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Abstract—Deep learning methods have shown significant per-
formance in medical image analysis tasks. However, they gener-
ally act like ”black box” without explanations in both feature
extraction and decision processes, leading to lack of clinical
insights and high risk assessments. To aid deep learning in
envisioning diseases with visual clues, we propose Representation
Group-Disentangling Network (RGD-Net), which can completely
disentangle feature space of input X-ray images into several inde-
pendent feature groups, each corresponding to a specific disease.
Taking several semantically related and labeled X-ray images as
input, RGD-Net firstly extracts completely group-disentangled
representations of diseases through Group-Disentangle Module,
which applies group-swap and linking operations to construct
latent space by enforcing semantic consistency of attributes. To
prevent learning degenerate representations defined as shortcut
problem, we further introduce adversarial constricts on mapping
from features to diseases, thus avoiding model collapse with
former free-form disentanglement. Experiments on chestxray-
14 and ChestXpert datasets demonstrate that RGD-Net are
effective in predicting diseases with remarkable advantages,
which leverage potential factors contributing to different diseases,
thus enhancing interpretability in working patterns of deep
learning methods.

Index Terms—Interpretable Deep Learning, Group-
Disentangled Representation Learning, Thoracic Pathologic
Prediction, Adversarial Constricts

I. INTRODUCTION

Despite deep learning methods have achieved remarkable
progress in medical image analysis [1], [2], most methods
work as mappings from input factors to output classification
results without explicit explanations. Most attempts [3]–[5] to
explain deep learning focus on ’post-hoc’ analysis by prov-
ing the importance of low-level visual features in producing
accurate predictions. However, they couldn’t directly link low-
level visual features with high-level semantical diseases, and
visually explain the decision making process.

As an alternative way, interpretable deep learning [6] con-
siders the inherent requirement of interpretation to embed
clues based explanations in their neural network design. Most
of them built their framework on variational auto-encoder
(VAE), which achieve significant process towards explainable

* indicates Corresponding author

deep learning by performing linking and explaining steps with
help of visual clues represented as feature groups. However,
they generally ignore independence of learned clues, where
they map visual samples onto a latent space that overlapped
separates the information belonging to different attributes.
Therefore, they only achieve partly disentangled effects with
overlapping and coarse-grained low-level features, resulting in
confused explanations and low accuracy classification results.

In this paper, we propose RGD-Net for interpretable tho-
racic pathologic prediction. We firstly achieve completely
group-disentangled representations of diseases through the
proposed Group-Disentangle Module. Such module is de-
signed with group-swap and linking operations to leverage
semantic links between input X-ray images and diseases,
enforcing semantic consistency of attributes. To mitigate short-
cut problem, we further propose adversarial constricts, which
borrows the idea of GAN to retain informative features during
iteratively updating via group-swap and linking operations.
Such constricts guarantee the model to seek for global mini-
mum by forcing nash equilibrium between free-form grouping
and convinced diagnosis, thus preventing model collapse.

To sum up, our contributions are as follows:
• We propose Representation Group-Disentangling Net-

work (RGD-Net), which completely extracts group-
disentangled disease representations with fine-grained
and non-overlapping features, thus promoting both inter-
pretability and prediction accuracy.

• To resist shortcut problem caused by trapping in local
minimum, an adversarial constraint is proposed to retain
informative features during iteratively updating, thus forc-
ing global minimum and avoiding model collapse.

• We experimentally demonstrate that RGD-Net can signif-
icantly improve classification accuracy, and showcase the
potential of RGD-Net to disentangle information.

II. METHODOLOGY

A. Network Overview

As shown in Fig. 1, RGD-Net firstly takes a group
of semantically-related X-ray images as inputs. Then,
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Fig. 1. The overall structure of RGD-Net, which extracts group-disentangled representations of disease through the Group-Disentangled Module and Adversarial
Constrict. During testing, we use them to accurately predict corresponding disease labels.

it trains its encoder and decoder through the proposed
Group-Disentangled Module (contains Linking Operation and
Group-Swap Operation.) and Adversarial Constrict. Group-
Disentangled Module enforces semantic consistency between
disease concepts and the group-disentangled latent spaces.
Adversarial Constrict builds on the idea of GAN by involv-
ing adversarial loss to solve the model collapse, that may
encounter in the process of group-disentanglement and is
generally defined as shortcut problem.

During training, we combine three kinds of losses as a total
loss L:

L = min
D,E

max
Dis

Llo + λgsLgs + λacLac, (1)

where Llo, Lgs and Lac refer to losses of linking operation,
group-swap operation and adversarial constrict part respec-
tively, and scalar coefficients λgs, λac represent the importance
factor of different loss terms.

After training, we demonstrate the effectiveness of RGD-
Net to predict four categories of diseases based on chest
X-ray images. Guided by the idea to apply on automatical
medical application, we use a trained encoder to convert the
input image into a group-disentangled latent space during
testing phase. Afterwards, we predict thoracic pathologies
disease concepts based on the new input X-ray images with
an additional classification module with 3 layers of MLPs.

B. Group-Disentangled Module

To retain the information of images in the latent space, we
propose an auto-encoder based Linking Operation, which links
relationship between semantical concepts of disease and low-
level visual features as shown in Fig. 2 (b). Specifically, for
each input x, we embed data in a low-dimensional vector by

the encoder. Then we link part of units of the vector to a
specific disease concept. Finally, we input this latent vector
into the decoder and calculate the reconstruction loss Llo for
each image.

To enforce semantic consistency of disease concepts, we
propose the Group-Swap Operation (Fig. 2 (c)), which extracts
features of disease concepts by leveraging semantic links
between input image pairs. Taking an image pair sharing a
disease as input, the Group-Swap Operation exchanges the
corresponding part of the disease in pair’s latent space, and
expects to get same result as the input through the decoder.

The Group-Swap Operation is subject to the after-swap
reconstruction loss:

Lgs =
∑

concepts

(||D(zs)− x||22 + ||D(zos)− xo||22), (2)

where xo is the paird image, zs is the after-swap latent
space,

∑
concepts represents the sum of after-swap reconstruc-

tion loss for each concept in a group of images.

C. Adversarial Constrict

Ideally, if there exists sufficient sample pairs sharing no
duplicate concepts, loss of group-swap operation Lgs will be
zero, so that complete group-disentanglement being logically
obtained. However, due to free-form group-swap operation
in former group-disentangled module, shortcut problem can
occasionally occur with local minimum trap, where RGD-Net
may learn degenerate encodings that all information of input
images are retained in the group of background features.

We propose an adversarial constrict to solve the shortcut
problem. As shown in Fig. 2 (d), we take triplet images,
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Fig. 2. Four steps in training RGD-Net to learn group-disentangled latent space: (a) Group of Images, where we input a group of semantically related images
to learn their common properties; (b) Linking Operation, where we link relationship between semantical concepts of disease and low-level visual features,
calculating self-reconstruction loss for each image; (c) Group-Swap Operation: where we swap part of the latent representations of their shared concepts to
enforce semantic consistency of disease concepts. (d) Adversarial Constraint takes triplet images as input to solve the shortcut problem caused by trapping
in local minimal.

i.e., xa, x and x̃a, as input and introduce an adversarial
training style. Specifically, the generator uses encoder-decoder
structure to replace one specific feature group (represented
as concept a) from x to x̃, thus generating new image x̃a.
Meanwhile, the discriminator is designed as neural network
to distinguish between original/real image pair [x, xa] and
new/fake image pair [x, x̃a].

In Fig. 2 (d), we show an example in adversarial train-
ing style by swapping the first feature group. Similarly, we
construct image triples with different disease concepts, and
calculate total adversarial losses:

Lac =
∑

a=1,...,5

log(Dis(x, xa)) + log(1−Dis(x, x̄a)). (3)

where the total number of disease concepts is 5 in our
medical diagnosis application, and function Dis() represents
the discriminator to judge real or fake pair.

III. EXPERIMENTS

A. Datasets

ChestXray-14 is a wildly used Chest abnormality detec-
tion dataset, which contains 112120 front X-ray image from
30805 individuals, including 14 categories of chest pathology.
ChestXpert is a large chest x-ray dataset containing 224316
front X-ray image from 65240 patients, also including 14
categories of chest pathology.

We select a subset of ChestXray-14 for experiments, which
contains 36764 training images and 7353 testing images with
4 pathology labels (Atelectasis, Cardiomegaly, Effusion and
Infiltration). We also select a subset of ChestXpert, which con-
tains 162188 training images and 32437 testing images with 3
pathology labels(Pleural Effusion, Edema and Cardiomegaly).

TABLE I
COMPARISON EXPERIMENTS ON CHESTXRAY-14 DATASET. FOR EACH

PATHOLOGY, THE HIGHEST AUROC SCORES ARE BOLDED.

Methods Atel Card Effu Infi
RGD-Net (ours) 0.8630 0.8980 0.9269 0.8653

CheXNet [7] 0.8094 0.9248 0.8638 0.7345
Yao et al. [8] 0.7720 0.9040 0.8590 0.6950

Wang et al. [9] 0.7160 0.8070 0.7840 0.6090
ChestNet [10] 0.7433 0.8748 0.8114 0.6772
Li et al. [1] 0.8000 0.8700 0.8700 0.7000

Zhou et al. [11] 0.8121 0.9066 0.8786 0.7065

TABLE II
COMPARISON EXPERIMENTS ON CHESTXPERT DATASET. FOR EACH

PATHOLOGY, THE HIGHEST AUROC SCORES ARE BOLDED.

Methods Effu Edema Card
RGD-Net (ours) 0.900 0.9023 0.8871

Ye et al. [12] 0.9166 0.9436 0.8703
Pham et al. [13] 0.9640 0.9580 0.910
Irvin et al. [14] 0.9360 0.9280 0.8540

B. Accuracy of Thoracic Pathologic Prediction

We evaluate the performance of RGD-Net on thoracic
pathologic prediction and compare it with other non-
disentangled DL methods. Table. I shows that our RGD-Net,
which has significantly improved on ChestXray-14 dataset
by prediction with group-disentangled latent representation
compared with the existing methods methods.

The AUROC values of RGD-Net on Atelectasis, Car-
diomegaly, Effusion and Infiltration reached 86.30%, 89.80%,
92.69%, 86.53% respectively, being 5.36% , -2.68%, 6.31%
and 13.08% higher than the second-highest achieved by
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TABLE III
GROUP-DISENTANGLED REPRESENTATION ANALYSIS. WE USE THE ROW DISEASE FEATURES TO PREDICT THE AUROC OF COLUMN DISEASES ON THE

TEST SET BY A SIMPLE 3-MLP. DIAGONALS ARE BOLDED AND ’-’ MEANS THAT ESTHER ET AL. [6] FAIL TO DISENTANGLE CONCEPT OF BACKGROUND.

RGD-Net (ours)
(completely disentangled)

Esther et al. [6]
(partly disentangled)

AutoEncoder
(without disentangled)

Disease Atel Card Effu Infi Atel Card Effu Infi Atel Card Effu Infi
Atelectasis 0.8630 0.4855 0.5094 0.5005 0.6136 0.4960 0.4816 0.5050 0.6076 0.4990 0.4802 0.5297

Cardiomegaly 0.4822 0.8980 0.4836 0.5063 0.5062 0.6610 0.4968 0.4758 0.5067 0.7048 0.5183 0.4864
Effusion 0.4893 0.5061 0.9269 0.5229 0.5153 0.5038 0.6688 0.5099 0.4884 0.4985 0.7444 0.5292

Infiltration 0.4986 0.4900 0.4985 0.8653 0.4863 0.5230 0.5315 0.5910 0.4996 0.4955 0.4911 0.6332
Background 0.4983 0.5200 0.4926 0.4926 - - - - 0.5045 0.5029 0.5087 0.4887

CheXNet.
To prove the performance of the proposed method on large

medical datasets, we test the prediction performance of the
proposed model on ChestXpert, one of the largest datasets
currently available. As shown in Table. II, the accuracy of
the proposed network is slightly lower on ChestXpert than
the two latest networks, that is because our method considers
not only the categories of predicted pathology, but also the
interpretability of the network.

C. Group-Disentangled Representation Analysis

To prove the effect of group-disentanglement of our RGD-
Net, we use the subspaces of disease concepts to predict four
thoracic pathologies through a simple 3-MLP. If the hidden
subspace contains all the information about the disease, the
predicted result should be a matrix with 1 on the diagonal and
0.5 on the rest.

We use Esther et al. [6] and standard auto-encoder with
classification head as comparison methods. The former partly
disentangles the latent space, and the latter is not a disen-
tangled method. Table. III shows that RGD-Net successfully
decomposes the image into a group-disentangled latent space
and uses each subspace to accurately predict the corresponding
concept, but not to predict other concepts. The results of two
comparison methods, whose latent space is not completely
group-disentangled, show that each subspace doesn’t know
what it corresponds to, so their AUROCs are nearly 0.5.

IV. CONCLUSION

This paper proposes a Representation Group-Disentangling
Network (RGD-Net), which completely extracts group-
disentangled disease representations with fine-grained and
non-overlapping features, thus promoting both interpretability
and prediction accuracy. Further, we found the possible model
collapse problem in the training process, and proposed an
adversarial constrict to solve it. Finally, we experimentally
demonstrate that RGD-Net can significantly improve classi-
fication accuracy compared with partly disentangled methods
or other DL methods, and showcase the potential of RGD-Net
to disentangle information.
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