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Abstract—Supervised based deep learning methods have
achieved great success in medical image analysis domain. Essen-
tially, most of them could be further improved by exploring and
embedding context knowledge for accuracy boosting. Moreover,
they generally suffer from slow convergency and high computing
cost, which prevents their usage in a practical scenario. To tackle
these problems, we present CT-CAD, context-aware transformers
for end-to-end chest abnormality detection on X-Ray images.
The proposed method firstly constructs a context-aware feature
extractor, which enlarges receptive fields to encode multi-scale
context information via an iterative feature fusion scheme and
dilated context encoding blocks. Afterwards, deformable trans-
former detector are built for category classification and location
regression, where their deformable attention block attend to a
small set of key sampling points, thus allowing the transformer
to focus on feature subspace and accelerate convergence speed.
Through comparative experiments on Vinbig Chest and Chest
Det 10 Datasets, the proposed CT-CAD demonstrates its effective-
ness and outperforms the existing methods in mAP and training
epoches.

Index Terms—Chest X-Ray Images, Abnormality Detection,
Context-Aware Feature Extractor, Deformable Transformer De-
tector

I. INTRODUCTION

Chest X-Ray (CXR) Image is one of the most preferred
diagnostic tools in medical practice, which has an important
role in the diagnosis of thoracic diseases.

Applying deep learning methods to build automatical CXR
diagnose tools is thus becoming a hot research topic, due
to their scalability to process either big data or small size
data and significant power to analyze complex CXR data
with highly nonlinear modeling capability. Following such
idea, researchers have made tremendous progress on chest
abnormality detection, which is inspired by the great success
of object detection methods in computer vision. For example,
Baltruschat et al. [1] firstly pre-train a neural network on
the ImageNet dataset for classification of natural images, and
then utilize transfer learning for chest radiography analysis,
which proves the efficiency of proper knowledge transfer on
medical image analysis domain. Furthermore, Annarumma et
al. [2] develop and test an artificial intelligence (AI) system

for automated real-time triaging of adult chest radiographs,
which uses an ensemble of two deep CNNs to predict the
clinical priority from radiologic appearances only.

However, superimposition and overlapping of different
anatomical structures locate along the projection direction,
leading to the diversity of chest abnormalities. Hence, it’s
very difficult to detect abnormalities in some cases. Without
special focus on these difficulties, most of the existing CXR
abnormality detection methods derive their ideas or structure
designs from object detection methods, which leads them to
suffer from domain shift, requiring additional and specific
knowledge embedding. Moreover, the structure of deep neural
networks brings several inherent disadvantages, i.e., slow
convergence and high computation cost, which would be worse
facing various patterns of chest abnormalities.

Facing these challenges, we propose CT-CAD, context-
aware transformers for end-to-end chest abnormality detection
task. The proposed CT-CAD consists of two modules, i.e.,
context-aware feature extractor and deformable transformer
detector. To address the issue of extracting multi-scale context
information for small abnormalities locating, we not only
design dilated context encoding blocks to enlarge receptive
fields, but also propose an iterative feature fusion scheme
to fuse multi-scale features. Regarded as a powerful network
architecture based on attention mechanisms for machine trans-
lation, deformable transformer detector adaptively aggregates
the key and distinguish features without any hand-designed
components, thus enhancing feature representation capability
to solve difficulties of multiple and complex pattern discovery.
The core of deformable transformer detector, i.e., deformable
attention block, attends to a small set of sampling locations as
a pre-filter for prominent key elements out of the whole feature
space, which could be considered as context information
on feature subspace and greatly decrease computation and
memory cost at both training and testing.
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Fig. 1. Network architecture of the proposed CT-CAD method. It’s noted that CT-CAD could output a set of predictions without pre- and post-processing
steps in an end-to-end manner.

II. THE PROPOSED METHOD

A. Network Structure Overview

As shown in Fig. 1, we design two main modules, i.e.,
context-aware feature extractor and deformable transformer
detector. The former module contains ResNet-50 backbone,
dilated context encoding (DCE) block, and positional encoding
structure, while the latter one contains transformer encoder,
transformer decoder and a feed-forward network for classifi-
cation and regression tasks.

It’s noted that the proposed CT-CAD method require a fixed
number Nobj for possible predictions, each with a coordinate
regression results and an abnormality classification result. Let
y the ground truth and ŷ = {ŷi}

Nobj

i=1 denotes the set of Nobj

predictions. The total loss for both regression and classification
tasks is achieved by searching for a permutation ω ∈ ΩNobj

of
the Nobj predictions with Hungarian algorithm, which could
be described as:

ω̂ = arg min
ω∈ΩN

N∑
i=1

Lmatch

(
yi, ŷω(i)

)
(1)

where y is padded to the size of Nobj , ˆyω(i) is the ith
element of the predictions. Each element of the prediction
refers to ŷω(i) =

(
p̂ω(i) (ci) , b̂ω(i)

)
, where b̂ω(i) represents

the bounding box and p̂ω(i) (ci) represents the probability of
the class with the maximum probability.

The loss function for training is a combination of the box
loss and classification loss, which is defined as:

L(ŷ, y) =

N∑
i=1

[
α1Lcls

(
ci, p̂ω(i) (ci)

)
+ α2Lloc

(
bi, b̂ω(i)

)]
(2)

where the classification loss is the cross entropy, represented
as

Lcls

(
ci, p̂ω(i) (ci)

)
=

N∑
i=1

− log p̂ω(i) (ci) (3)

and the bounding box loss is

Lloc

(
bi, b̂ω(i)

)
=

N∑
i=1

[
β1Liou

(
bi, b̂ω(i)

)
+ β2Lreg

(
bi, b̂ω(i)

)]
(4)

which is essentially the summation of IoU loss and L1 loss.
It’s noted that α1, α2, β1 and β2 are all hyper-parameters.
Specifically, we adopt GIoU [3] to balance the loss between
large and small objects. Parameters of the proposed CT-CAD
method are updated based on the loss obtained by the best
search of permutation, which enables the proposed network
to be trained in an end-to-end manner without many hand
designed components.

B. Design of Context-Aware Feature Extractor

Inspired by [4], we design the proposed iterative feature
fusion scheme for multi-scale feature fusion as shown in Fig.
1. Essentially, the proposed feature fusion scheme builds on
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Fig. 2. Architecture design of the proposed DCE block, where the dilated
convolution filter is adopted to enlarge the receptive field, thus acquiring
quantity of multi-scale context information for further processing.

top of the Feature Pyramid Networks (FPN) [5] by iteratively
and progressively refining scaled feature map from the top
layers to the bottom-up ones. Unrolling the iterative structure
to a sequential implementation, we obtain feature map for
abnormality detector that looks at the images twice or more
with structures of multiple stages, and much more carefully
with DCE blocks to enhance feature representation. Similar
to the cascaded detector in Cascade structure, the proposed
feature fusion scheme iteratively enhances original feature
map of FPN to generate increasingly powerful representations.
In other words, the proposed feature fusion scheme acts
as a multi-scale feature encoding scheme in a global sense
by directly resizing feature map, meanwhile DCE blocks
encodes multi-scale information in a local sense by enlarging
receptive via fields convolutional filters with different sizes.
Such iterative feature fusion operations could be represented
as {

Fl = Fl−1 + fDCE(Fl−1)
Fl+1 = fdown(Fl)

(5)

where Fl refers to the lth feature map after l − 1 times
pooling operations, functions fDCE() and fdown() repre-
sent single-in-single-out operator of DCE block and down-
sampling operator, l varies from 2 to 4 in the proposed method.

Inspired by YOLOF [6], we design structure of DCE block
as shown in Fig. 2, where dilated convolution and skip
connections are used to enlarge the receptive field and capture
more local context information. Essentially, this powerful one-
level feature successfully finds a way to generate an output
feature with various receptive fields, compensating for the lack
of multiple-level features. Therefore, it exceeds the range of
scales matching to the scaled feature’s receptive field, which
benefits the detection performance for abnormalities across
various scales.

Specifically, we first design a 1 × 1 and a 3 × 3 standard
convolution layer as a projector, which is used for feature
refinement. The main component in DCE block is the residual
block, which consists of two 1 × 1 convolution layer with
a 3 × 3 dilated convolution layer. Then, we stack several
residual blocks with residual connection to build a short-way

Fig. 3. Architecture design of the proposed deformable attention block, which
is the core component of deformable transformer detector. It’s noted that K
points are sampled from the input multi-scale feature map.

for gradient flow. Each residual block has a different dilated
rates with different receptive field, covering all scales and
extracting extensive contextual information. Finally, we sum
the resulting feature map with the original feature map for
output.

C. Design of Deformable Transformer Detector

The proposed deformable attention block is illustrated in
Fig. 3 with single-scale and multi-head attention property.
Given a sequence input feature, we first obtain query feature
z and feature map x via several linear layers. By apply-
ing linear layers on z, we can compute multi-head offsets
{∆xm,∆ym}

M
m=1 and the corresponding attention weights

A. It’s noted that each pair of offsets is used to sample k
points from the feature map x. Afterwards, single-scale and
multi-head deformable attention block can be defined as:

At(A, x) =

M∑
m=1

Wm[

K∑
k=1

Am,k · foff ([x,∆xm,∆ym]k)] (6)

where m indexes the attention head, k indexes the sampled
keys, M and K are total number of attention heads and
sampling points, respectively.

Furthermore, the efficiency property of single-scale and
multi-head deformable attention block leads multi-scale de-
formable attention block to be easily built as:

MsAt(
{
Al
}L
l=1

,
{
xl
}L
l=1

) =∑M
m=1 Wm[

∑L
l=1

∑K
k=1A

L
m,k · foff ([xl,∆xlm,∆y

l
m]k)]

(7)
where l refers to the index of layers and L is the total number
of layers. We stack 6 deformable encoder and decoder layers
with deformable attention blocks to achieve decoder output,
whose size is (Nobj , cout). It’s noted that Nobj is the number
of the abnormalities detected and cout is the output dimension
of decoder layers.

Authorized licensed use limited to: Hohai University Library. Downloaded on April 29,2022 at 06:19:45 UTC from IEEE Xplore.  Restrictions apply. 



1388

Fig. 4. Comparisons of detection results between Faster R-CNN the proposed
CT-CAD. Faster R-CNN is above and misses some abnormalities.

TABLE I
PERFORMANCE COMPARISON AMONG CT-CAD AND THE EXISTING

METHODS, WHERE BOLD TEXTS REFER TO THE BEST PERFORMANCE.

Dataset Method AP50

VinBig

Faster R-CNN with FPN 29.1
Yolov3 [7] 26.2
DETR [8] 33.5

Cascade R-CNN [9] 33.5
Yolo Modified 29.5

Faster R-CNN Modified 30.3
Ensemble Model 1 35.7
Ensemble Model 2 34.3
Ensemble Model 3 33.9

CT-CAD 36.3

Chest Det-10

Faster R-CNN with FPN 39.3
Yolov3 [7] 37.7
DETR [8] 41.5

Cascade R-CNN [9] 41.1
DenseNet [10] 42.7

CT-CAD 43.6

III. EXPERIMENTS AND ANALYSIS

We adopt two datasets to conduct chest X-Ray abnormal-
ity detection, i.e., Vinbig Chest X-Ray Dataset and ChestX
Det-10 Dataset. For former dataset, we select a subset for
experiments, which contains 5000 training images and 1063
testing images in total. With annotations of bounding boxes
and the corresponding class labels, all images are labeled by
a panel of experienced radiologists for the presence of 14
critical radiographic findings. The latter one is a subset Dataset
with box annotations of a public dataset NIH Chest-14, which
contains 3001 and 541 images in the training set and testing
set, respectively. It’s noted each image is annotated with 10
common categories of diseases.

Experimental results of performance comparison on VinBig
Dataset and ChestX Det-10 Dataset are shown in Table. I.
From Table. I, we could observe that accuracy in VinBig
Dataset is generally lower than ChestX Det-10 Dataset, since
CXR images in VinBig Dataset not only correspond to more
categories of abnormalities, but also vary in appearance with
more complex patterns. It’s observed that the proposed CT-
CAD has achieved the highest AP50 on both datasets, which
outperforms Faster R-CNN, YoLo and their modified versions
by a large margin. All these facts prove structures of de-

formable transformer detector and dilated context encoder are
helpful to improve detection accuracy.

On the challenging VinBig dataset, CT-CAD achieves com-
petitive performance comparing with the ensemble baseline 1,
which is a complicated structure that ensembles the results of
five different detectors. So are the other two ensemble baseline
methods. All these facts point out that complexity in structure
design not always brings advantages on performance boosting.
When comparing with DETR, the better performance obtained
by CT-CAD shows that the proposed deformable attention
block can help focus on informative feature subspace without
having to look over the entire space, which might bring noise
information to decrease accuracy of detection results.

In Fig. 3, we compare the abnormality detection accuracy
between the proposed CT-CAD and Faster R-CNN, where we
can view that CT-CAD is capable to detect hard cases, such
as nodules that are ignored by Faster R-CNN.
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