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Abstract—Object detection is one of the fundamental chal-
lenges in pattern recognition community. Recently, convolution-
al neural networks (CNN) are increasingly exploited in object
detection, showing their promising potentials of generatively
discovering patterns from quantity of labeled images. Among
CNN-based systems, we focus on one state-of-the-art archi-
tecture designed for fast object detection, named as YOLO.
However, YOLO, as well as CNN-based systems are hard to
deploy on embedded systems due to their computationally
and storage intensive. In this paper, we propose to compress
YOLO network by compressive sensing, which exploits in-
herent redundancy property of parameters in layers of CNN
architecture, leading to decrease the computation and storage
cost. We firstly convert parameter matrix to frequency domain
through discrete cosine transform (DCT). Due to the smooth
property of parameters when processing images, the resulting
frequency matrix are dominated by low-frequency components.
Next, we prune high-frequency part to make the frequency
matrix sparse. After pruning, we sample the frequency matrix
with distributed random Gaussian matrix. Finally, we retrain
the network to finetune the remaining parameters. We evaluate
the proposed compress method on VOC 2012 dataset and show
it outperforms one latest compression approach.

Keywords-object detection; deep learning; compressive sens-
ing; deep compress; discrete cosine transform;

I. INTRODUCTION

Category-level object detection, i.e. spatially separates

bounding boxes and associate class probabilities, has been

one of the most active areas in pattern recognition and com-

puter vision. In recent years, Convolutional Neural Networks

(CNN) have attracted lots of attentions due to its impressive

results. Various CNN-based approaches for feature extrac-

tion and classifier learning have been applied to solve the

problem of object detection [1], [2], [3], [4]. Among them,

YOLO system [1], [2] is designed to address the issue

of computational cost, which could process 67 frames per

second and achieve 76.8 mean Average Precision (mAP)

simultaneously on VOC 2007 dataset [5]. It outperforms

most of object detection methods including Deformable part-

based model (DPM) [6] and R-CNN [7].

Impressed by the outstanding results of YOLO system,

the operating systems to deploy YOLO are still restricted

as servers and workstations. The main difficulty to shift

YOLO from computers to embedded systems lies in its

computational and storage intensity [8]. Specifically, YOLO

system is over 230MB, consisted by 30 layers and 6.74∗108
parameters. Running YOLO with the tremendous number

of parameters consumes large storage and computational

resources, which are often limited in embedded system-

s. This problem occurs for other CNN-based systems as

well. Therefore, how to compress the size of parameters

and probably shift CNN architectures to embedded system

has become one of the most challenging topics in pattern

recognition commuting.
In this paper, we propose a novel approach to compress

parameters of YOLO network with compressive sensing.

Compressive sensing is well-known as a highly efficient

signal compression method, which exploits the sparsity

property of signal to recover it from far fewer samples

than required by the Shannon-Nyquist sampling theorem.

Due to the nature of local pixel correlation in images

(i.e. spatial locality), filters in YOLO system tend to be

smooth. Inspired by the theory of image compression, we

first adopt discrete cosine transform to convert these filters

into frequency domain [9]. After pruning high-frequency

part, we achieve a sparse version of the frequency matrix.

Next, we use distributed random Gaussian matrix to sample

the frequency matrix. After the three steps, we retrain the

network to finetune the remaining parameters. Using com-

pressive sensing to compress parameters of YOLO network

could help decrease the storage consumption. In running

time, sparse distribution of YOLO parameters would greatly

speed up the calculation.
Our approach has two major contributions:

• Introduction of a compression method for CNN net-

work based on compressive sensing technique. Com-

pressive sensing is designed to compress the signal

under the theoretical guidance of sparse coding. CN-

N filters for images processing are often sparse and

smooth, which coincides with the idea of compressive

sensing. To the best of our knowledge, this is the

first work compressing CNN network with compressive

sensing.

• Construction of a much smaller YOLO system (nearly

100MB) that supports to deploy in an embedded sys-

tem. Practically, the proposed compress approach for
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Figure 1. The framework of the proposed method: (a) input parameter matrix sampled from filters of YOLO, (b) transforming parameter matrix to
frequency domain by DCT, (c) pruning frequency matrix, (d) sampling frequency matrix by setting distributed random Gaussian matrix as measurement
matrix and (e) finetuning the compressed network to get the modified version of sampling frequency matrix.

YOLO system could be easily modified and applied to

any CNN-based system.

The rest of the paper is organized as follows. Section 2

reviews the related work. Details of the proposed compress

method is discussed in Section 3. Section 4 presents the

experimental results and discussions. Finally, Section 5

concludes the paper.

II. RELATED WORK

The existing methods related to our work can be catego-

rized into the following two types: deep compression and

object detection methods.

A. Deep compression

Deep neural networks have demonstrated the state-of-the-

art power for computer vision tasks. However, these models

are hard to shift to embedded system due to the limited

computational and memory resource. More researchers begin

to focus on methods for compression of deep models.

We generally category them into two groups: compress

during and after training. The methods in the first group

compress weights, activations and gradients during training

to obtain smaller and faster network. For example, Cour-

bariaux et al. [10] train binarized neural networks (BNNs)

with binary weights and activations at run-time, which

achieves a high compression result on multiple datasets.

However, these compression methods require the whole

dataset for compression, which greatly increase compression

time cost for existed deep model. The other kind of methods

focuses on compressing the trained network. For example,

Dendi et al. [11] use low-rank decomposition of the weight

matrix to reduce the number of parameters int he network.

In a similar way, Gong et al. [12] investigate information

theoretical vector quantization to compress the parameters

of CNNs. Recently, Han et al. [8] introduce a three-stage

pipeline including pruning, trained quantization and Huff-

man coding, to reduce the storage requirement of networks

without affecting their accuracy. Most relevant to our work,

Chen et al. [13] introduce DCT and low-cost hash function

to randomly group frequency parameters into hash buckets.

Due to the lack of analysis of sparse property, compression

results of this approach could be improved.

B. Object detection

Category-level object detection, i.e. predicts the bounding

boxes and associated class probabilities, has been one of

the most active areas in pattern recognition community.

Classical methods like DPM [6], often use sliding window

and classifier to detect whether objects exist inside the win-

dow. More recent methods, like R-CNN [7] first use region

proposal to generate potential bounding boxes and then run

a classifier on these proposed boxes, which greatly reduce

the search space and time cost. Based on object proposal

methods, Ouyang et al. [3] propose a deformable deep

convolutional neural network for object detection, which

jointly learn the feature representation and part deformation

for a large number of object categories. It outperforms

the winner of ILSVRC2014, GoogLeNet [14], by 6.1%.

However, the computation cost of this method is high to

deploy in embedded systems. To address the problem of

computation cost, Redmon et al. [2] propose a fast and

accurate system named as YOLO, which uses a single neural

network to predict bounding boxes and class probabilities.

Later on, Redmon et al. [1] modify YOLO to improve its

speed and accuracy, which gets 78.6 mAP at 40 FPS on

VOC 2007 dataset. Our compressed work is built on the

modified version of YOLO system.

III. METHODOLOGY

In this section, we propose a novel compression method

to compress YOLO network by compressive sensing, which

decreases the computation and storage cost, and retain the

detection accuracy simultaneously. Fig. 1 gives the overview

of the proposed method, where (a) refers to the input param-

eter matrix, which is sampled from the filters of YOLO, (b)

use DCT to transform input parameter matrix into frequency

domain, (c) pruning frequency matrix, (d) sampling frequen-

cy matrix and (e) finetuning the compressed network to get

the modified sampling frequency matrix.
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A. DCT for Parameter Matrix

YOLO network are composed of convolutional layers

(COV), batch normalization layers (BN), max-pooling layers

(MP), re-organization layers (RO) and detection layer (DT).

The parameters of MPs, ROs and DTs are determined man-

ually, while parameters in COVs and BNs require training.

Therefore, the proposed method constructs parameter matrix

based on parameters of COVs and BNs. Specifically, each

normalization layer follows a convolutional layer to improve

convergence. In conclusion, YOLO network has 22 COVs

and 22 BNs. The size of parameters of each COV varies

greatly from hundreds to millions. For each COV, we thus

sperate them by blocks determined as 15*15 by experiments.

Since each BN has three parameters, there are only 3*22=66

parameters in total for all the BNs. We thus use one 15*15

matrix to store the parameters of BNs. There would be

blanks when transforming parameters of filters to blocks. We

use the mean value of blocks to fill up these blanks, since

the mean value won’t change the frequency distribution.

After separating and filling blanks, we could get a parameter

matrix for each COV and BN by concatenating blocks. The

parameter matrix is represented as Nl, where l represents

the index of layers varying from 0 to 22. Note that index

0 represents the parameter matrix constructed based on

parameters of BNs.

DCT-based methods are widely used to compress images

and movies [9]. The main reason for its popularity in

compression area lies in three aspects: 1. DCT has the

ability to pack most energy of images to the low-frequency

part; 2. DCT and its inverse operation could be lossless

for compression when employed without quantization or

other compression operation; 3. DCT yields a real-valued

frequency matrix, compared with FFT whose representation

has imaginary components. DCT is suitable for compress

of parameter matrix as well, since the weights in parameter

matrices are typically smooth and low-frequency, due to the

property of spatial locality of image pixels. Given an input

matrix N , the corresponding frequency matrix M after DCT

could be written as follows:

M = ANAT , where A(i, j) = c(i) cos[
(j + 0.5)π

d
i] (1)

where d is defined as the length of input matrix N and

its value is 15 in our method, i and j are the row and

column index respectively, c(i) =
√

1
d when i = 0 and

c(i) =
√

2
d when i �= 0. Representing Eq. 1 as fdct, the

transforming formula can be rewritten as Ml = fdct(Nl),
which converts the parameter matrix from spatial domain to

frequency domain.

B. Pruning Frequency Matrix

Since compressive sensing requires the input signal to

be sparse, in this subsection we prune frequency matrices

Figure 2. An example of a parameter matrix in spatial domain(a),
frequency domain (b) and after pruning (c).

to make them sparse. Meanwhile pruning could help save

computation and storage cost.

Fig. 2 (a) and (b) show an example of frequency matrix

in spatial and frequency domain, respectively. In the spatial

domain, the frequency matrices are smooth due to the

local pixel smoothness in natural images. In the frequency

domain, the upper left part with small indices (i, j), known

as low-frequency components, have larger magnitude val-

ues than other parts named as high-frequency components.

Based on this observation, we could conclude the energy

of frequency matrix is dominated by low-frequency part.

In other words, the upper left frequency values are more

important than other values in constructing filters of YOLO.

To decrease storage and computation cost and maintain

detection results for YOLO, we should prune the high-

frequency part and retain the low-frequency part.

Essentially, network pruning has been widely studied to

compress CNN models. Early pruning methods [16] were

proposed to reduce the network complexity and over-fitting.

The proposed method build on top of these approaches by

setting an adaptive threshold α for pruning:{ |Ml(i, j)| = Ml(i, j) if Ml(i, j) ≥ α
|Ml(i, j)| = 0 if Ml(i, j) < α

(2)

where || refers to the network pruning operation and l
represents layer index and α is defined as

α = γ · fsort(Ml) (3)

where function fsort() represents the sort operation and

γ refers to the prune ratio. Based on different values of

γ, users could achieve YOLO systems with different sizes

to fulfill there requirement for storage consumption. After

removing smaller frequency values, we could get pruned and

sparse result as shown in Fig. 2 (c). In fact, pruning mainly

occurs in high-frequency components due to the truth that

high-frequency components have lower magnitude values.

Therefore, pruning doesn’t affect the construction of filters

in YOLO and decreases computation and storage cost at the

same time.

C. Compress and Recover by Compressive Sensing

In this subsection, we will discuss how to use compressive

sensing [17], [18] to compress and recoverty the sparse
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Table I
PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND HASHEDNETS [15] ON VOC 2012 DATASET.

Prune Ratio SNR1 PSNR1 mAP 1(%) SNR2 PSNR2 mAP 2 SNR3 PSNR3 mAP 3(%)
0.9 51.70 62.44 83.80 41.29 53.17 78.60 10.41 9.27 5.2
0.8 46.70 58.65 82.81 40.29 52.68 74.48 6.41 5.97 8.33
0.7 42.48 53.31 81.88 35.55 47.59 70.45 6.93 5.72 11.43
0.6 39.21 49.95 71.94 18.23 30.25 65.91 20.98 19.7 6.03
0.5 14.64 25.53 64.36 12.42 21.12 59.76 2.22 4.41 4.6

Average 38.95 49.98 76.96 29.56 40.96 69.84 9.39 9.02 7.12

frequency matrix M computed by Eq. 2. After that, we will

give a short discussion on finetune steps.

A signal x could be expressed as x =
∑N

i=1 siΨi, where

si represents the coefficients and {Ψi} consist of an orthog-

onal basis. Compressive sensing focuses on sparse signals

in the sense that there exists a basis where coefficients si
could have just a few large values and many small values.

Considering sparse frequency matrix M as a signal, our goal

is thus to design a measurement matrix Φ to represent the

orthogonal basis vectors {Ψi}.
Specifically, we design Φ that ensures the salient informa-

tion in frequency matrix M is saved during the dimension-

ality reduction, i.e. compression. To fulfill this requirement,

the construction of Φ shouldn’t depend on the frequency

matrix M in any way. In other words, Φ should be designed

as combinations of independent randomly weighted linear

vectors. The distributed random Gaussian matrix [19] has

been proved to be a good choice for Φ, since it satisfies

all the requirements. The proposed method thus adopts the

distributed random Gaussian matrix as Φ, which is defined

as H(i, j) = 1√
m
hi,j , where m is the length of Φ and hi,j

refers to the normal distribution between 0 and 1. After

defining Φ = H , we could compute compressed matrix

C = M · Φ−1.

For recovery based on compressed matrix C and mea-

surement matrix Φ, there are many possibilities due to

the location of large coefficient components contained in

the signal is uncertain. So the recovery solution is often

high in computational complexity. We firstly try several

classical algorithms for recovery and then choose the fast

and accurate one as our recovery algorithm, which is named

as approximate message-passing (AMP) [20]. AMP is an

iterative algorithm achieving reconstruction performance in

one important sense identical to LP-based reconstruction

while running dramatically faster.

In running time, the method firstly recovers the frequency

matrix M from compressed frequency matrix C by AMP

algorithm and then do inverse DCT to convert M from

frequency domain back to spatial domain, which could be

represented as

Ñ = fiDCT (fAMP (M)) (4)

After pruning and compressing, the recovery parameter

matrix Ñ could be different from the original one. To obtain

Figure 3. Comparison of SNR and PSNR between our method and
HashedNets, which are represented by label 1 and 2.

better performance with Ñ , we will finetune the Compressed

Network with a few examples.

IV. EXPERIMENTS

To evaluate the proposed method, we consider one bench-

mark databases, VOC 2012 [21]. VOC 2012 is challenging

due to its diversity in object categories and complexity in

the layout of images. To measure results of compression, we

use SNR, PSNR, mAP. SNR is defined as

SNR = 10 · lg
∑m−1

i=0

∑n−1
j=0 N(i, j)2

mn ·MSE
(5)

where MSE represents mean squared error defined as

MSE = 1
mn

∑m−1
i=0

∑n−1
j=0 ‖Ñ(i, j) − N(i, j)‖2, and N

and Ñ represent the input and compressed parameter matrix,

respectively. PSNR is defined as

PSNR = 10 · lg max(N)

MSE
(6)

where max(N) refers to the maximal value in input parame-

ter matrix. When comparing between two methods, the per-

formance is considered better if SNR, PSNR and mAP are

larger values. In fact, SNR and PSNR are two measurements

to judge the loss of parameter matrix during compression,

while mAP focuses on the detection performance of YOLO.

Table. I gives the detailed statics of the proposed method

and HashedNets [15] for the VOC 2012 dataset, measured

on a PC with 2.5GHz i7 CPU and 6GB RAM. Note that

the superscripts 1, 2 and 3 correspond to the proposed

method, HashedNets and difference between both methods,
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Figure 4. Comparison of mAP between our method and HashedNets,
which are represented by label 1 and 2.

respectively. HashedNets is a novel network architecture to

reduce and limit the memory overhead of neural networks.

To compare with HashedNets, we implement its algorithm

according to the instructions in paper. Note that the prune

ratio in Table. I refers to the compression ratio in our exper-

iment. Our method could slightly decrease the computation

cost at 10% when the prune ratio is set at 60%. It is evident

by average value of SNR3, PSNR3 and mAP 3 that the

proposed method achieves better results than HashedNets

in terms of three measurements for VOC 2012 database.

The comparison advantage of the proposed method is more

obvious when the prune ratio is set as 0.6, where the pro-

posed method gets far better performance than HashedNets

in SNR and PSNR. However, the corresponding difference

of mAP is only 6.03. On the contrary, the largest difference

of mAP value 11.43 appears when the prune ration is set at

0.5. This inconsistent performance between SNR, PSNR and

mAP is caused by the fact that the performance of YOLO

is affected by many factors including parameters and the

relation between parameters and detection accuracy is non-

linear.

We show the comparison of SNR, PSNR and mAP

between the proposed method and HashedNets in Fig. 3

and 4, respectively. We could find that our method gets

stable performance in SNR and PSNR when the prune

ratio decreases from 0.9 to 0.6, while HashedNets gets

stable performance between 0.9 and 0.7. The mAP value of

our methods drops greatly when the prune ratio decreases

from 0.7 to 0.5, while HashedNets is stable is mAP during

compression. The unstable performance of the proposed

method could be explained by the fact that mAP would drop

fast if the proposed method prunes the low-frequency part

of parameter matrix.

After compression, we shift YOLO to mobile phones and

test its performance. Sample qualitative results of the shifted

YOLO are shown in Fig. 5, where the first and second

row represent detection results of real-life scene images and

images in VOC 2012 dataset. From these sample results,

we can see the shifted version of YOLO could detect object

accurately and fast, even facing challenges of diversity in

object categories and complexity in the layout of images.

V. CONCLUSION

In this paper, we propose a novel method to compress

YOLO network by compressive sensing, result in decreasing

the computation and storage cost. After converting parameter

matrix of YOLO network to frequency domain by DCT,

we could achieve a low-frequency dominated matrix due to

the inherent smooth property of parameters when processing

images. Then, we prune high-frequency components to make

the frequency matrix sparse. Next, we sample the sparse

frequency matrix with distributed random Gaussian matrix.

Finally, we retrain the network to finetune the remaining

parameters. Experiment results on VOC 2012 show that the

proposed method outperforms a relevant baseline method.

We also show examples of object detection results after

shifting compressed YOLO to mobile phones. Our future

work includes the exploration on compressing other types

of CNN and RNN network with the proposed method.
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