-life actions, including “walking,” “sitting down,” “standing up,” and so on. These actions
are performed by 10 different persons with two trials of the same action. To sum up, a total of 199
action sequences are contained in this data set. Note that one of the original actions is invalid.
The frame size in the UTKinect data set is different, varying from 5 to 120 frames. The UTKinect
data set is challenging due to its wide intraclass differences and occlusion of body parts. For
example, some of the “picking up things” actions are performed by either left- or right-hand per-
sons, whereas others are done by using both hands. Generally speaking, there are two kinds of
methods for validation in action recognition, ie, leave-one-out cross validation and 2-fold cross
validation. We follow the idea in the works of Liu et al,13 Xia et al,33 and Hu et al53 to utilize
leave-one-out cross validation for the experiments.

Florence 3D data set collects data through a stationary Kinect as well, collecting nine com-
mon indoor action categories, such as “watching,” “drinking water,” “calling,” and so on. Among
these actions, nine actions are completed by 10 people, and each of the actions is performed
repeatedly for 2 or 3 times, which sums up to a total of 215 actions. Compared with the UT-Kinect
data set, the Florence 3D data set not only suffers from large intraclass differences but also is diffi-
cult in less inter variations between different classes. For example, “watching,” “drinking water,”
and “calling” are similar from the perspective of the skeleton action sequence. Note that we use
leave-one-out cross validation for the experiments, where we divided samples of the data set into
10 parts by action performer instead of randomly taking one part from 10 partitions.

NTU RGB+D data set is quite large in size compared with the former two data sets and
collects four categories of data, including RGB, Depth, 3D skeleton, and infrared data. Each action
sequence is captured by three stationary Kinect cameras, with cameras on both sides settled at
an angle of 45 degrees to the middle one. Note that the size of the captured skeleton points in the
NTU RGB+D data set is 25, which is larger than 15 skeleton points in the former two data sets.
Over 40 people with ages from 10 to 35 years have completed 60 types of indoor actions, which
sums up to a total of 56 880 action samples. Unlike UT-Kinect and Florence 3D, NTU RGB+D
also designs one category of joint action performed by two persons. To deal with such cases, we
directly splice the skeleton data of two persons as one skeleton sequence for experiments. We
utilize the same verification method as in the work of Liu et al13 for the cases of “cross subject,” ie,
half of the subjects for training and the other half for testing, and “cross view,” ie, two viewpoints
for training and the other one for testing, respectively.

7.2 Experimental result analysis
Tables 2, 3, and 4 give the detailed statistics of our method and of other competing methods on
NTU RGB+D, UT-Kinect, and Florence actions, respectively. It is noted that we apply the WTP
feature and the R-LSTM feature for separate experiments to prove the effectiveness of the fusion
of these two features for action recognition. Therefore, WTP and R-LSTM represent the detection
results by only adopting the proposed WTP and R-LSTM features for classification in three Tables.
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TABLE 2 Experimental results on the NTU RGB+D
data set

Method Cross Subject, % Cross View, %

Proposed 73.8 80.9
WTP 70.1 77.5
R-LSTM 69.6 70.5
Du et al40 59.1 64.0
Liu et al13 69.2 77.7
Shahroudy et al22 62.9 70.3
Hu et al65 60.2 65.2

Abbreviations: R-LSTM, relation-aware long short-term memory;
WTP, wavelet temporal pattern.

TABLE 3 Experimental results on
the UT-Kinect data set

Method Accuracy, %

Proposed 93.0
WTP 89.3
R-LSTM 90.4
Hu et al53 87.9
Liu et al13 97.0
Xia et al33 90.9

Abbreviations: R-LSTM, relation-aware
long short-term memory; WTP, wavelet
temporal pattern.

TABLE 4 Experimental results on
the Florence actions data set

Method Accuracy, %

Proposed 91.3
WTP 81.5
R-LSTM 88.3
Vemulapalli et al10 90.9
Anirudh et al66 89.7
Wang et al67 91.6

Abbreviations: R-LSTM, relation-aware
long short-term memory; WTP, wavelet
temporal pattern.

According to the fuse results from the three data sets, we conclude that fusion helps improve
recognition accuracy greatly. We calculate that fusion increases the average accuracy from 79.6%
by WTP and 79.7% by R-LSTM to 84.8% by the proposed method. This is intuitive since the robust-
ness for detection is highly increased by adopting both temporal patterns and spatiotemporal
relation features, other than using only one kind of feature. Moreover, the increase in accuracy
proves the correctness and effectiveness of our fusion architecture.
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We find that WTP and R-LSTM achieve an inconsistent performance when dealing with dif-
ferent data sets. For example, WTP achieves 77.5% on cross-view accuracy of the NTU RGB+D
data set, which is much higher than 70.5% achieved by R-LSTM. Meanwhile, LSTM gets 88.3% on
the Florence 3D actions data set, which is much higher than 81.5% achieved by WTP. We conclude
that this is due to the different action categories contained in each data set. More detailed, the
action categories in the Florence 3D actions data set are likely in shape of joint trajectories, such as
“drink,” “answer phone,” and “check time.” WTP cannot deal with the slight changes in actions
since the main focus of WTP is to distinguish temporal patterns in a global manner, whereas
R-LSTM keeps information of spatial relations between each frame, which helps distinguish slight
variances. On the contrary, keeping information between frames makes it easy to confuse between
locally plausible actions, which results in lower accuracy by R-LSTM compared with WTP.

Jointly learning WTP and R-LSTM leads to the consistent and high-accuracy performance
achieved on the three data sets, which demonstrates the effectiveness and generality of the
proposed method. More detailed, our method achieves the highest 73.8% and 80.9% on the chal-
lenging NTU RGB+D data set, the second highest 93.0% on the UT-Kinect data set, and the almost
equally highest 91.3% on the Florence 3D actions data set. By incorporating temporal patterns
and spatiotemporal relation, our method even outperforms several full LSTM methods in accu-
racy. For example, the accuracy on the NTU RGB+D data set by the proposed method is average
77.4% compared with average 73.5% achieved by Liu et al.13 This proves the effectiveness of incor-
porating temporal patterns to improve recognition accuracy in a global manner. However, we
find that the proposed method is low in accuracy for the Florence 3D actions and UT-Kinect data
sets; LSTM needs quantity of training examples. However, these two data sets are small ones with
only 200 and 215 action sequences compared to NTU RGB-D, which consists of 56 000 action
sequences. Essentially, the failure cases on the Florence 3D actions and UT-Kinect data sets can be
related to having not enough training samples; meanwhile, failure cases on the NTU RGB+D data
set lie in its complicated interclass patterns with different persons, views, and other factors. Fur-
ther improvements, such as the attention model or ResNet, can be made to increase the accuracy
by enhancing the distinctive ability of extracted features, which is our plan for future work.

FIGURE 6 Action recognition examples of the proposed method on the NTU RGB+D, UT-Kinect, and
Florence 3D actions and our captured action sequences. Note that action recognition results are given under
double quotes [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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Several action recognition examples on the three data sets are shown in Figure 6, where
the first and second rows show the recognition results on samples from the three data sets and
our own captured action sequences, respectively. From these sample results, we can see that
the proposed method could accurately recognize actions, even facing challenges of diversity and
complexity in actors and the layout of background images. Moreover, the fusion of WTP and
R-LSTM features could enhance the discrimination ability of the generated features, which leads
to a better recognition result.

7.3 Implementation details
The proposed method is implemented with Keras architecture and run on a laptop (2.6-GHz
4-core CPU, 16G RAM, Nvidia GTX 960M, and Windows 64-bit OS) for all the experiments. In
order to retain more information on each body part, we repeat shoulder joints and hip joints.
Hence, each action has more than eight joints. Our R-LSTM model includes two parts: R-LSTM
layer and softmax layer. In the R-LSTM layer, the parameter 𝛼 is assigned 0.3, the optimizer is
RMSprop, and the learning rate is 0.01. We choose the optimum of 𝛼 by experiments. In detail,
we randomly choose 500 action sequences from our data sets, ie, NTU, Florence 3D, and UTK,
to determine the optimal value. We plot a graph for recognition rate versus different 𝛼 values.
According to the experiments, the value for 𝛼 is finally selected as 0.3.

8 CONCLUSIONS

In this paper, we have proposed a robust 3D action recognition method by joint learning the
temporal patterns and spatiotemporal relations of body joints. We first propose WTP to model
temporal patterns in the time-frequency domain, which adaptively divides an action into subac-
tions and extracts convinced representations in temporal patterns for subactions. The proposed
R-LSTM is then proposed to model the strong dependency between body parts in the spatiotempo-
ral domain. Regarding WTP and R-LSTM features as heterogeneous representations for actions,
we finally fuse both features to define a robust and discriminative descriptor for action recogni-
tion. Experiments on three public data sets have shown the power of the proposed method in
accurately and robustly recognizing actions performed by various actors. We believe that our pro-
posed method could be utilized in many vision-based applications after optimization,68 such as
ill-health and computer-human interaction. In the future work, we aim to develop such software
to further expand its usage and applicable scenarios.
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