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Deep learning has achieved great success in text detection, where recent methods adopt inspirations from 
segmentation to detect scene texts. However, most segmentation based methods have high computation 
cost in pixel-level classification and post refinements. Moreover, they still faces challenges like arbitrary 
directions, curved texts, illumination and so on. Aim to improve detection accuracy and computation 
cost, we propose an end-to-end and single-stage method named as End-PolarT network by generating 
contour points in polar coordinates for text detection. End-PolarT not only regress locations of contour 
points instead of pixels to relieve high computation cost, but also fits with intrinsic characteristics of 
text instances by centers and contours to suppress mislabeling boundary pixels. To cope with polar 
representation, we further propose polar IoU and centerness as key parts of loss functions to generate 
effective paradigms for text detection. Compared with the existing methods, End-PolarT achieves superior 
results by testing on several public datasets, thus keeping balance between efficiency and effectiveness 
in complicated scenes.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

As part of scene understanding, goal of scene text detection is 
to spot text regions in natural images. Even though deep learning 
has made great progress in understanding images and videos [1–3], 
it’s still challenging to detect texts from scene images. Firstly, ap-
pearance of text regions and backgrounds in natural scenarios are 
complicated to distinguish, leading to quantity of miscalculations. 
Secondly, shapes of text regions usually are arbitrary like curved 
and rotated texts, resulting in difficulties to accurately detect text 
regions.

Facing the above difficulties, many methods are proposed to 
detect texts in the wild, where they can be classified into two 
categories, regression and segmentation based methods. The for-
mer one [4] aims to detect text instances as common objects. Even 
though they can effectively detect horizontal and vertical texts, 
they require additional designs to detect rotated texts. Meanwhile, 
the latter one [5,6] regards text detection as segmentation task to 
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obtain pixel-level masks progressively, which are capable to deal 
with oriented and curved texts.

Following with the idea to detect arbitrary texts with segmen-
tation based methods, we further classify them into bottom-up and 
top-down methods based on whether directly generating pixel-
level labels. Specifically, bottom-up methods regard text detection 
as a problem of semantic segmentation by directly assigning pixel-
level labels to text or non-text regions. For example, Wang et al. [5]
propose a novel Progressive Scale Expansion Network (PSENet), 
which is a segmentation-based detector with multiple predictions 
for each text instance. Recently, FCENet [6] represents enveloping 
curve of texts as parameters of Fourier transform, thus designing 
to predict text enveloping box of arbitrary shape with Fourier fre-
quency representations. However, bottom-up methods may lead to 
missed categorizing in boundary pixels, due to cases of overlapped 
texts.

On the contrary, top-down methods firstly detect rectangular 
bounding boxes containing texts, and then perform pixel-level la-
bel prediction inside boxes. Inspired by Mask R-CNN, Huang et 
al. [7] present a method to robustly detect multi-oriented and 
curved text sfrom natural scene images in a unified manner. Af-
terwards, Wang et al. [8] propose an improved method based on 
RPN, which could solve the problem of wrong detections caused by 
scale variations. Most recently, Wu et al. [9] propose Self-Reliant 
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Scene Text Spotter, which is a single shot approach by sampling 
feature points around each potential text instance and perform-
ing text detection and recognition simultaneously guided by these 
points. However, top-down methods generally adopt dense anchors 
to refine bounding boxes, resulting in quantity of parameters to de-
termine and slow computation speed.

Focusing to solve the problem of high computation cost brought 
by too many anchors, we propose a single-stage method, i.e., End-
PolarT network to directly detect texts by generating centers and 
contour points of text instances with novel polar coordinates rep-
resentation. Specifically, End-PolarT not only relieves the compu-
tation burden by generating a small subset of key points instead 
of regressing pixel-level labels, but also adopts efficient represen-
tations of texts with center and contours, which coincides with 
intrinsic characteristics of text instances for better discrimination. 
To cope with polar representation, we further propose polar IoU 
and centerness as part of loss functions, thus generalizing effective 
paradigms to detect bounding boxes under polar representation. 
Our main contribution could be concluded as follows:

– End-PolarT accurately detects text regions by generating cen-
ters and counter points under novel polar coordinates, which 
not only relieves high computation cost brought by pixel-level 
classification, but also fits with intrinsic characteristics of text 
instances with key points.

– Loss function with polar IoU and centerness enables End-
PolarT to find patterns of texts under polar representation with 
a fast convergency speed.

– Bounding box branch is designed in End-PolarT to promote fast 
convergency, which considers aspect ratios as factors during 
training iterations.

The rest of the paper is organized as follows. Section 2 gives 
an overview of the related work on relative aspects. Section 3 an-
alyzes problems of scene text detection. In Section 4, details of 
the proposed End-PolarT network are discussed, including network 
overall architecture, polar representation, polar cIoU loss function. 
Section 5 shows experimental results with several comparative 
methods, and Section 6 finally concludes the paper. End-PolarT 
has limitations when dealing with difficult cases of extreme curved 
texts or blur texts, which requires further improvements in struc-
ture design for better performance. Moreover, End-PolarT still suf-
fers from relatively high computation cost with lots of network 
layers to compute, compared with methods equipped with only 
several layers.

2. Related work

In this section, we give a brief literature review of this paper, 
including scene text detection and single-stage object detector.

2.1. Scene text detection

Existing scene text detection methods can be roughly divided 
into two categories, namely regression and segmentation based 
methods. Inspired by object detectors SSD, TextBoxes [10] directly 
predict anchor scales and shape to handle texts with extreme as-
pect ratios. Afterwards, TextBoxes++ [11] propose a novel loss func-
tion to detect arbitrary texts by regressing quadrangles instead of 
horizontal bounding boxes. Later, RRD [12] adopt rotation-invariant 
and sensitive features for text classification and regression, thus 
improving detection accuracy for long texts from two separate run-
ning branches. To deal with tiny texts, SSRD [13] further generate 
text attention map to enhance text related feature map, thus better 
suppressing background information. Based on Faster R-CNN, Ma 
2

et al. [14] adopt label distribution learning to promote label ambi-
guity process of text annotation, thus achieving good performance 
without additional burden of post-processing. However, regression 
based methods generally fail to detect arbitrary texts, due to their 
initial ideas to directly regress anchors of bounding boxes in a fast 
manner.

To deal with texts of arbitrary shapes, segmentation methods 
can be classified as bottom-up and top-down methods. Bottom-
up methods directly assign pixel-level labels to text and non-text 
regions. For example, TextSnake [15] use ordered disks and text 
center lines to represent text instances with arbitrary shapes. Later, 
PSENet [5] use FCN to predict pixel-level labels of text instances in 
multiple scales in a progressive manner. In fact, it’s still challenging 
to accurately segment text instance by grouping pixels into regions. 
Most recently, Long et al. [16] introduce a unified detector, which 
can detect text entities and group them for layout analysis in an 
end-to-end manner. They also offer the first dataset that includes 
hierarchical annotations of text in both natural scenes and docu-
ments.

Top-down methods try to first accurately locate bounding boxes 
containing texts, and then predict pixel-level labels inside boxes. 
Early, Mask R-CNN [17] is designed with a novel step of ROI pool-
ing on the basis of faster R-CNN, which further adopts a mask gen-
eration module for accurate segmentation of text instances. Owing 
to the guidance of semantic information, SPCNet [18] involves con-
text information, leading to stronger detection capabilities in com-
plex natural scenes. Regarding the issue of better feature map for 
detection, TextFuseNet [19] obtains richer text features by fusing 
three different categories of features, i.e., character-level, word-
level and global-level, where rich features enhance detection capa-
bility and environmental adaptability. Afterwards, ContourNet [8]
first generates more accurate anchors through Adaptive-RPN, and 
then uses Local Orthogonal Texture-aware Module to describe lo-
cal texture information with two orthogonal directions. Recently, 
AE TextSpotter [20] incorporates linguistic knowledge into text de-
tection by learning linguistic representation to reduce ambiguous 
proposals. However, top-down methods generally suffer from large 
amount of computations, due to dense generated predefined an-
chors. End-PolarT builds on the basis of top-down methods, which 
not only relieves high computation cost brought by pixel-level 
classification, but also fits with intrinsic characteristics of text in-
stances by generating centers and counter points under polar co-
ordinates.

2.2. Single stage object detector

To relieve high computation burden brought by multiple stage 
detector, researchers develop fast and accurate single stage object 
detector, which directly generates detections in one stage to pre-
dict bounding boxes and masks simultaneously [21].

Early, most single-stage methods generate rectangular boxes for 
detection. For example, YOLO [22] is short for You Only Look once, 
which divides an image into multiple grids and each grid is re-
sponsible to predict objects whose center are located in that gird. 
Later, FCOS [23] adopts a divide and conquer strategy, where dif-
ferent scales of feature maps are responsible for different sizes of 
boxes. However, these methods generally fail to predict arbitrary 
bounding boxes in one-stage.

Unlike former methods to detect rectangle objects, deep Wa-
tershed Transform [24] first uses fully convolutional network to 
predict energy map of the entire image, and then adopts the wa-
tershed algorithm to generate connected object instances based 
on the energy map. Later, YOLACT [25] introduce prototype masks 
that don’t depend on any individual instances, where the result-
ing instances are generated by the linear combination of these 
prototype masks in real time. Afterwards, TensorMask [26] inves-
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tigates the paradigm of dense sliding window instance segmen-
tation, which outputs a geometric structure with its own spatial 
dimension at each location. Recently, CenterMask [27] first predicts 
bounding boxes together with box centerness on each location, 
and then predicts masks as instances segmentation inside bound-
ing boxes. SOLO [28] reformulates the instance segmentation as a 
combination of category prediction and instance mask generation, 
which generates pixel-level segmentation masks instead of bound-
ing boxes, requiring large computation cost.

Most recently, Xue et al. [29] propose OCR Contrastive Language-
Image Pre-training, which leverages textual information to enhance 
visual text representations for improved scene text detection and 
spotting. Their approach designs a character-aware text encoder 
and a visual-textual decoder that can extract effective instance-
level textual information and learn from partial text transcriptions 
without text bounding boxes. He et al. [30] propose Multi-Oriented 
Scene Text detector, which consists of a Text Feature Alignment 
Module (TFAM) and a Position-Aware Non-Maximum Suppression 
(PA-NMS) module. TFAM aligns image features with the coarse 
detection results, allowing for dynamic adjustment of the recep-
tive field for the localization prediction layer. PA-NMS adaptively 
merges the raw detections based on their predicted positions, fo-
cusing on accurate predictions while discarding inaccurate ones. 
End-PolarT directly outputs masks with polar representation, thus 
formulating mask generation as a regression task instead.

3. Problem statement

Scene text detection refers to locating text information from 
complex scenes. How to acquire text related information from ir-
regularly shaped objects like road signs, shop signs, price tags and 
so on, is a typical problem of scene text detection. After years of 
research, we conclude challenges of scene text detection as the fol-
lowing four tips.

Firstly, texture of text regions and backgrounds in natural sce-
narios are complicated, leading to quantity of miscalculations. For 
example, artist texts often appear where some letters would in-
tertwine with others, which greatly hinders detection performance 
the segmentation-based methods.

Secondly, shapes of text regions are arbitrary, resulting in diffi-
culties to detect curved and rotated texts. More precisely, methods 
that work well with regular or rectangle texts generally fail in deal-
ing with arbitrary text regions.

Thirdly, dense anchors firstly detected in feature maps and then 
refine bounding boxes would bring quantity of parameters to de-
termine during training, which requires high computational cost 
for pixel-wise segmentation. Such drawback would greatly harm 
the further usage of scene text detectors in applications.

Fourthly, mislabeling boundary pixels would result in wrong 
predictions, due to overlap texts or low distinguish ability of gen-
erated feature map. This phenomenon requires to take actions for 
more accurate labeling with counters. Meanwhile, the generated 
feature map for text detection should be enhanced for high distin-
guish capability.

4. The proposed method

In this section, we firstly introduce light-scale network archi-
tecture, and describe how to compute the proposed novel repre-
sentation in polar coordinates. Afterwards, a assembly module is 
designed to generate text instances using polar centerness and po-
lar distance regression. Finally, we describe loss function design, 
including Polar loss and cIoU loss design.
3

4.1. Network architecture design

We show workflow of End-PolarT in Fig. 1 to illustrate oper-
ations and key variances during detection. More precisely, End-
PolarT transforms task of text detection into two sub tasks, i.e., 
locating centers of text instances, and predicting distance between 
contour points and text centers, where we show the overall struc-
ture in Fig. 2. Specifically, the input image is firstly fed into the 
backbone ResNet. After processing of attention module, we gen-
erate feature maps of different scales via FPN (Feature Pyramid 
Network). Therefore, feature map F can be calculated with Equ. 
(1):

F = Backbone(I), where F = {Fi, i = 1, ...,n} (1)

where I is the input image, i refers to the scale index of output 
feature map, function Backbone() refers to ResNet with multiple 
scales, and n refers to the number of layers in FPN. Since different 
scales of feature maps denote information of text instances with 
variant sizes, feature map with larger or smaller index would con-
tain global and local context information, respectively. They would 
be further used to predict small and large text instances, respec-
tively.

After inputting feature maps into head with 4 parallel branches, 
we perform predictions to achieve classification results O cls , polar 
centerness results O cen , mask regression results O pol and box re-
gression results O box with Equ. (2):

O cls = H1(F ), O cen = H2(F ), O pol = H3(F ), O box = H4(F ) (2)

where functions H1(), H2(), H3(), H4() denote the corresponding 
operations in head structure for different purposes.

For feature map F with H × W × C , we obtain output O pol
with H × W × m and O box with H × W × 4, where m refers to 
the total number of rays emitted from every pixel, and each of 
m dimensions corresponds to a specific angle. Since most of text 
instances are shaped with rectangles, we design box regression 
branch, where the horizontal and vertical rays are calculated with 
edges of rectangles in an average way. By designing such struc-
ture, End-PolarT would pay attention on specific angles instead of 
treating all directions equally.

In classification branch, output of classification block is defined 
with H × W ×k, where k is the number of total classes and equals 
2 in text detection, i.e., texts and non-texts. In polar centerness 
branch, output dimension is defined as H × W × 1, determining 
whether the corresponding pixel is near the center of text in-
stances. Essentially, we adopt polar centerness and classification 
results to filter low-quality predictions. Afterwards, we calculate 
classification score O f cls with Equ. (3):

O f cls = O cls ∗ O cen (3)

where ∗ denotes element-wise product.
Afterwards, we assemble results from four branches in head to 

compute text detection results R with post-processing operations 
as shown in Equ. (4):

R = f post( fass(O f cls, O pol, O box)) (4)

where functions f post() and fass() denote operations of post pro-
cessing and assembly module.

4.2. Representation computing in polar coordinates

Inspired by PolarMask [31] to enhance feature representation 
for object detection, it’s essential to offer abundant and enhanced 
representation in polar coordinates for accurate text detection. We 
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Fig. 1. Workflow of End-PolarT to detect texts in the wild. Firstly, feature maps are extracted through the ResNet and FPN network structure. Then, four branches are de-
signed to achieve classification results, polar centerness, mask regression, bbox regression, respectively. Afterwards, classification score is obtained by multiplication between 
classification and polar centerness. Finally, all three results are assembled to compute final detection results.

Fig. 2. Overall network structure of End-PolarT, which consists of backbone, FPN, head, and assembly module. Specifically, feature map is extracted by backbone and FPN, 
where features are processed by four parallel branches in head, thus obtaining polar representation for texts. Finally, Assembly module help achieve text detection results by 
involving different categories of information computed by the head.
Fig. 3. Steps to compute representations of text instances in polar coordinates: (a) 
the input text instance, (b) the generated text mask, (c) calculate coordinates of 
contour points, and (d) mask segmentation with polar representation.

thus design to compute representations of text instances in polar 
representation as shown in Fig. 3, where we firstly locate polar 
centers, and then settle contour points corresponding to a spe-
cific angle. In such way, we repeat several times to obtain contour 
points, which are enough to generate text mask in arbitrary shapes.

Specifically, we firstly represent text instances as a set of con-
tour points in polar coordinates. In fact, contour points are deter-
mined by the distance and angle emitted from polar center, where 
we can easily reconstruct text instances via contour points. Start-
4

ing from the polar center, we emit n rays uniformly, where n is 
defined as 36 for convinced representation of texts.

Define polar center as (xc, yc), coordinates of the ith contour 
point (xi, yi) i = 1, 2, ..., n can be calculated via Equ. (5):
{

xi = cos θi × di + xc

yi = sin θi × di + yc
(5)

where θi and di represents the corresponding angle and distance 
for the ith contour point.

For each ground-truth sample in training dataset, we predict 
distances between contour points and sample points as regression 
target. More precisely, we define contour point owns the largest 
distance from the sample point, if there are more than one point 
that intersect with the ray. If center point is rarely located outside 
the mask, we set the regression goal as the minimum value. A 
point can only be considered as a sample point, only if it’s near 
the center point of a text instance, thus ensuring that we always 
sample from the polar center.

4.3. Structure design of assembly module

As shown in Fig. 4, we design the structure of assembly mod-
ule to detect texts, where a total of H ∗ W text instances with 
corresponding masks and bonding boxes will be generated. Simi-
lar with polar representation of masks, we generate bounding box 
with a box center and different edges emitted from box center.

To achieve convinced outputs, we only consider pixels near the 
box centers of text instances as positive samples. Therefore, the 
output classification results refer to probability whether the corre-
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Fig. 4. Structure design of the proposed assembly module, where text detection re-
sults are generated based on polar regression, box regression, polar centerness, and 
classification results.

sponding pixel is a positive sample. Moreover, polar centerness ξ
is used to suppress low-quality outputs defined as Equ. (6):

ξ = √
dmin/dmax (6)

where dmin and dmax are the minimum and maximal length of all 
n rays, respectively.

According to the ith pixel, we multiply its classification result 
and the corresponding polar centerness to obtain the final score. 
Then, we use the score to filter low-quality outputs, where we only 
keep 1000 top-scoring predictions on each scaled feature map with 
Non-maximal Suppressing algorithm.

4.4. Loss function design with polar and cIoU loss

Supposing N pairs of predictions Di and the corresponding 
ground-truth labels Gi , loss function for End-PolarT could be de-
fined as Equ. (7):

L = 1

N

N∑
i=1

Lcls(Di, Gi)+ Lcen(Di, Gi)+ Lpol(Di, Gi)+ Lbox(Di, Gi)

(7)

where Lcls , Lcen , Lpol , Lbox are loss of classification, polar center-
ness regression, polar mask regression, bounding box regression, 
respectively. Note that we use polar loss and cIoU loss to calculate 
loss of polar mask regression and bounding box regression.

Since masks are represented in polar coordinates, it requires 
quantity of computation to firstly reconstruct the pixel-level mask 
instances and then calculate losses per pixel. Given di and d∗

i as 
the distance of the ith predicted ray, Polar IoU is thus designed as 
an approximation of IoU loss in polar coordinates, represented as 
Equ. (8):

Lpol = log

∑n
i=1 max(di,d∗

i )∑n
i=1 min(di,d∗

i )
(8)

The Bounding box branch is parallel to mask regression branch, 
where we adopt cIoU loss [32] to suppress low overlap detected 
regions with ground-truth samples as represented in Equ. (9):

Lbox = 1 − IoU + ‖ b,bgt ‖
c2

+ αv (9)

where b, bgt denote center points of predicted boxes and ground-
truth boxes respectively, ‖‖ refers to Euclidean distance, and c
denotes the length of diagonal of the smallest enclosing box cover-
ing both boxes. α is a trade-off parameter and v measures aspect 
ratio of both boxes, which are defined as Equ. (10):
5

Table 1
Performance comparisons with different structure designs on CTW1500 and IC-
DAR2015 dataset.

Dataset Method Precision Recall F-score FPS

CTW1500

ResNet50+ IoU 81.3 73.1 77.8 13.3

ResNet101 + IoU 82.5 76.7 79.4 7.7

Attention + IoU 83.2 78.7 80.8 8.9

Attention + cIoU 83.5 78.8 81.0 8.6

ICDAR2015

ResNet50 + IoU 81.3 73.1 77.8 13.3

ResNet101 + IoU 82.5 76.7 79.4 7.7

Attention + IoU 83.2 78.7 80.8 8.9

Attention + cIoU 83.5 78.8 81.0 8.6

⎧⎨
⎩ v = 4

π2

(
arctan w gt

hgt − arctan w
h

)2

α = v
(1−IoU )+v

(10)

where w and h denote the width and height of the predicted 
boxes, respectively.

The reason that polar loss and cIoU Loss could be integrated 
in the total loss function is that both loss functions are re-scaled 
without information loss. Moreover, sub loss form can be eas-
ily trained in BP algorithm. Moreover, polar loss function enables 
shape of predicted texts and ground-truth texts to be similar in 
polar representation, meanwhile cIoU ensures that both shape are 
similar in rectangle representation form. By constraining shape 
similarity in both loss functions, End-PolarT is guided to train, re-
sulting in the most shape-similar predictions.

5. Experiment analysis

In this section, we first introduce dataset and measurements. 
Then, we conduct ablation and parameter setting experiments to 
show designs of End-PolarT is highly effective. Afterwards, two 
groups of comparative studies on several public dataset are con-
ducted to demonstrate End-PolarT is effective in text detection. Fi-
nally, we describe implementation details for readers’ convenience.

5.1. Datasets and measurements

We choose five datasets for experiments, i.e., ICDAR2015, IC-
DAR17MLT, MSRA, Total Text, SCUT CTW1500. Annotations of IC-
DAR15 dataset are labeled as 4 vertices at word level, meanwhile 
annotations of CTW1500 and Total text are labeled with boundary 
points at text level. Annotations of MSRA are labeled as rectangle 
boxes and angles, we convert them to vertices of quadrilaterals for 
fairness.

Evaluation measurements are defined to obey rules of Pascal 
Voc, where any text instance that has IoU larger than 0.5 with any 
ground truth will be considered as positive, and each ground truth 
could have only one positive example. We use precision, recall and 
the F-value to evaluate the performance of text detection.

5.2. Ablation experiments

As shown in Table 1, we conduct experiments on CTW1500 
and ICDAR2015 datasets to prove the effectiveness of different 
components. In CTW1500 dataset, we can observe that attention 
module improves detection performance by a large margin, which 
even outperforms ResNet101 network with much heavier structure 
design. It’s noted that attention module gains less performance 
boosting in ICDAR15 dataset, since samples of CTW1500 are much 
more complicated in appearances and shapes than those of IC-
DAR2015, thus context information extracted by attention module 
better promoting detection performance. Moreover, it’s noted that 
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Table 2
Performance comparison with different number of rays on CTW1500 dataset.

No. of Rays Precision Recall F-score

18 82.3 74.1 78.0
36 83.5 78.8 81.0
48 83.7 78.9 81.2
64 83.4 78.7 81.0

Table 3
F-score Performance comparison in convergence speed on CTW1500 dataset.

Methods Epoch50 Epoch100 Epoch200 Epoch300 Epoch400

IoU 34.3 56.1 68.7 78.5 78.3
cIoU 34.6 60.2 76.2 80.7 80.6

cIoU has small impact on detection performance. However, it could 
help the network converge in a fast manner during training.

5.3. Parameter setting experiments

Since rays are emitted from center to represent text instances in 
polar coordinates, more rays would improve representation capa-
bility. In Table 2, we show the impacts of setting different number 
of rays. When increasing the number of rays from 18 to 36, there is 
a great improvement in performance. Meanwhile, the performance 
gain is relatively small, when increasing from 36 to 48. Perfor-
mance even drops when increasing from 48 to 64. Therefore, 48 
rays are enough to represent text instance for accurate detection.

As shown in Table 3, comparisons of the convergence speed 
prove that cIoU converges much faster during training. After train-
ing with 300 epoches, End-PolarT would be converged to a stable 
situation where we thus choose 300 as the number of training 
epoches.

5.4. Comparative experiments

Comparison of results are shown in Table 4 and 5. In IC-
DAR2015 and CTW1500 with quadrilateral text instances, End-
PolarT outperforms most of the existing methods. Moreover, per-
formance is significantly improved in ICDAR2017MLT, MSRA, and 
Total-text datasets, where most text instances are rotated or 
curved. Such phenomenon indicates that End-PolarT is rotation in-
variant for text detection.

Moreover, ICDAR17MLT dataset contains multiple languages 
with complex and diverse scene for detecting. Experiments show 
that End-PolarT works well on this challenging dataset, which 
proves the power of utilizing polar representations for text de-
tection. INn curved text dataset like ICDAR2015 and CTW1500, 
End-PolarT gain competitive performance with Mask R-CNN. More-
over, End-PolarT achieve an FPS performance of 8.8, which is 4 
times faster than that of Mask R-CNN. All these phenomena can
be explained that Mask R-CNN is a two-stage method, requiring 
to generate dense predefined anchors for quantity of computation 
cost, thus being much slower than End-PolarT, i.e., single-stage text 
detector. Note that Mask R-CNN tends to have a higher recall than 
End-PolarT, since Mask R-CNN use predefined anchors to ensure 
the existence of most text instances.

In all datasets, End-PolarT outperforms Bottom-up methods like 
PSENet [5] and TextSnake [15], due to high difficulties to achieve 
convinced pixel-level segmentation results where text instances 
nearby can be easily distinguished. We show results of text detec-
tion achieved by End-PolarT in Fig. 5 and Fig. 6, where detecting 
texts in polar representation could greatly improve accuracy per-
formance.
6

Table 4
Performance comparisons with the existing methods on CTW-1500 and ICDAR2015 
dataset.

Datasets Method Precision Recall F-score FPS

CTW1500

CTPN [18] 60.4 53.8 56.9 7.1
SegLink [33] 42.3 40.0 40.8 10.7
EAST [34] 78.7 49.1 60.4 –
CTD [35] 74.3 65.2 69.5 –
CTD+TLOC [35] 77.4 69.8 73.4 13.3
DMPNet [36] 69.9 56.0 62.2 –
TextSnake [15] 67.9 85.3 75.6 8.2
PSENet [5] 80.6 75.6 78.0 3.9
LOMO [37] 85.7 69.6 76.8 4.4
Mask R-CNN [17] 80.8 83.1 81.9 1.8
End-PolarT 83.5 78.8 81.0 8.6

ICDAR2015

CTPN [18] 74.2 51.6 60.9 7.1
Zhang et al. [37] 70.8 43.0 53.6 0.5
PixelLink [33] 82.9 81.7 82.3 7.3
MSR [38] 86.6 78.4 82.3 –
EAST [34] 83.6 73.5 78.2 13.2
TextDragon [39] 84.8 81.8 83.1 7.5
PSENet [5] 81.5 79.7 80.6 1.6
PAN [40] 77.8 82.9 80.3 –
Mask R-CNN [17] 86.3 81.5 83.8 1.9
End-PolarT 88.1 80.2 84 8.7

Table 5
Performance comparisons with the existing methods on ICDAR17MLT, MSRA, Total-
Text datasets.

Dataset Method Precision Recall F-score FPS

ICDAR17MLT

TDN SJTU2017 [41] 86.0 70.0 77.0 –
He et al. [42] 76.7 57.9 66.0 –
Pixellink [33] 70.9 61.7 65.4 7.3
Mask R-CNN [17] 74.8 61.1 67.2 2.1
End-PolarT 75.6 62.8 68.6 9.7

MSRA

SegLink [43] 86.0 70.0 77.0 –
[34] 81.7 61.6 70.2 6.5
TextSnake [15] 83.2 73.9 78.3 1.1
Zhang et al. [37] 83.0 67.0 74.0 0.48
He et al. [42] 77.0 70.0 74.0 1.1
Pixellink [33] 83.0 73.2 77.8 3.0
Mask R-CNN [17] 84.6 80.5 82.5 1.9
End-PolarT 87.0 81.2 83.9 9.5

Total-text

SegLink [33] 30.3 23.8 26.7 7.7
EAST [34] 50.0 36.2 42.0 –
MSR [38] 83.8 74.8 79.0 4.3
TextSnake [15] 82.7 74.5 78.4 3.6
PSENet [5] 81.8 75.1 78.3 3.9
Mask R-CNN [17] 82.3 84.5 83.3 1.5
End-PolarT 82.4 76.6 79.3 7.9

5.5. Implementation details

End-PolarT network is trained with stochastic gradient descent, 
by setting initial learning to 0.01. Warm-up policy is adopted to 
prevent to get trapped into local minimum. The positive and neg-
ative IoU threshold is set to 0.4 and 0.5, respectively. During train-
ing, simple data augmentation is used such as random resize, crop 
and clip. We use ResNet 50 as backbones and non-local networks 
as our attention module. All our experiments are conducted on 4 
Nvidia GTX 1080 TI GPUs.

6. Conclusion

This paper proposes End-PolarT network to detect texts by di-
rectly generating contour points of text instances in polar coordi-
nates representation. End-PolarT not only relieves burden of high 
computation cost brought by pixel-level classification, but also fits 
with intrinsic characteristics of text instances to eliminate misla-
beled boundary pixels. Comparing with the existing methods, we 



Y. Wu, Q. Kong, C. Qian et al. Big Data Research 34 (2023) 100410

Fig. 5. Detection results achieved by End-PolarT on CTW1500 dataset.

Fig. 6. Detection results achieved by End-PolarT on Total-text dataset.
conduct experiments on multiple scene text datasets. It’s noted 
that attention module largely improves text detection performance 
and cIoU loss design helps coverage in a fast speed. By testing with 
variant numbers, number of rays and epoches should be defined as 
48 and 300 for best performance. In comparisons, End-PolarT out-
performs most of the existing methods, especially in curved and 
rotated texts. End-PolarT keeps balance between computing speed 
and performance, comparing with Mask-RCNN. Inspired by digital 
twin [44], our future work is to design special representation of 
shape for texts with complex contours, thus greatly improving ac-
curacy for difficult cases.
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